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Abstract
The E1M1 transition rate of the s p P s S2 2 23

0
2 1

0 line in beryllium-like ions has been calculated
within the framework of relativistic second-order perturbation theory. Bothmulticonfiguration and
quantum-electrodynamical computations have been carried out independently to better understand
and test for allmajor electron–electron correlation contributions in the representation of the initial,
intermediate andfinal states. By comparing the results from thesemethods, which agree well for all
ions along the beryllium isoelectronic sequence, the lifetime of themetastable 2s2p 3P0 level is found to
be longer by about 2–3 orders ofmagnitude for allmedium and heavy elements thanwas estimated
previously. Thismakes the 3P0 level of beryllium-like ions to one of the longest living (low-lying)
electronic excitations of a tightly bound systemwith potential applications for atomic clocks and in
astro physics and plasma physics.

1. Introduction

Since the beginning of atomic spectroscopy,metastable states have attractedmuch interest in studying electronic
excitations inmany-electron atoms and ions and their interactionwith light andmatter. Perhaps the two best
knownmetastable states are the singlet and triplet 1s2s 1,3S levels of neutral heliumwith lifetimes of about 19ms
and∼ 8000 s [1], but where the decay of the S3

1needs still to bemeasured accurately. The large differences in the
lifetimes of thesemetastable levels arise fromquantum-mechanical selection rules and the different coupling of
the electronic density to the radiationfield. For the S3

1 level of helium, for instance, a simultaneous spin-flip of
one of the electrons is required in order to allow a transition into the s S1 2 1

0 ground state. Apart from long-living
atomic and ionic states,metastable levels are quite common inmany branches of physics, including nuclear and
molecular isomers, amorphous solids, the folding of proteins, or evenmetastable formations ofmacroscopic
matter.

While transitions frommetastable atomic states towards the ground level of the system are typically
forbidden due to the well-known electric-dipole selection rule, these levels can often still decay by either
higher-multipole ormulti-photon transitions. For example, the helium 3S1 level mentioned above decays via
a single-photonmagnetic-dipole transition at 62.5 nmor by a E1E1 two-photon process [1–3]. Both of these
decaymodes have been observed experimentally for various ions along the helium isoelectronic sequence [4–
6] as well as in astrophysical sources [7]. Beside the analysis of the total rates, recent emphasis was placed also
upon the angular emission and correlations of the two photons [8–11]. Only quite rarely, as for the nsnp P3

0

levels of alkaline-Earth-like atoms and ions with zero nuclear spin, neither any single-photon nor E1E1 two-
photon transition is possible, and such excited atomsmust decay by an E1M1 (or by an evenweaker 3E1)
transition to the ns S2 1

0 ground state in order to obey the inversion symmetry (parity) of isolated atoms.
However, such weak decay channels are already not important for the quite analogous s p P1 2 3

0 state of
helium-like ions, which predominantly decays via a single-photon E1 transition to the s s S1 2 3

1 level, though
the relative importance of the alternative E1M1 transitionmode increases with the nuclear chargeZ [12, 13].
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In practice, moreover, such strongly suppressed E1M1 transitions will become visible only for well-isolated
atoms and isotopes with zero-nuclear spin, in which no single-photon transitions can be induced by
hyperfine interactions or any external fields.When compared with the dipole-allowed E1E1 two-photon
transitions, the simultaneous emission of an electric andmagnetic dipole photon is suppressed by (at least) a
factor 2a in the fine-structure constant and, indeed, no E1E1 forbidden two-photon decay process has yet
beenmeasured in the laboratory. For beryllium-like ions with non-zero nuclear spin, in contrast, the
hyperfine-induced decay rates of the s p P2 2 3

0 level have been calculated and explored in first laboratory
measurements [14–17].

While, for the reasons given previously, pure E1M1 two-photon transitions are not relevant for
helium-like ions, they form the only decaymode for the lowest-excited s s p P1 2 22 3

0 level of beryllium-like
ions with zero nuclear-spin because of the necessary J= 0 → 0 transition into the s s S1 22 2 1

0 ground state.
First theoretical estimates for the E1M1 transition rate of this P S3

0
1

0 line have been provided by
Schmieder [18] for beryllium-like ions with Z= 12 to 20 as well as by Laughlin [19]whomade use of a Z-
expansionmethod in order to derive the scaling rule A Z s5 10 ,E1M1

nr 18 9 1( ) » ´ - - and which predicts
lifetimes as long as 2× 108 s, 51s, and 0.4 s for beryllium-like Ne6+, Xe50+, and U88+ ions, respectively.
From these computations, Laughlin concluded that the E1M1 transition rates are simply too small in order
to become observable in experiments [19]. Only recently, an indirect observation of the lifetime of the
s p P2 2 3

0 level has been considered in [20] by analyzing the dielectronic recombination (DR) data of zero
nuclear-spin beryllium-like 136Xe50+ ions, and amore direct measurement of this lifetime has meanwhile
been suggested at the GSI storage ring in Darmstadt [21]. Obviously, such lifetimemeasurements are of
great interest to better understand the electron–photon coupling beyond the well-known dipole
approximation.

Already from the s s2 1 E1E1 transitions in helium-like ions, it is known however that two-photon
transition ratesmay depend quite sensitively on the treatment of relativistic and correlation effects as well as
themultipole structure of the radiation field. In this work, we therefore re-explore the s p P s S2 2 23

0
2 1

0
E1M1 transition rates for beryllium-like ions with zero nuclear spin within the framework of relativistic
second-order perturbation theory. Both a series ofmulticonfiguration and quantum-electrodynamic
computations have been carried out independently in order to explore how the correlated and relativistic
motion of the electrons in the initial, intermediate, and final states affect the two-photon rates and lifetimes.
From these computations, it is found that the lifetime of themetastable s p P2 2 3

0 level is larger by about 2–3
orders ofmagnitude for all medium and heavy ions along the beryllium isoelectronic sequence than estimated
previously. Apart from the relativistic contraction of the wave functions and the proper excitation energies to
the levels nearby, especially the electronic correlations in the s S2 2 1

0 ground state has been found relevant for
predicting reasonably accurate lifetimes.

2. Theory and computations

For isotopes with zero nuclear spin, the metastable s p P2 2 3
0 level cannot decay by any single-photon

transition, and the lowest-order decay channel is the strongly suppressed E1M1 two-photon process into
the s S2 2 1

0 ground state, cf figure 1. The lifetime of this level is expected to be more than 12 orders of
magnitude larger than for the neighboured P1,3

1 levels and still more than 10 orders of magnitude longer
than for the P ,3

2 which predominantly decays via M2 transitions. For such two-photon transitions,
second-order perturbation theory is required in order to describe the coupling of the radiation field,
while the major electron–electron interaction contributions are usually treated non-perturbatively by
some proper wave function expansion of the initial, intermediate, and final states. Indeed, the selection
rules for the multi-photon transitions are derived quite easily from the standard single-photon selection
rules with regard to differences in their total angular momentaΔJ and the parity P, and by taking into
account the possible multipole transitions to the (virtual) intermediate states within the spectrum of the
atom or ion.

Because a good number of second-order perturbation calculations have been performed recently to
study the two-photon decay of helium- [2, 3, 10, 23] and beryllium-like ions [24], we here restrict ourselves
to a short compilation of the basic formulas as needed for the discussion next. In a relativistic, jj–coupled
representation of the atomic bound states involved, the second-order transition amplitude for the
emission of two photons with wave vectors ki (i= 1, 2) and polarization vectors u

il (λi =±1 ) is given by
[10, 24]

2
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where J Mi i ia and J Mf f fa refer to the initial and final atomic states withwell-defined total angularmomenta
Ji, f andmagnetic projectionsMi, f, respectively, andwhereαi, f denote all additional quantumnumbers that are
necessary for a unique specification of these states. The transition operator ̂ describes the interaction of the
electronswith the (spontaneous)field fluctuations and can bewritten in velocity (Coulomb) gauge as a sumof
the one-particlemultipole operators:

k u u, e , 2k r

m
m

i m( )ˆ ( )· åa=l l

where , ,m x m y m z m, , ,( )a a a a= denotes the vector of theDiracmatrices for themth particle 5.
Thewell-knownmultipole decomposition of the electron–photon interaction operator (2) also enables one

to simplify the second-order amplitude (1) and to re-write it in terms of the standard single-photon amplitudes
[25–27] by just keeping a summation over all (one-electron) continua of the atom. In this simplified form, each
photon is identified as an irreducible component of the radiationfieldwhich, apart from its frequency, has also a
well-definedmultipolarity L and parity P. From the reduced two-photon amplitudes, one then obtains the total

rate by integrating the (energy-) differential rate over half of the transition energy, d
E E

w

0

2

1
d

d

i f

1

( )
ò w

w

-
for the

first photon, while the energy of the second photon is fixed of course due to energy conservation.
Expression (1) of the transition amplitude is quite standard for second-order perturbation theory and

appears similarly also in studying two-photon excitation and ionization processes [24], or even theRayleigh
scattering of high-energetic photons at heavy targetmaterials [28–30]. Themain differences in calculating the
various—energy-differential and total—two-photon transition rates and cross sections typically arise from the
different representation of the atomic bound states as well as the particular procedure in dealingwith the

Figure 1. Low-lying level scheme of beryllium-like ions and the decay of these levels by leading one- and two-photon transitions. The
excitation energies and lifetimes for zero nuclear-spin isotopes refer to Xe50+ ions and are adapted from the literature [14, 22]. For
isotopes with non-zero nuclear spin I, as indicated on the right side of thefigure for I= 1/2, hyperfine-induced (electric ormagnetic
dipole) transitions become allowed for the P3

0,2 levels and then typically determine their lifetimes.

5
The different use ofα and a in equations (1) and (2)need to be distinguished here; these notations are quite common in relativistic atomic

structure theory and should not lead to confusion.

3

New J. Phys. 17 (2015) 103009 S Fritzsche et al



integration over the complete spectrumof intermediate states.Most generally, this integration includes a
summation over the discrete part of the spectrum aswell as an integration over the positive- and negative-energy
continua. In a radial-angular representation of the (many-electron) atomic states one often distinguishes
different continua, owing to their overall symmetry Jν andPνwith regard to a rotation and inversion of
coordinates. In the amplitudes (1), this symmetry of the continua is encoded into the symmetries of the
intermediate states Jan n and requires them to be consistent with the particularmultipoles of the radiation field
aswell as the representation of the (correlated) initial andfinal states of the given transition. In the present work,
we independently applied two differentmethods to evaluate these amplitudes: (i) themulticonfigurationDirac–
Fock (MCDF)method, inwhich all atomic states of interests are built from afinite set of jj-coupled
configuration state functions (CSF) and (ii) quantum-electrodynamical calculations, based on a perturbative
treatment of the interelectronic interaction. In the following, we briefly explain these two different approaches
and how they can be simplified in order to keep the computations feasible.

2.1. Use of relativistic wave function expansions
In theMCDFmethod, to summarize thefirst approach, a representation of all atomic states involved in
expression (1) are generated by using linear combinations of CSF of the given symmetry [26]

PJ c PJ , 3
r

n

r r
1

c

( ) ( ) ( )åy a g=a
=

where nc refers to the number of CSF and { cr(α) } to the representation of the atomic state(s) in thismany-
electron basis. Like in standard computations, the CSF are constructed as antisymmetrized products of a
common set of orthonormal orbitals and are optimized on the basis of theDirac–CoulombHamiltonian.
Relativistic effects due to the Breit interaction, i.e., themagnetic and retardation contributions to the electron–
electron interaction, were then added to the representation cr{ ( )}a by diagonalizing theDirac–Coulomb–Breit
Hamiltonianmatrix [31, 32]. To describe excitation and decay processes inmultiple and highly-charged ions the
MCDFmethod has been found a very versatile tool, especially if inner-shell electrons or different open shells are
involved in the computations [33, 34].

To generate the initial s p P2 2 3
0 andfinal s S2 2 1

0 atomic states as well as the relevant intermediate states of
the spectrum in equation (1), a series of computations has been carried out based on the three
s s s p p1 2 2 2 22 2 2( )+ + reference configurations. Especially for the s S2 2 1

0 ground state of beryllium-like ions,
the double excitations s p2 22 2 and s s2 32 2 are known to be quite important and, for neutral beryllium,
they alone give rise to about 65%of the overall correlation energy for the s S2 2 1

0 ground level [35]. Using these
reference configurations, thewave function expansions have then been enlarged stepwise in order to incorporate
all s s p sns snp snd L1 2 2 2 2 2 J

2 2 2 1,3( )+ + + + levels with J 0P = + and 1−aswell as n � 30, and by including
also single excitations of Brillouin’s type [36, 37]. This results in a total of 290 intermediate states with energies
partially well above of the single and double ionization limit. Because of the discretization of the radial grid for
the representation of theCSF, this procedure effectively incorporates a summation over the continuum since
single-electron excitationswith n 8 usually belong already to the continuumof the corresponding lithium-
like and, for higher n, also to the helium-like ions. A great advantage of theMCDFmethod is that different
approximationswith regard to the electron–electron correlations aswell as the summation over the continuum
can be explored rather readily by choosing sets of CSF due to different classes of excitations [38].Themajor
computationalmodels that were used in the present calculations will be explained next in section 3 together with
the 3P0−

1S0 E1M1 transition rates.
Apart from the Breit interaction in theHamiltonianmatrix, we also included the vacuumpolarization into

theHamiltonian but no self-energy corrections that aremore difficult to handle, especially for highly excited
states within the continuum. For the low-lying levels, however, allmajorQED corrections are incorporated
implicitly by applying accurate theoretical excitation energies [14, 22, 39] in the summation over the
intermediate states, though these corrections are not included into thewave function representation itself. This
clearly improves the agreement between the different approximations. Especially for the transition energies to
the two lowest levels, the uncertainties were estimated in these references to about 6 10 3´ - eV for the 3P levels
and 6 10 2´ - eV for the 1P level [22]. From the comparison of these results we also learned about the
uncertainties that arise from the different approximations.

2.2.Quantum-electrodynamical treatment
In theQED treatment, we have accounted for the electron–electron correlationwithin the framework of
perturbation theory. In the zeroth-order approximation, we here solve theDirac equationwith a local screening
potential, which partially incorporates already the interelectronic interaction. Indeed, the inclusion of a
screening potential into the unperturbedHamiltonian is known as the extended Furry picture, a picture that
enables one to remove the quasi-degeneracy of the levels in theCoulombpotential andwhich improves the low-

4

New J. Phys. 17 (2015) 103009 S Fritzsche et al



lying excitation energies already in zeroth-order approximation. The remaining interelectronic interaction is
then taken into account via theQEDperturbation expansion following the description of [23]. In the present
calculations, we have rigorously taken into account all the first-orderQEDdiagrams as depicted infigure 2. The
formal expressions for these diagrams in the case of a four-electron ion have been derived in a sameway as it was
done for two-electron ions in [23] previously.We note, however, that the E1M1 transitions rates appear to be
quite sensitive to the treatment of the intermediate s s p J1 2 2 12

1 2 = level (which, infirst order in the electron–
electron interaction, is just represented by a single determinant). Owing to this sensitivity, we have extended our
approach to partially account for the contributions with this intermediate state not only in the first-order but in
second and higher orders with regard to the electron–electron interaction. For this intermediate state, in
particular, we therefore performed a complete resummation of the ladder diagrams.

The rigorousQEDapproach employed in this work enabled us to perform the calculations without anαZ-
expansion, i.e., beyond the (so-called)Breit approximation. This approach accounts for the frequency-
dependence in the exact photon propagator, and for the interaction of bound electrons alsowith theDirac
continuum, i.e. the summation runs over the completeDirac spectrumof the positive and negative energy states.
Asfirst shown in [40], the contribution from the negative-continuum energy states can be of a great importance
especially for the cases ofM1 transitions. The negative-continuum effects were investigated also for the
transitions in beryllium-like ions in [41, 42], and for hydrogen-like ions, in [43, 44]. In the presentQED
approach, we also sumover the negative-continuum energy states and, hence, evaluate this contribution
explicitly, similar as done for the helium-like ions in [23, 45]. In some further detail, this summation over the
spectrumhas been performed by employing the dual-kinetic-balance finite basis setmethod [46]with basis
functions constructed fromB-splines [47].

3. Results and discussion

As outlined previously, themajor difficulty in calculating the two-photon transition amplitude (1) and rates
arises from the summation over the intermediate states and the extent towhich the electron–electron
correlation isfinally taken into account in the representation of the atomic bound states. For the s s S1 22 2 1

0

ground state of beryllium-like ions, for example, sizeable correlation contributions are added by virtual double
excitations of the s2 2 electrons into the 2p and s3 shells, andwhich can be omitted only for high-Z ions. Other
single and double excitations also affect the s s p P1 2 22 3

0 level and, similarly, also the representation of the
intermediate states. For these reasons, all atomic states in theMCDF computations were based on the
s s s p p1 2 2 2 22 2 2( )+ + reference configurations, togetherwith possible single and double excitations of the 2>̃ s
and 2p electrons.Moreover, in order to generate a proper one-particle spectrum that covers both the bound and
continuum states of the individual electrons, a xα local-density potential was used [48, 49], andwhereαwas

Figure 2. Feynman diagrams that represent the first-order interelectronic-interaction corrections to the two-photon emission and
whichwere evaluated here in the framework of theQEDapproach. The double lines describe the electron propagator in the effective
potential, containing theCoulomb field of the nucleus and the screening potential of electrons. The photon propagator is represented
by thewavy line, while the photon emission is depicted by awavy lines with an arrow at the free end.

5
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chosen to reproduce the binding energies of the electron in the low-lying s l l1 2 22 ¢ levels. To further understand
the effects of different correlation contributions to the two-photon transition amplitude, a series of
systematically enlargedwave function expansions (3)was utilized to evaluate the E1M1 rates as function of the
nuclear chargeZ. Apart from the independent-particlemodel, a number ofmulti-configuration expansions
were analyzed especially for their influence of how the summation over the s l L2 2 1,3

1 states with n 3 aswell
as the 2p2 correlation contributions to the 1S0 ground state eventually affect the E1M1 amplitude.While,
typically, deviations of up to a factor 2 occured for differentmulti-configuration expansions (3), the results tend
to convergewith increasing number of states in the representation of the one-particle spectra. The remaining
deviations are also quitemoderate with regard to the overall relativistic effects. Here, we shall not discuss all these
computations in great detail but just display our best results, i.e., those from the largest expansions (3), and
compare themwith the independentQED computations and previous (non relativistic) estimates; cf figure 3
and table 1.

In theQEDapproach, similarly, different screening potentials were employed to understand the interplay of
relativity and correlations in predicting accurate transition rates. These potentials include the core–Hartree,
Kohn–Sham, Perdew–Zunger, and local Dirac–Fock potentials. All these screening potentials have been utilized
quite frequently in recentQED calculations and need not to be described here in detail. In [50, 51], for example,

Figure 3.E1M1 two-photon transition rates for the s p P s S2 2 23
0

2 1
0 transition of zero nuclear-spin beryllium-like ions as a

function of the nuclear chargeZ. Results are shown for different approximations of the transition amplitudes and in comparisonwith
previous (nonrelativistic) computations: bestMCDF approximation (black solid line); QED computations based on a single-photon
exchange between all pairs of electrons (blue dashed line). These two relativistic computations are comparedwith the (non relativistic)
data by Schmieder ([18], red open diamonds) and Laughlin’s scaling formula (equation (5), green solid circles) aswell as for Laughlin’s
scaling (4) butwith a proper splitting 3P0 and

3P1 (black triangles). See text for further discussion.

Table 1.The lifetimes of the s p P2 2 3
0 state and rates for the

s p P s S2 2 23
0

2 1
0 E1M1decay of beryllium-like ions. Results of theQED

computations are comparedwith the nonrelativistic prediction
equation (5) previously obtained by Laughlin [19]. In the second column
we also present the corresponding transition energies from [14] that were
employed in present calculations. Numbers in square brackets denote
powers of ten.

Lifetime (s) Decay rate (s−1)

Transition

Z energy (eV) E1M1
QED( )t E1M1

nr( )t AE1M1
QED( ) AE1M1

nr( )

10 13.794 1.2[9] 2.0[8] 8.5[-10] 5.0[-9]
18 28.352 4.2[6] 1.0[6] 2.4[-7] 9.9[-7]
26 43.169 2.9[5] 3.7[4] 3.4[-6] 2.7[-5]
40 70.946 2.3[4] 7.6[2] 4.3[-5] 1.3[-3]
54 104.475 4.0[3] 5.1[1] 2.5[-4] 1.9[-2]
79 193.670 2.8[2] 1.7[0] 3.6[-3] 5.9[-1]
92 257.564 9.1[1] 4.2[-1] 1.1[-2] 2.4[0]

6
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these potentials were applied to calculate the binding and ionization energies of beryllium-like ions.Moreover,
tomake use of perturbation theory in dealingwith electron–electron correlations, thefirst-order corrections to
the transition energies and amplitudes were derived. For a given order in the electron–electron interaction the
corrections to the energies and rates are gauge invariant. This invariance provides an excellent tool to check for
the consistency of a formally equivalent expression and for the numerical implementation of all diagrams.
However, if one applies only first-order perturbation theory for the inter–electronic interaction, the two-photon
transition energy typically differs quite sizeably from the experiment. This applies to both the low-Z ions because
ofmissing correlation contributions aswell as to high-Z ions, for which the radiative corrections become
important. For this reason, we employed the total transition energies E Ei f( )- from [14] here. Again, we have
also investigated here the role of the negative continuum and found that its contribution is less than 8%within
the velocity gauge and less than 1% in the length gauge for any of the screening potentials employed here. In our
finalQED computations, as displayed infigure 3, the local Dirac–Fock potential and the length gaugewere used
to calculate the two-photon transition rates. By comparing the results for the four screening potentials from
previously, an uncertainty of 10–20% is estimated for the two-photon transition rates apart, perhaps, from the
low-Z region forwhich the perturbation theory converges only slowly andwherewe assign an uncertainty of
about 50%.

Figure 3 displays the E1M1 two-photon transition rates for the s p P s S2 2 23
0

2 1
0 transition of zero

nuclear-spin beryllium-like ions as a function of the nuclear chargeZ. Results are shown fromour bestMCDF
andQEDcomputations and are comparedwith previous nonrelativistic estimates that are available in the
literature.Most other computationalmodels that were analyzed differ by less or about a factor 2 andwere taken
to estimate the accuracy of the calculations. A proper treatment of the electron–electron interaction, in
particular, leads to some clear reduction of the transition rates, and this applies to both theMCDF andQED
computations. Infigure 3, our fully relativistic calculations are compared also with the nonrelativistic estimates
by Schmieder ([18], red open diamonds) and Laughlin [19]; cf table 1.While Schmieder performed
nonrelativistic computations for six selected ionswith Z= 12 to 20 and restricted the summation over the
intermediate states to just the two dominant s p P2 2 3

1 and s p P2 2 1
1 levels, Laughlin [19] applied aZ-expansion

and also presented his results in terms of a closed formula:

A Z E E4.8 10 s , 4E1M1
nr 12 4 5 1

1 2( )· ( )( ) = ´ +g g
- -

where E E E
1 2

= +g g denotes the P S3
0

1
0- transition energy (in atomic units) as shared by the two photons. The

non relativistic estimate E E Z0.06487
1 2
+ =g g for this transition energy then leads to the simple scaling

A Z5 10 s 5E1M1
nr 18 9 1 ( )( ) » ´ - -

as displayed by the green solid circles infigure 3. If we use instead the correct two-photon energy in equation (4),
the black triangles are obtained, showing somemoderate though not negligible reduction of the two-photon
transition rate formedium and heavy ions; see [20]. Schmieder [18] also estimated the rate for a 3E1 three-
photon decay that is suppresed by at least a factorα, thefine-structure constant, as well as the small 3P0−

1S0
transition energy. This has been confirmed by our own estimates for this three-photon decaywith rates of about
10 s20 1- - and 5 10 s17 1· - - for beryllium-like argon and uranium, respectively.When comparedwith the non
relativistic estimates for the E1M1 two-photon rates, the relativistic transition rates are clearly lowered for all
medium and heavy elements and deviate fromprevious computations bymore than three orders ofmagnitude
for the heaviest beryllium-like ions. Formore accurate predictions, ourQED computations indicate also that the
radiative corrections to the two-photon transition amplitudes need to be taken into accout, a task that has never
been considered before in the literature.

All calculations weremade for the transition amplitudes (1) and the corresponding E1M1 rates as
summarized infigure 3.Obviously, themajor decrease of these rates arises from the relativistic contraction of the
electron density as well as the treatment of the electron–electron interaction. No attempt has yet beenmade
however, to include the radiative corrections, and especially the self-energy diagrams, into the evaluation of the
two-photon transition rates. Of course, the strong reduction of the two-photon transition rate is associated also
with amuch longer lifetime of the s s p P1 2 22 3

0 level since no other decay channel is simply possible for isolated
ions in this lowest-excited level along the beryllium isoelectronic sequence. For zero nuclear-spin isotopes, this
reduction in the transition rates gives rise to lifetimes as long as 4.2 10E1M1

QED 6·( )t = s, 4.0 103· s, and 91 s for Ar
,14+ Xe ,50+ and U88+ ions, respectively; see table 1.6 Therefore, ionswith a nuclear charge larger thanXe50+ are

likelymore preferable for performing lifetimemeasurements as proposed for theGSI storage ring [21].
For suchmeasurements, indeed, lifetimes longer than about a second are required in order to have time to

prepare the ions in the s s p P1 2 22 3
0 level, while they should not exceed the ion-beam storage due to vacuum

conditions and intra-beam scattering processes [20]. If these two conditions are fulfilled, the strength of the

6
Formedium Z 26( ) and heavy elements, the E1M1 lifetimes scales approximately like Z6.15 10 84.62 s.E1M1

QED 13 5.88( )( )t = ´ ´ --

7

New J. Phys. 17 (2015) 103009 S Fritzsche et al



resonances as a function of storage timemay helpmeasure directly the E1M1 two-photon transition rate. In
practice, however, external electric andmagnetic fieldsmight also be important andmay induce single-photon
transition, whichwould shorten the lifetime of the zero nuclear-spin beryllium-like ions in the s s p P1 2 22 3

0 level.
Suchmagnetically induced E1 transition, sometimes refered to asMIT, have been explored recently byGrumer
et al [52] andwere found, for typical storage ring environments, comparable in order as obtained for the E1M1
two-photon rates. In addition,Maul et al [53] investigated the effects of the so-called Stark quenching for the
beryllium-like ions due to external electric fields.

4. Conclusions

In summary, the E1M1 transition rate of the s p P s S2 2 23
0

2 1
0 line in zero nuclear-spin beryllium-like ions

has been calculatedwithin the framework of relativistic second-order perturbation theory. Both
multiconfiguration and quantum-electrodynamic computationswere independently performed in order to
include and test for allmajor contributions that affect this rate, such as the relativistically contractedwave
functions and electron–electron correlations in the representation of the initial, intermediate, and final states.
From the comparison of these twomethods, which agree reasonably well for all ions along the beryllium
isoelectronic sequence, the lifetime of themetastable s p P2 2 3

0 level is found to be larger by about 2–3 orders of
magnitude larger than predicted previously. Thismakes the 3P0 level of zero nuclear-spin beryllium-like ions to
one of the longest living (low-lying) electronic excitations of a tightly bound systemwith potential applications for
atomic clocks [54] or for studying correlation effects in high-Z ions [55].
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