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Abstract
Community ormodule detection is a fundamental problem in complex networks.Most of the tradi-
tional algorithms available focus only on vertices in a subgraph that are densely connected among
themselves while being loosely connected to the vertices outside the subgraph, ignoring the topologi-
cal structure of the community. However, inmost cases one needs tomake further analysis on the
interior topological structure of communities to obtain variousmeaningful subgroups.We thus pro-
pose a novel community referred to as a cograph community, which has awell-understood structure.
Thewell-understood structure of cographs and their corresponding cotree representation allows for
an immediate identification of structurally-equivalent subgroups.We develop an algorithm called the
Edge P4 centrality-based divisive algorithm (EPCA) to detect these cograph communities; this algo-
rithm is efficient, free of parameters and independent of additionalmeasuresmainly due to the novel
local edge P4 centralitymeasure. Further, we compare the EPCAwith algorithms from the existing
literature on synthetic, social and biological networks to show it has superior or competitive perfor-
mance in accuracy. In addition to the computational advantages over other community-detection
algorithms, the EPCAprovides a simplemeans of discovering both dense and sparse subgroups based
on structural equivalence or homogeneous roles whichmay otherwise go undetected by other algo-
rithmswhich rely on edge densitymeasures forfinding subgroups.

1. Introduction

As one hotspot and keystone of the research on complex networks, community ormodule detection has been
heavily developed in the past few decades [1].While a range of algorithms have been proposed to focusmainly
on how to detect a cohesive group of vertices as a rough community, they primarily use themacroscopic
property of communities, since they are internally edge-dense while being sparse outside and pay little attention
to the interior topological structure. The fact that these traditional algorithms do not reveal a specific structure in
their detected communitiesmeans that extraworkwill have to be done in order to identify the important
subgroups ormodules within the community. In applications of complex networks, one often needs to
investigate the next-level structure of sub-communities ormodules. For example, while protein complexes
(modeled asmodules) detected in protein–protein interaction (PPI) networks can help us understand biological
networks, they still cannot provide enough information due to the fact that we alsowant to obtain the core
components of the complexes [2] or to identify the essential proteins [3]. Additionally, for communities
detected on practical networks we alsowant to knownot only which vertices are grouped together from a
network partition but also the relationships among the individualmembers of the obtained communities such
as the hierarchical organization of actors in a social network [4]. Traditional algorithms cannotmeet such
requirements without extra tools fromnetwork analysis.

While themain approach to community detection has been tofind the resulting network clusters via
partitive algorithms, there has been somework done in attempting to characterize the topological structure of
the community, which leads to an alternate algorithmic approach of attempting tofind these special structures.
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This approach has been used to attempt to detect structures such as the clique [5], quasi-clique [6, 7], n-club, n-
clan, k-plex, etc [1] as the expected community ormodule structure in complex networks or to characterize the
topological structures of communities based on statisticalmethods [8]. These algorithms can obtain specific
graceful topological structures, but they suffer fromprohibitive computational complexity due to the inherent
combinatorial complexity of the prime graphs on large-scale practical complex networks. The familial groups in
social networks proposed byNastos andGao [4] and their corresponding comparability tree arrangements of
the groups are one example inwhich the structural definition of a community revealsmuch interior structure in
the communities, but they also show that the computational problemof detecting these groups isNP-complete.
It does, however, open new strategies for defining communities ormodules by structural analyses.

From the viewpoint of structural analyses, we consider not only the traditionalmacroscopic clustering
property of communities being internally densewhile being externally sparse but also the topological structure
of the communities found.We propose a polynomial-time approach of network partitioning, called the EPCA,
which detects connected cograph communities in a network. A graph (network) is a cographwhen it excludes a
specific subgraph configuration called a P4, defined in the next section. Cographs have attracted persistent
attention lately [9–13].Our algorithmuses an edge-centralitymeasure called P4 centrality, defined in section 3,
and the resulting cograph communities reveal superior or competitive accuracy in community detectionwhen
compared to communities obtained by the state-of-the-art algorithms, as shown in the experiments in
section 4.1.Most importantly, cographs have a unique cotree representation, which is efficiently constructed (an
example is displayed in appendix A); this allows us to analyze the topological structure of our communities. By
this nontraditional structural analysis, we can obtain variousmeaningful subgroupswithin
cograph communities which the traditional algorithms cannot detect since the sub-modulesmay be sparsely
connected.

This paper is organized as follows: section 2 introduces several terminologies used in the latter part of this
paper. Section 3first presents the EPCAbased on the novel edge P4 centrality and then demonstrates the
properties of cograph communities. The accuracy analysis and nontraditional structural analysis of
cograph communities using their corresponding cotrees are given in section 4. The conclusions and discussion
are presented in section 5.

2. Terminologies and definitions

The terminology used in this paper is compatible with [9]. A networkwill be equivalently referred to as a graph.
The nodes of a network can be referred to as vertices. A connection joining two nodesu and v is an edge,written as
uv or u v( , ). If a set of objectsV are nodes in a network, and the edges joining these nodes areE,we refer to this
network as =G V E( , ).Wedefine several relevant terms here:

2.1. Induced subgraphs and the P4
An induced subgraph of a network is specified by a set of vertices, and all of the edges that exist on those vertices in
the network are also part of the induced subgraph.More formally, for a network =G V E( , ), a subnetwork

= ′ ′H V E( , ) is an induced subgraph ofG if ′ ⊆V V , ′ ⊆E E,where for every pairu and v of ′V ,uv is in ′E only if
uv is inE.AP4 is an induced graph on four ordered vertices, which are connected as a simple path [9]. That is, it
contains three consecutive edges and, just as importantly, there are no additional edges within these four
vertices. An example of a P4 − − −a b c d is shown infigure 1(a), and these four vertices would not be a P4 in a
network if the network contained an edge joininga and c, for example.

2.2. Cographs
Agraph is called a cograph (also known as aP4 restricted graph), if it does not contain a P4 as an induced
subgraph [9]. A single vertex is a trivial cograph, as is any networkwith three or fewer vertices. An example of a
cograph is shown infigure 1(b), andwe reiterate that while verticesb, d, c andw form a path, they do not induce a
path since those four vertices also contain edgesbw anddw .

2.3. Cograph community
Cograph communities are defined as the connected components of a network that has no P4 subgraph. Aswill be
seen in the following section, algorithmEPCAwill delete edges that have high P4-centrality until ourmodified
network is a cograph. The resulting connected components will define the cograph communities.

2.4. Cotree
The rooted tree representing the parse structure of a cograph in normalized form is referred to as a cotree. The
leaves of a cotree are the vertices of the corresponding cograph, and each internal tree vertex represents the
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union or joint operation. In order to establish various properties about cographswe label each internal vertex of
a cotree as follows: the root is labelled 1, the children of a vertexwith label 1 are labelled 0 and the children of a
vertex labelled 0 are labelled 1 [14, 15]. Figure 1(c) illustrates the cotree for the cograph depicted infigure 1(b).
The set of cographs is exactly the set of graphswhich can be represented as a cotree, and every cograph has a
unique cotree representation.

2.5. Siblings
For a given vertex x in the complex networkG V E( , ), the neighbourhood of x denoted byN x( ) is

∈ ∈y V x y E{ ( , ) }.Vertices x, y are called siblings if − = −N x x y N y x y( ) { , } ( ) { , }.The siblings are called
strong if the vertices are adjacent and are calledweak otherwise [9]. For example, as shown infigure 1(c), vertices
v andu are strong siblings, while verticesb and c areweak siblings. Strong andweak siblings have also been called
true twins and false twins in other contexts. Cographs can also be characterized as graphswhich can be generated
by repeatedly adding strong andweak siblings to a single vertex.

3. The approach EPCA and cograph communities

Todetect the cograph communities of a complex network efficiently, we give an algorithm called the EPCA, a
typical divisive algorithmbased on edge P4 centrality. In the following, wefirst introduce edge P4 centrality and
the approach EPCA; then, we demonstrate the properties of cograph communities.

3.1. EPCAbased onP4 centrality
3.1.1. P4 centrality
The set of edges that link the vertices of the same community (also called intra-links) are generally expected to be
denser than the set of edges that link different communities (also called inter-links). That is, the inter-links are
relatively sparser than the intra-links. Intuitively, there aremanymore cycles embedded in intra-links, while one
does not expect tofindmany cycles using inter-links. Thismeans that the inter-links tend to belong tomore

Figure 1. Illustration of the terminologies; (a) a P4 consists of four verticesa, b, c andd; (b) a cograph consists of 11 vertices and 34
edges; (c) a cotree corresponding to the cograph shown in (b).
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paths. Since a P4 is a very simple induced path there are no small cycles among those four vertices of a P4. Thus,
the inter-links tend to belong tomore P4s since they tend to be part of paths, while the intra-links are inclined to
compose fewer P4 since they tend to belong tomore cycles. From these facts, we define the edge P4 centrality,
which is a score assigned to edges which counts the number of P4s towhich that given edge belongs. This
definition of edge P4 centrality gives us away to quantitativelymeasure the fact that an edge ij ismore inter-link-
like than intra-link. If its P4 centrality is large it ismore likely to be an inter-link, while if its P4 centrality is smaller
it ismore likely to be an intra-link.

Formally, the edge P4 centrality of an edge ij is defined as the number of pairs of vertices x y{ , } for which the
set i j x y{ , , , } induces a P4. Note that these four vertices can extend edge ij to a P4 in a number of ways:

− − −x i j y, − − −y i j x, − − −i j x y, − − −i j y x, − − −j i x y, − − −j i y x and can extend all of
their reversals. If any of these configurations occur, this 4-set i j x y{ , , , } contributes a score of 1 to the P4
centrality of the edge ij and to the two other edges on these four vertices.

One can check if four vertices induce a P4 if the induced subgraph on these four vertices contains two vertices
of degree 1 and two vertices of degree 2. So, one couldwrite a function IsP a b c d( , , , )4 easily (but we omit the
details as this highly depends on the data structures one uses to store and access the elements of their graph).
Using such a function, a simple algorithm to compute the P4 centrality of all of the edges would be to enumerate
all sets of 4-distinct vertices and test IsP a b c d( , , , )4 and, if it is true, increment the centrality score for the three
involved edges. Of course, there are a number of improvements that can be added to this process, for example,
shortcutting the inner loopswhen thefirst three vertices induce degrees of 0, 0, 0 or 2, 2, 2, as these
configurations cannot extend to a P4.One can also limit the search for the next candidate vertex by only choosing
from the neighbourhood set of the appropriate vertices already in consideration. Of course, obtaining the
neighbourhood of a vertex is, once again, dependent on the graph data structure used; so, we do not discuss the
finer details of this process here.

We note that updating the P4 centrality of all of the edges upon an edge deletion ismuch faster than the initial
calculation of all of the centrality scores, since after removing edgeab,wemust only search over pairs of
candidate vertices c d{ , } tofind the affected changes rather than recalculate a search over all of the quadruplets.

To understand the edge P4 centrality better, we compare it with edge anti-triangle centrality [16], the edge
clustering coefficient [17] and edge betweenness [18, 19], respectively.We choose edge anti-triangle centrality
for comparison because it has a similar definition, the edge clustering coefficient as it is a typical and efficient
local centrality and edge betweenness for its well-known accuracy in identifying an edge as being inside or
outside a community.We plot the scatters of the logarithmof edge P4 centrality and edge anti-triangle centrality,
the edge clustering coefficient and the logarithmof edge betweenness, respectively, on the Zachary karate club
network (ZKCN) [20], the LFR synthetic network [21]with themixing parameter =mu 0.5 and the S.cerevisiae
PPI networks (SceDIP) [22] obtained from theDIP. The details of these three network comparisons are
demonstrated in table 1.We compare these four centralities for the ability of discriminating inter-links from
intra-links on the ZKCN, the LFR synthetic network =mu( 0.5) and the SceDIP, successively. In particular, we
compare them for two important quantities: the first one is the fraction of vertices contained in the giant
component, denoted by RGC [23]. A sudden decline of RGC is observed if the network disintegrates after the
deletion of a certain fraction of edges. The second quantity is the so-called normalized susceptibility [23],
defined as

∑=
<

S
n s

N
˜ , (1)

s s

s
2

max

Table 1.A table with the details of the networksa, the complex golden standards and the high-level GO terms.

Network Vertices Edges Communities MIPS SGD PCDq CORUM GO b

SNs 1000 — — — — — — —

ZKCN 34 78 2 — — — — —

PBN 105 441 3 — — — — —

BDN 62 159 2 — — — — —

FN 115 613 12 — — — — —

SceDIP 4980 22 076 — 203 305 — — 1050

HsaHPRD 9269 36 917 — — — 1204 1294 4457

a The networks are the largest components of the original datasets.
b GO is the number of theGO terms that have IC ofmore than 2.
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wherens is the number of components with size s, N is the size of thewhole network and the sum runs over all of
the components except the largest one.When S̃ is a function of the fraction of removed edges f an obvious peak
can be observed that corresponds to the precise point at which the network disintegrates [23, 24].

Infigures 2(a), (d) and (g), we plot the scatters of edge anti-triangle centrality and the logarithmof edge P4
centrality on the ZKCN, the LFR synthetic network =mu( 0.5) and the SceDIP, respectively. Figures 2(b), (e)
and (h) show the scatters of the edge clustering coefficient and the logarithmof edge P4 centrality, also on these
three networks. Figures 2(c), (f) and (i) demonstrate the scatters of the logarithmof edge betweenness and
logarithmof edge P4 centrality. Here, we utilize the logarithm function for edge betweenness and edge P4
centrality to obtain the same quantitative order with the edge anti-triangle centrality and edge clustering
coefficient. As expected on all three classical networks, the edge P4 centrality is positively correlated to the edge
anti-triangle centrality and edge betweenness, while it is negatively correlated to the edge clustering coefficient,
although these relations are not revealed very rigorously from visual inspection. In particular, notice that the
edges with the highest edge P4 centrality are neither always thosewith the highest edge anti-triangle centrality
and edge betweenness nor thosewith the lowest edge clustering coefficient. By figure 2, the positive relations
between the edge P4 centrality and edge betweenness are revealedmore distinctly thanwith the other two
centralitymeasures.

Figures 3(a)–(c) compare the edge P4 centrality, edge anti-triangle centrality, edge clustering coefficient and
edge betweenness for the ability of discriminating inter-links from intra-links from the point of view of RGCon
the ZKCN, the LFR synthetic network =mu( 0.5) and the SceDIP, respectively, and correspondingly from
figures 3(d)–(f) from the point view of normalized susceptibility S̃.Due to the high computational cost of edge
betweenness on the SceDIPwe do notmake comparisons to it infigures 3(c) and (f). Asfigure 3 shows, on the
ZKCN, edge P4 centrality can gain better performance from the point of view of RGC and S̃, while on the
synthetic network and on the SceDIP it can be slightly poorer than the edge anti-triangle centrality and edge
betweenness, and it is better than the edge clustering coefficient on all three networks. Although edge P4
centrality is slightly poorer than edge anti-triangle centrality and edge betweenness from the point of view of
RGC and S̃ on synthetic networks and on the SceDIP, the results of the communities obtained by the EPCA
based on the edge P4 centrality aremuch better than the algorithms based on edge anti-triangle centrality and
edge betweenness. This is explained by the fact that we observed that the edges of the highest edge P4 centrality
do not correspond to the edges of the highest edge anti-triangle or edge betweenness; so, the respective
algorithms, which delete these edges of high centrality, willmake different deletion choices early in their
execution.

Figure 2. Scatter plots of the centralities for comparison. Figures 2(a), (d) and (g) are the scatter plots of edge anti-triangle centrality
(E.A.) and the logarithmof edge P4 centrality (log(E.P.)) on the ZKCN for 78 edges, the LFR synthetic network =mu( 0.5) for 7811
edges and the SceDIP for 22076 edges, respectively; figures 2(b), (e) and (h) are the scatter plots of the edge clustering coefficient (E.C.)
and also the log(E.P.) on the three networks, respectively; figures 2(c), (f) and (i) are the scatter plots of the logarithmof edge
betweenness (log(E.B.)) and the log(E.P.), respectively.
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Comparing edge P4 centrality with edge anti-triangle centrality, edge clustering coefficient and edge
betweenness by plotting scatters and from the point of view of RGC and S̃, we can summarize that edge P4
centrality can be appropriate for community detection and obtain a significant competitive advantage over other
processes that remove edges.

3.1.2. EPCA for cograph community detection
Weassume that the networkG V E( , ) is connected, undirected and unweighted. The EPCA repeatedly removes
the edgewith the highest edge P4 centrality score until the scores of the remaining edges are all zero. The EPCA is
described in detail as follows:

Input:G V E( , )
Output: cograph communities
Calculate the P4 centrality score for each available edge
While the highest score≠0 do
Remove the edgewith the highest score
Recalculate the scores of those edges affected by the removal
End
The EPCA is a typical divisive algorithm for community detection, while it possesses two significant

differences to the general divisive algorithm. First, the EPCAdoes not need to remove the edges one by one until
there is no edge left in the complex network. It just removes part of thewhole edge set until the P4 centrality of
the remaining edges are all zero; this is sometimes only a small portion of the edge set. Thismakes itmore
computationally efficient and free of any parameters. Second, unlike the general divisive algorithms, which
depend on additionalmeasures to decide the community structure, the EPCAdoes not depend on any
additionalmeasures, and it outputs the current components as the expected cograph communities. The
remaining components are cographs since they do not contain a P4 and they possess additional algorithmic and
structural properties.

The P4 centrality is a local centralitymeasure. The complexity of the EPCA is the same as that of EACH [16],

and the total space complexity of the EPCA isO E( ).The computational time-complexity is +( )O k E k T¯ ¯ ,2 4

where E is the number of edges, k̄ is the average degree of the networks andT is themaximumnumber of
iterations.Here, wewant to emphasize thatT is not a real parameter of the approach EPCA and does not need to
befixed a priori. The condition of the highest P4 centrality score of the available edges equaling zero is the only

Figure 3.Comparison for centralities on the ability of discriminating inter-links from intra-links. A comparison of the edge P4
centrality (E.P.), the edge anti-triangle centrality (E.A.), the edge clustering coefficient (E.C.) and the edge betweenness (E.B.)
pairwise. Figures 3(a)–(c) are from the point of view of RGCon the ZKCN, the LFR synthetic network =mu( 0.5) and the SceDIP,
respectively; figures 3(d)–(f) are also from the point of view of normalized susceptibility S̃ on the three networks, respectively, whereas
in figures 3(c) and (f) no comparison is performed for edge betweenness due to its high computational cost on the SceDIP.
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condition used for ending the loop. The valueT is just used to represent themaximumnumber of iterations to
express the complexity of the EPCA for convenience. The space and time complexities of other state-of-the-art
algorithms are listed in [16], and the complexity of the EPCA ismuch lower than the others and is the same as
that of the algorithmEACH.

3.2. Properties of a cograph community
A cograph community is a connected cograph, which is a special structure that has graceful topological
properties evidenced by its unique cotree. The sub-communities ormodules of a cograph community are not
just a group of tightly-cohesive vertices, like in the case of traditional communities, they are also sparsely-
connected subgroups of vertices which are structurally identical. From the definitions of cographs and P4, the
diameter of a cograph community is atmost a two-hop since there is no induced P4, and as awhole community it
revealsmore intensive social roles or biological functions than those obtained by other traditional algorithms, as
demonstrated in section 4.1. Cographs possess a range of algorithmic and structural properties, for example,
they can solve the (otherwiseNP-hard) problems such as coloring, clique detection, hamiltonicity, etc, which
can be done in polynomial time problems on cographs [14, 15].

Here, however, we are especially interested in the property thatwe can construct, which is its corresponding
unique cotree representation, andwe are interested in extracting information on subgroups from it. Almost all
of the properties of cographs are revealed by the corresponding cotree; so, constructing the cotree is a
prerequisite tomaking a comprehensive and deep study on cographs. The vertices of a cograph community,
organized by the cotree, can revealmore lucidly the interior structure and provide a convenient framework for
making a next-level analysis. One can construct a cotree in linear time (that is, in time proportional to the time
required to simply read the graph) by the algorithms given in the papers [14, 15] and note that the cotree for a
particular cograph is unique up to a permutation of the children of the internal vertices.

The cotree possesses the advantage of revealing various subgroups of the vertices of the corresponding
community. The vertices belonging to the same subgroup are characterized as those having the same adjacency
behavior to the remaining nodes in the community. That is, two vertices are in the same subgroup if their
neighbours outside of the subgroup are equivalent. The trivial subgroups are thewhole community and each of
the isolated vertices. In addition to these trivial ones, themost basic subgroups are the strong siblings orweak
siblings. In a general subgroup, if vertex u of this subgroup is adjacent to some vertex vwhich is not in the
subgroup, all of the vertices of this subgroup are adjacent to v; thismeans the vertices of this subgroup possess
the same connecting pattern. Similarly, if vertex u (in the subgroup) is not adjacent to vertex v (outside of the
subgroup), none of the vertices in this subgroup are adjacent to v; thatmeans they possess the same
disconnecting pattern. These subgroups have been called homogeneous sets,modules or indistinguishable sets due
to the fact that all of the vertices in the subgraph interact with the rest of the vertices (outside of the subgraph) in
identical ways.

As shown clearly infigure 1(c), the vertices v andu are strong siblings in the pale-green region, and the
verticesw and y form another pair of strong siblings in the hazel region, while the verticesb and c areweak
siblings in the light-pink region, and verticesa and x areweak siblings. The larger subgroup ofb, c, d and e is
determined by the outer topological environment by being completely connected to the subgroup of v,u, w and
y while being disconnected to the subgroup of z, a and x.

Finding variousmeaningful subgroups of cograph communities according to their neighbours and non-
neighbours indeed brings new angles to investigating the relationships among themembers of the communities.
Whatwewant to emphasize is that thesemeaningful subgroupswithin cograph communities cannot be detected
by the traditional hierarchical algorithms, which focus only on obtaining hierarchical communities. The
essential difference is that a set of vertices can form a structurally-equivalent subgroup evenwhen there is no
edge joining any two of them. Traditional community-detection algorithms that depend on identifying dense
clusters will never associate such a group of nodes together.

The vertices revealing similar functions or roles in real networks are not always densely linked by edges but
are sparsely linked by edges, as introduced by [25]. For these reasons, traditional hierarchical community-
detectionmethods cannot alwaysfind the sparse groups very accurately. It is reasonable and novel to investigate
the subgroupswithin cographs according to their outer topology.

The cotree has the natural advantage of demonstrating various subgroups according to their structural
similarity, andwe can identify these sets easily. Thus, analyzing cograph communities based on their cotrees is
novel and very fascinating. Several examples of a cotree analysis of the cograph communities ormodules
obtained by the EPCAon the practical networks aremade in detail in section 4.2.
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4. Experiments and analyses

Weproduce the experiments and analyses in this section. In section 4.1we compare the performance of the
EPCAwith algorithms from the existing literature on synthetic, social and biological networks. In section 4.2we
perform a next-level analysis of the cograph communities based their corresponding cotrees to obtain various
meaningful subgroups.

4.1. Accuracy analyses
Beforemaking comparisons, wefirst introducewhywe select these state-of-the-art algorithms; howwe
implement them for performance comparison; wherewe obtain the synthetic, social and biological networks,
the protein complex golden standard sets and the high-level GO term sets; andwhat criteria we use to evaluate
the performance of the selected algorithms. After that, we compare all of the algorithms on synthetic, social and
biological networks to show that the EPCAhas comparative and superior performance.

Considering the EPCA as a typical non-overlapping community ormodule detection algorithm, themain
compared algorithms here are non-overlapping identification algorithms. The state-of-the-art algorithmsGN
[18, 19], ECCAQ [16, 17], ECCAD [16, 17], EAC [16] and EACH[16] are selected, as these algorithms are edge-
centrality-based. In particular, GN is based on edge betweenness centrality, which is a typical global centrality,
and depends on theQ value [18] to decide the community structure. Both the ECCAQ andECCAD are based on
the edge clustering coefficient, which is a typical local centrality. The ECCAQ andECCAD indicate the ECCA
based on the additionalmeasures of theQ andD values [26], respectively. The EAC and EACHare based on the
anti-triangle centrality, whereas the EACHvaries from the EACby just including an added isolated vertex
handling strategy.Neither of themdepends on an additionalmeasurewhile deciding the community structure.
TheNMF [27, 28] and SC [29, 30] possessmatrix theory supports, while theCNM[31] attempts to optimize the
additionalmeasures to decide the community structure. TheMCL [32] is based on randomwalks and is well
known for its robustness. The INFOMAP [33] has significant accuracy performance, as reported in [34]. The
OSLOM[35] is the only algorithm for detecting overlapping communities; here, we useOSLOM2, amuch faster
version fromhttp://oslom.org/software.htm instead. The LOUVAIN [36] is very fast andwidely used for
community detection.We use theNodeXL (http://nodexl.codeplex.com/) implementations of theGN and
CNM.The ECCA is implemented according to [17]; theNMF and SC are implementations in the R packages
NMFN [37] and clusterSim [38], respectively. Lastly, we obtain the source code of theMCL (http://micans.org/
mcl). The INFOMAP is implemented by the R package igraph [39], andwe get theMATLAB version for the
LOUVAIN fromhttp://perso.uclouvain.be/vincent.blondel/research/louvain.html. All of the parameters are at
default, as set in the corresponding tools or packages for the available algorithms.

For the sake of convenience, we first list several networks used in the experiments in table 1: the series of LFR
synthetic networks (SNs) [21], the Zachary karate club network (ZKCN) [20], the Political books network
(PBN) (http://www.orgnet.com/), the Bottlenose dolphins network (BDN) [40] and the Football network (FN)
[19, 41]. The parameters of the LFR synthetic network are: average degree =k̄ 15,mixing parameter =mu 0.5,
minimumcommunity size =minc 20 andmaximumcommunity size =maxc 50.Here, we set =mu 0.5 since
itsmedian is 0.5. In fact, aside frommu, all of the other parameters are defaults from the original code (http://
santo.fortunato.googlepages.com/inthepress2).Here, the SceDIP represents the S. cerevisiaePPI networks
obtained from theDIP [22], andHsaHPRD represents theH. sapiensPPI networks extracted fromHPRD [42].
We use the largest components of these two networks as the input of the algorithms. There are four protein
complex golden standards: for the SceDIPwe use theMunich InformationCenter for Protein Sequences (MIPS)
[43] and the SaccharomycesGenomeDatabase (SGD) [44] golden standards, while forHsaHPRD the golden
standards are theHumanProteinComplexDatabase with aComplexQuality Index (PCDq) [45] and the
Comprehensive Resource ofMammalian ProteinComplexes (CORUM) [46].We remove the golden standard
protein complexes, which consist of less than 2 proteins. TheGO terms are not all of the terms but are instead the
high-level GO terms, which have information content that ismore than 2 [47]. The definition of the information

content IC( )of aGO term g is = − ( )IC log ,
g

root
as given in the literature [47], where ‘root’ is the

corresponding rootGO terms (molecular function (MF), biological process (BP) or cellular component (CC))
of g. In addition, theGO terms that contain less than 2 proteins are removed. Lastly, we remove the protein
complexes orGO terms of which nomembers appear in the corresponding PPI networks. The details of the
SceDIP andHsaHPRD, the complex golden standards and theGO terms are also listed in table 1.

4.1.1. Synthetic networks and social networks
To quantify the accuracy performance of the compared algorithms on synthetic and social networks, we adopt
thewidely used normalizedmutual information(NMI) [48, 49] tomeasure the similarities between the obtained
communities and the real ones. The details of this issue are introduced in appendix B.
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Wecompare theNMI values of the results obtained by the compared algorithms on the synthetic networks,
as shown infigure 4. Each node of the figure corresponds to the averageNMI value of over 20 LFRnetworks
constructedwith the same parameters. TheNMI values of all of the algorithms decrease as themixing parameter
mu increases. The reason for this is that the community structures of the LFRnetworks become increasingly
fuzzier and thus aremore difficult to be detected correctly asmu increases. Asfigure 4 shows, the black line
represents theNMI value of the EPCA, and the results of the other algorithms are indicated by the corresponding
color lines with signs. The INFOMAP can obtain the best performance among these compared algorithms, as
reported in [34], andOSLOM2, LOUVAIN are not far behind. Asfigure 4 shows, the EPCAhas superior
performance comparedwith the algorithms SC andCNMacross all of the networks, while as ⩾mu 0.6, it is
better thanMCL, ECCAD and ECCAQ.

Note that the algorithms INFOMAP,OSLOM2, LOUVAIN,GN, ECCAD, ECCAQneed to set the number of
output communities ormust depend on the additionalmeasures to decide the structure of the communities. As
well as the global edge betweenness centrality GNbased has a very high computational cost, while the inflation
parameter ofMCL affects the granularity of communities directly. By accounting for these factors, the EPCA can
gain impressive performance in general on synthetic networks since it does not need additionalmeasures, is free
of parameters and is based on a typical local edge centrality at a very low computational cost.

Then, we compare theNMI values of the results obtained by the compared algorithms on the social
networks, as shown in table 2. As depicted in table 2, the EPCAhas comparative performance on the four social
networks. Although theGN, ECCAD, ECCAQ,MCL, SC,NMF, INFOMAP andOSLOM2 algorithms obtain
slightly betterNMI values on some networks, they all depend on additionalmeasures or a series of parameters;
among them, SC andNMF also need to set the number of expected communities, whichmay bring in great
difficulties if we do not have a prior knowledge of the networks. TheNMI values of the EAC and EPCA reveal
that the edge P4 centrality and the edge anti-triangle centrality [16] have similar performances for community
detection on small networks, while the EPCAmay produce fewer isolated vertices on these social networks. The
better performance of EACH is just due to its isolated vertex handling strategy.However, the communities
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Figure 4. Illustration of the averageNMI values obtained by the compared algorithms on the series of LFRnetworks asmu from0.1 to
1.0with a step of 0.1.

Table 2.Performance comparisonwithNMI onZKCN, PBN, BDNand FN.

Algorithms NMI_ZKCN NMI_PBN NMI_BDN NMI_FN

GN 0.3084 0.4060 0.3534 0.6163

ECCAQ 0.4456 0.0366 0.1000 0.8100

ECCAD 0.2841 0.0373 0.1126 0.7794

NMF 1.0000 0.4204 0.8006 0.7058

SC 1.0000 0.07874 0.0013 0.7080

CNM 0.4778 0.4035 0.3609 0.4305

MCL 0.8333 0.3359 0.1140 0.8332

EAC 0.6270 0.1042 0.0872 0.5960

EACH 1.0000 0.4255 0.2441 0.8159

INFOMAP 0.5032 0.2798 0.2262 0.8332

OSLOM2 0.9167 0.4547 0.7026 0.8150

LOUVAIN 0.2290 0.1665 0.1963 0.8361

EPCA 0.5906 0.0857 0.1144 0.6197
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obtained by EACHare no longer cographs after the isolated vertex handler is used since the diameter of the
communities obtained by EACHmay be as high as a four-hop. So, the results obtained fromEACHare not
conducive to a cotree-based deeper analysis of those communities. Here, the EPCA is free of any parameters and
has lower computational cost. Detecting communities by the EPCA is not only beneficial from the comparative
performance on accuracy but also provides cograph communities onwhichwe can perform a deeper analysis
into themeaningful subgroups.

Figure 5 shows the cograph communities obtained by the EPCAon the ZKCN in detail. Asfigure 5(a) shows,
the ZKCNconsists of 34 vertices and 78 edges, representing 34members and 78 social relationships among the
members of the karate club. The club suffered a divisionwhich split the club into two, and the split very closely
corresponds to amini-cut that separates the two opposing individuals of the largest influence of the vertices 1
and 34. As shown infigure 5(b), the EPCAobtains 3 communities and one isolated vertex by just removing 23
edges. In essence, the 3 cograph communities obtained by the EPCAmatch the practical division of two
communities comparatively well. Furthermore, the EPCApurifies the community headed by vertex 1 by
removing the attachment vertex 17 since it does not directly connect with the leader vertex 1, as shown in
figure 5(b). The EPCApartitions the community, led by vertex 34, by removing the sub-community, which
consists of vertices 32, 25, 26, since vertices 25 and 26 do not directly connect with the leader vertex 34, as shown
infigure 5(b).

Figure 6 depicts the cograph communities obtained by the EPCAon FN in detail. The FN consists of 115
vertices and 613 edges, representing 115 teams and 613 games played against each other, as shown infigure 6(a).
The 115 teams are grouped into 11 conferences, with a 12th group of independent teams. The EPCA gains 13
communities and 10 isolated vertices after removing 291 edges. Surprisingly, wefind the 13
cograph communitiesmatching the 12 groups comparatively well in general. Here, we focus on the nontrivial
cograph communities and ignore the isolated vertices. In fact, the two cograph communities in the shaded area
offigure 6(b)mainly correspond to the group presented by the red triangle infigure 6(a). The group presented
by the red triangles infigure 6(a) is realized as two smaller sub-communities because the group has themost

Figure 5. Illustration of the real groups and the cograph communities on the ZKCN. (a) the ZKCNconsisting of 2 real communities;
(b) the cograph communities obtained by EPCA after removing just 23 edges.
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members, and themembers tend to be led by the two leaders Kent andBallState, respectively. The ten isolated
vertices emerge from the yellow, bright-blue circles and the triangle groups, as shown infigure 6(b), all of which
are relatively looser than the others. The 12th group consists of 8 independent teams, presented by green
triangles, as shown infigure 6(a); since they are the independent teams, two of them are likelymismatched into
the green circle group, and another two are arranged into the two cograph communities in the shaded area, as
shown infigure 6(b). Other than the independent and isolated teams, all of the other teams are arranged
correctly.

4.1.2. Biological networks
In the following, we perform experiments on biological networks, andwe test the quality of the algorithm for
community ormodule detection by howwell it can be applied tomake predictions for protein complexes and
GO terms. Protein complexes typically have a densemodular structure withinwhich proteins are highly

Figure 6. Illustration of the real groups and the cograph communities on FN. (a) The FN consisting of 12 groups; (b) the
cograph communities obtained by the EPCA after removing 291 edges.
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connected. To examinewhether the detectedmodules capture protein functional relationships other than just
protein complexes, we use the high-level GO terms in all three domains (MF, BP andCC) as the golden
standards forGO termprediction.

To evaluate the performance for the complex prediction, we use two independent qualitymeasures [50] to
assess the similarities between the predicted complexes and the golden standard reference complexes. In our
experiments, we do not consider the one-proteinmodule for all of the compared algorithms. Thefirstmeasure
counts the number of predictedmodules thatmatch the golden standards. A predictedmoduleN1withVN1

proteins or genes is thought tomatchwith a referencemoduleN2 withVN2
proteins or genes when the

neighborhood affinity is

∩
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where the thresholdω is usually set as 0.2 or 0.25 [51, 52]. The secondmeasure is the geometricmean of two
othermeasures, which are the cluster-wise sensitivity Sn( ) and the cluster-wise positive predictive value(PPV)
[52]. Given that r is predicted and s is the reference complexes, let tij denote the number of proteins that exist in
both predicted complex i and reference complex j, andwj represents the number of proteins in reference
complex j.Then,Sn andPPV can be defined as
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respectively. SinceSn can reach itsmaximumby grouping all proteins in onemodule, andPPV can be
maximized by putting each protein in its ownmodule, we use their geometricmean

= ×Acc Sn PPV (5)

as ‘accuracy’ to balance these twomeasures [50, 52], whereas higher Acc scores the better results.
To investigate the functional significance of identifiedmodules, we follow the same strategy as used in the

literature [25, 47] to compute the F-measure based on high-level GO termprediction. The neighborhood
affinity score between a predictedmodule p and a real GO term rg , NA p rg( , ) is used to determinewhether they
match each other. If ω⩾NA p rg( , ) , they are considered to bematchedwith each other. Here, we setω to 0.20,
as was done in the literature [51].We assume thatPC andRG are the sets ofmodules predicted by a
computationalmethod and by real GO terms, respectively.Ncp is the number of correct predictionswhich
match at least a real GO term, andNcrg is the number of real GO terms thatmatch at least a predicted one.
Precision P( ) and recall R( ) are defined as follows [53]

ω= ∈ ∃ ∈ ⩾N p p PC rg RG NA p rg{ , , ( , ) } , (6)cp

ω= ∈ ∃ ∈ ⩾N rg rg RG p PC NA p rg{ , , ( , ) } , (7)crg

=P
N

PC
, (8)

cp

=R
N

RG
. (9)

crg

The F-measure F( ) is the harmonicmean of precision and recall, and it is depicted as follows

= × ×
+

F
P R

P R

2
. (10)

Among the compared algorithms used in the previous section, here, GN,NMF and SC are not used to test on
the SceDIP andHsaHPRD.GN is excluded, for it is too slow on large networks due to the expensive edge
betweenness calculation. Both theNMF and SCneed tofix the number of expectedmodules, which brings an
inconvenient ambiguity whenwe face different golden standards. Althoughwe can follow the same strategy to
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implement a grid search using the number of expectedmodules = ∼k 500 3000 with an interval of 100, as in
the literature [25], we thought the step length to be too big. For uniformity in the comparisons, we exclude these
three algorithms.

Wefirst depict the results of the protein complex prediction in table 3; then, we display the results of theGO
termprediction infigure 7. Table 3 shows the performance of complex predictions on the SceDIP andHsaHPRD
in detail. The column headings of table 3 include the network for testing, the golden standard, the algorithms for
comparison, the number of coverage proteins, the number ofmodules predicted, the average size ofmodules,
the number ofmatched protein complexes, the cluster-wise sensitivity Sn( ), the cluster-wise positive predictive
value(PPV) and the accuracy score Acc( ).Wecompare the results on the SceDIP according to the S. cerevisiae
protein complex golden standardsMIPS and SGD,while onHsaHPRDwe compare the results according to the
H.sapiens protein complex golden standards PCDq andCORUM.

As depicted in table 3, the Acc scores of the EPCA are obviously better than the ones of other algorithms on
SGD, and the scores of the EPCAon theMIPS is 0.3749 lower than the highest 0.3960 of INFOMAP; the scores
of the EPCAon the PCDq is 0.4607, which is just slightly lower than the highest 0.4613 of the ECCAD,while on
CORUMthe score is 0.3088, which is also slightly lower than the highest 0.3153 of theMCL. The numbers of
matched protein complexes of the EPCA are the largest ones among the compared algorithms onMIPS and
PCDq, respectively. The average size of themodules of the EPCAon the PCDq is 4.53, which is close to the
average size of the reference protein golden standards 4.51. Considering the Acc scores and thematched
numbers of the compared algorithms, EPCA,MCL andECCAD are the competitive ones, and they all
outperformothers dramatically. As for the aspect of theGO termprediction, shown in figure 7, this aspect (a)
illustrates the F-measure of the compared algorithms and (b) shows the percentage ofGO terms that are
considered to be correctlymatched to at least one of the identifiedmodules by different algorithms on SceDIP
andHsaHPRD, respectively. Figure 7 also clearly illustrates that the EPCA,MCL and ECCAD are competitive, as
they also outperformothers since the EPCA can obtain better F-measure scores on both the SceDIP and
HsaHPRDwhile having slightly fewermatchedGO terms than ECCADon SceDIP. Summarily, the EPCA is
more attractive thanMCL and ECCAD since the EPCA is free of any parameters and has comparatively lower
computational cost. Namely, the inflation parameter ofMCL can affect the granularity, and the ECCADdepends
on the additionalmeasure: theD value. Also, the ECCADperforms better than the ECCAQ, emphasizing the
drawback that the same algorithmoperatingwith different additionalmeasures can lead to different results.

To demonstrate the comparison intuitively, we display, for instance, the Arp2/3 complex predicted by the
comparedmethods infigure 8. TheArp2/3 complex consists of seven-subunit proteins, which play amajor role
in the regulation of the actin cytoskeleton. Asfigure 8 shows, the EPCA can detect the complex perfectly, while
MCL can obtain amodule that includes ten proteins, with three additional proteins. The ECCAD can obtain four
proteins of theArp2/3 complex. None of the algorithms (EAC, EACH, INFOMAP and LOUVAIN) can extract a
candidate complex, including YDL029W,which is an essential proteinmember of the Arp2/3 complex. The
OSLOM2obtains a candidate complexwhich includes 20 proteins, while 13 are not the correctmembers.
Unfortunately, the CNMandECCAQ cannot obtain a valuable candidate complex for the Arp2/3 complex.

4.2. Variousmeaningful subgroups realized as cotree subgroups
In this sectionwemainlymake a next-level analysis for the cographmodules obtained by the EPCAbased on
their corresponding cotrees to obtain variousmeaningful subgroups. As introduced in section 3.2, the structure
of a cographmodule can be demonstratedmore explicitly by the corresponding cotree. The reasons for detecting
subgroups this way are that the vertices belonging to a subgroupmust possess structural similarity to the rest of
its network. This strategy lets us find not only the dense subgroups but also the sparse subgroups and even those
with no connections within the subgroup. The simple fact is that finding sparse or non-connected subgroups is a
remarkable property that exhibits the superiority of analyzing cographmodules by cotrees. In the following, as
shown infigure 9, we analyze four typical cographmodules obtained fromHsaHPRDbased on their cotrees in
detail.

Figures 9(a), (c), (e) and (g) depict the first, second, third and fourth cographmodule, while (b), (d), (f) and
(h) display the corresponding cotrees, respectively. Figures 9(a) and (b) show thefirst cographmodule, which
consists of 6 genes and its corresponding cotree. The three genes PIWIL1, PIWIL4 and PIWIL2 are partitioned
into theweak sibling subgroup in the light-blue region, which are all adjacent toDICER1 and nonadjacent to the
strong siblings of TARBP2 and PRKRA. In fact, theweak sibling subgroup of PIWIL1, PIWIL4 and PIWIL2
perfectlymatches theGO term ‘piRNAbinding’, numbered byGO:0034584.Here, wewant to emphasize that
among these three genes, there are no interactions among them. So, if we use traditional algorithms that use
density, we can never identify the subgroupmatching the termGO:0034584, while the three genes TARBP2,
PRKRA andDICER1 compose a subgroup shown infigure 9(b), which perfectlymatches the term ‘RNA
interference, production of siRNA’, numbered byGO:0030422. The strong siblings of TARBP2 and PRKRA
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interact with the geneDICER1; together, they compose the dense larger subgroup of TARBP2, PRKRA and
DICER1, a clique in fact, as shown infigure 9(a).

Table 3.Performance comparison for complex prediction on SceDIP andHsaHPRD.

N.w.a G.s.b Alg.c Cov.d Mo.n.e A.s.f Ma.n.g Sn PPV Acc

S.h M.j — 1061 203 12.52 — — — —

ECCAQ 4980 737 6.76 46 0.4486 0.2604 0.3418

ECCAD 4980 1563 3.19 75 0.2436 0.4096 0.3159

CNM 4980 42 118.57 4 0.6045 0.1058 0.2529

MCL 4736 928 5.10 69 0.3125 0.3689 0.3395

EAC 1691 98 17.26 29 0.2916 0.2854 0.2885

EACH 4980 98 50.82 20 0.4455 0.2191 0.3124

INFOMAP 4980 441 11.29 47 0.4915 0.3190 0.3960

OSLOM2 5442 85 64.02 21 0.5053 0.2382 0.3469

LOUVAIN 4980 675 7.38 35 0.5081 0.2571 0.3614

EPCA 4687 1019 4.60 82 0.3530 0.3982 0.3749

S.k — 1211 305 5.70 — — — —

ECCAQ 4980 737 6.76 106 0.5549 0.3933 0.4672

ECCAD 4980 1563 3.19 166 0.4048 0.6288 0.5045

CNM 4980 42 118.57 4 0.7320 0.0986 0.2687

MCL 4736 928 5.10 124 0.5026 0.5585 0.5298

EAC 1691 98 17.26 36 0.3899 0.3897 0.3898

EACH 4980 98 50.82 34 0.5854 0.2720 0.3990

INFOMAP 4980 441 11.29 74 0.6354 0.4447 0.5316

OSLOM2 5442 85 64.02 24 0.6475 0.2745 0.4216

LOUVAIN 4980 675 7.38 79 0.6538 0.3598 0.4850

EPCA 4687 1019 4.60 129 0.5348 0.5943 0.5638

H.i P.l — 3433 1204 4.51 — — — —

ECCAQ 9269 1464 6.33 194 0.4285 0.3717 0.3991

ECCAD 9269 2601 3.56 372 0.3590 0.5927 0.4613

CNM 9269 96 96.55 21 0.6426 0.0486 0.1768

MCL 8903 1789 4.98 316 0.3992 0.5322 0.4609

EAC 3506 251 13.97 66 0.3041 0.2130 0.2545

EACH 9269 251 36.93 56 0.4482 0.1514 0.2605

INFOMAP 9269 668 13.88 150 0.5192 0.3266 0.4118

OSLOM2 10016 208 48.15 19 0.5262 0.1686 0.2978

LOUVAIN 9269 1097 8.45 226 0.5385 0.2944 0.3981

EPCA 8807 1946 4.53 377 0.3856 0.5504 0.4607

C.m — 1955 1294 5.06 — — — —

ECCAQ 9269 1464 6.33 166 0.4251 0.1907 0.2847

ECCAD 9269 2601 3.56 278 0.3212 0.2720 0.2956

CNM 9269 96 96.55 12 0.7333 0.0334 0.1566

MCL 8903 1789 4.98 190 0.4041 0.2460 0.3153

EAC 3506 251 13.97 34 0.3650 0.0856 0.1768

EACH 9269 251 36.93 20 0.4743 0.0793 0.1939

INFOMAP 9269 668 13.88 73 0.5251 0.1591 0.2890

OSLOM2 10016 208 48.15 20 0.5425 0.0970 0.2294

LOUVAIN 9269 1097 8.45 95 0.5663 0.1310 0.2724

EPCA 8807 1946 4.53 196 0.3772 0.2529 0.3088

a N.w. denotes the network.
b G.s. denotes theGolden standard.
c Alg. denotes the algorithm.
d Cov. denotes the number of coverage proteins.
e Mo.n. denotes the number ofmodules predicted.
f A.s. denotes the average size of themodules.
g Ma.n. denotes the number ofmatchedmodules.
h S. denotes SceDIP.
i H. denotesHsaHPRD.
j M. denotesMIPS.
k S. denotes SGD.
l P. denotes PCDq.
m C. denotes CORUM.
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The second cographmodule and its cotree are shown infigure 9(c) and (d), respectively. The two distinct
subgroups of weak siblings are revealed clearly by the cotree. One of the two subgroups consists ofNPY1R,
NPY2R, PPYR1 andNPY5R in the light-yellow region, perfectlymatching the 1139th termof the 4457 golden
standard terms. Furthermore, three genes of this subgroup are just themembers of the 1396th term.We again
emphasize that there are no interactions among these genes; so, density-based clusteringmethodswould fail to
detect them.

The third cographmodule and its cotree are shown infigure 9(e) and (f), respectively. The cographmodule
consists of 9 genes that form a typical star-shaped subgraph, andwe can obtain two subgroups intuitively from
its cotree. One is the center BTK; the other is theweak siblings, including the rest of the 8 genes. Among the 8
genes, there are three genes in the light-blue regionmatching the term ‘1-phosphatidylinositol-5-phosphate 4-
kinase activity’, numbered byGO:0016309 perfectly.

The fourth cographmodule and its cotree are shown infigure 9(g) and (h), respectively. The
cographmodule consists of 10 genes, and distinct subgroups are revealed by the cotree. Surprisingly, the strong
siblings of BID andBAK1 in the light-blue region justmatch the three terms simultaneously. The threematched
terms are the ‘activation and oligomerization of BAKprotein’, numbered by REAC:111452; the ‘tBID activates
BAKprotein’, numbered by REAC:139895; and the ‘tBID binds to inactive BAKprotein’, numbered by
REAC:168848, respectively. Also, the genes BIK, BOK from theweak siblings and the gene BAK1 from the strong
siblings together compose the subgroupwhich justmatches the 1353th term. The cotree structure predictsmore
meaningful subgroups and especially predicts theweak siblings of PMAIP1 andBBC3 to have the same or
similar functions since they are structurally-equivalent.

In summary, analyzing the cographmodules based on their corresponding cotrees can lead to an immediate
prediction of distinctive subgroups. The vertices organized by the cotree reveal very fascinating subgroupswhich
are not only dense but also sparse, evenwhen there are no connections in the subgroups.Most importantly,
some of the subgroups revealed in thismanner have significant biologicalmeanings and alsomatch the
correspondingGO terms perfectly.
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Figure 7.The bar plots illustrating the performance of algorithms forGO termprediction; (a) the comparison results based on the F-
measure on SceDIP andHsaHPRD; (b) the comparison of the percentages ofmatchedGO terms in the complete set of selected high-
level GO terms.
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5. Conclusion anddiscussion

In this paper, we propose the novel cograph community and develop an approach (EPCA) for extracting
cograph communities based on edge P4 centrality.We compare the EPCAwith algorithms from the existing
literature on synthetic, social and biological networks to show that the EPCAhas superior or competitive
performance in accuracy and speed, in addition to having the advantages of being free of any parameters and
independent of additionalmeasures. The cograph communities have a fine granularity, and their diameters are
atmost a two-hop.More importantly, cograph communities exhibit a specialized internal structure, which
decomposes the community into structurally-equivalent subgroups. The equivalence to cotrees allows a simple
pictorial view for performing a next-level structural analysis for the purpose offindingmeaningful subgroups
that have functional similarity. In particular, these structurally-equivalent subgroups reveal homogeneous roles
or functions that cannot be detected by traditional hierarchical clustering algorithms, which depend on edge
density for community detection. Analyzing networks with cograph communities can contribute greatly to
understanding the global structures and local structures of the networksmore easily and distinctly.

Since edge P4 centrality is defined for unweighted graphs, we cannot currently use the EPCA to detect
cograph communities onweighted and directed networks. In a future study, wewill attempt to develop an
extended version of P4 centrality for weighted and directed networks and propose a framework for detecting
overlapping and hierarchical [6, 48, 54] cograph communities. Being able to identify structurally equivalent

Figure 8. Illustration of the results predicted by the compared algorithms about theArp2/3 complex. (a) The real Arp2/3 complex and
(b-i) the candidate Arp2/3 complex predicted by the ECCAD,MCL, EAC, EACH, INFOMAP,OSLOM2, LOUVAIN and EPCA,
respectively, where the proteins in the orange color are themembers of the real Arp2/3 complex, and those in the green color are not.
CNMandECCAQ cannot extract a valuable candidate complex for theArp2/3 complex.
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subgroups in directed networksmay have immediate applications to network controllability [55] by controlling
communities with few drivers and thus controlling thewhole network efficiently.

We feel that there aremany interesting applications obtainable from studying other real biological or
complex networks with the EPCA and cotrees. Another avenue of potential research is to explore other uses of
these cograph communities and their cotree representations since they possess amultitude of algorithmic and
structural properties and benefits besides subgroup detection.

We do, however, stress that althoughwe have shownnumerous benefits granted by the EPCA, such as
polynomial runtime, ease of implementation, accuracy infinding cograph communities and the inherent ability
to detectmeaningful subgroups, we alsofind that it suffers from the transition between the undetectable and
detectable regimes like virtually all community-finding algorithms [56–60], andwe illustrate the details of this
transition in appendix C,wherewe test the EPCAonBlockmodel networks analogous to those used by Radicchi
in [59].
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AppendixA. Simple construction of a cotree

Wedescribe the simplest polynomial-time algorithm to compute a cotree of a cograph here [9].Many existing
algorithms in the literature run in linear time (which isO N( )2 for dense graphs), and they rely on advanced
techniques in graph algorithms.Here, we describe a very simple −O N( ) time3 algorithm thatwill compute a
cotree for a given connected cograph. The only extra knowledge required to understand this process is the
operation of graph complementation: given a graph =G V E( , ), the complement ofG (denoted co-G) is the
graph on the same set of verticesV but with an edgeuv in co-G only if there is nouv edge inG.Note that the
complement of co-G isG itself.

The name cograph originates from the term complement-reducible graphs, which describes the original
characterization of these graphs as thosewhich can be completely decomposed into single vertices (leaf nodes)
through successively taking graph complementation. That is, if a cograph is connected, its complement is always
disconnected and thus decomposes into separate connected components.

A cotree is a tree thatwill contain two types of internal nodes: 1 and 0, which represent a complete join or a
disjoint union of the subgraphs below them. A 1will only have 0nodes (or leaf nodes) as its children and a 0will
only have 1nodes (or leaf nodes) as its children. The leaf nodes of the tree will be the vertices of the graph. In this
paper, the EPCA acts on a graph until it is guaranteed to be a cograph; so, for our purposes here, wewill assume
thatwewill always begin our cotree-building process on a connected cograph.

Wewill use the example cograph and cotree infigures 1(b) and (c) to illustrate this process.We initialize
with a 1node as the root and associate with it a set of all nodes ofG,which denotes the set of all leaf nodes
underneath this root. Since this is a cograph, its complement is disconnected; so, taking the graph complement
of this cograph reveals a graphwith two connected components: =S u v w y{ , , , }1 and

=S a b c d x z e{ , , , , , , }.2 Thus, underneath the 1 root node, we create two 0nodes: one associatedwithS1

and the other associatedwithS2.
On each of these 0nodes, we perform the graph complementation again in order tofind further

decomposition.However, recall that co-G is simplyG; so, to obtain the second complement, we only take the
induced graph on these sets:S1 andS .2 We find thatS1decomposes into the connected components u v{ , } and
w y{ , }; then, each of these is associatedwith its own 1 underneathS .1 Similarly, the induced graph ofS2 shows us
the connected components a x z{ , , }, b c d{ , , } and e{ }; so, each of these is assigned to its own 1 underneathS2.

When a node is trivially associatedwith a set of two or fewer vertices, those vertices are placed beneath that
node as leaf nodes of the cotree. In our example, thismeansu and v are under their own 1node,w and y are
under their own 1node, and e is under the 0 node, whichwas associatedwithS ,2 as that is where it came from.
Since a x z{ , , } and b c d{ , , } are associated to their own 1nodes, we apply graph complementation to these and
find the resulting connected components, which are now a x{ , } and z{ } in one case and b c{ , } and d{ } in the
other.We are then left with trivial subgroups; so, all of the leaf nodes are constructed, and the cotree is complete.

Appendix B. The detail of normalizedmutual information

In this paper we useNMIMGH [49] to evaluate the compared results forNMIMGH and to correct the so-called
unintuitive behavior ofNMILFK [48]; we obtain an available code forNMIMGH fromhttps://github.com/
aaronmcdaid/Overlapping-NMI. In fact,NMIMGH is based onNMILFK [48] inwhich the authors extend the
normalizedmutual information for evaluating overlapping communities from evaluating non-
overlapping ones.

The definition of corresponding normalizedmutual informationNMIMGH [49] is demonstrated as

= I X Y

H X H Y
NMI

( : )

max ( ( ), ( ))
, (B.1)MGH

where I X Y( : ) is themutual information andH X( ), H Y( ( )) are the unconditional entropy of cover X , Y( ).

= − + −I X Y H X H X Y H Y H Y X( : ):
1

2
[ ( ) ( ) ( ) ( )], (B.2)
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X andY arematrices of the communitymembership. There aren objects. Thefirst cover hasKX

communities; hence, X is a ×n KX matrix, andY is a ×n KY matrix. Xim is 1 if vertexm is in community i in
cover X.More details can be found in the original references [48, 49].

AppendixC. EPCA suffering from the transition between undetectable and detectable
regimes

Recently, a very novel counter-intuitively paradox in-community detectionwas proposed by FRadicchi [59],
which tells us that the detection of well-definedmodules ismore difficult than the identification of ill-defined
communities. The paradox ismainly due to the fact that virtually all algorithms are affected by the so-called
detectability threshold [56–60]. It has been shown that community identification algorithms are able to detect a
modular structure only when Δ Δ> ,c where

Δ = −k k , (C.1)in out

Δ = +k k , (C.2)c in out

kin ( )kout is the average internal (external) degree. Here, we also test our proposed algorithmEPCA,

which suffers from the so-called transition between undetectable and detectable regimes fromnumerical
computations. The detectability threshold Δc depends not only on the average values of internal and external
degrees but also on the correlation between their degree distributions. The correlations between the internal and
external degree distribution are independent, positive and negative, respectively. Concretely, the tests are
performed on the Blockmodel [36], as used by FRadicchi [59]. As shown infigure C1, we test the EPCAon the
Blockmodel composed of two and four communities.We plot the fraction of vertices that the algorithm
correctly classified as a function of Δ.Each node of the figure represents the average performance of the EPCA in
20 realizations, (a) themodel composed of two communities with 50 vertices and the average degree

+ =k k 16in out and (b) themodel composed of four communities with 30 vertices and the average degree

+ =k k3 16.in out Figure C1 obviously reveals that the algorithmEPCAdoes suffer from the transition
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between undetectable and detectable regimes; thus, we indeed need to reconsider the relationwith the notation
of communities and clusters identified by the algorithms.
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