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Abstract

Community or module detection is a fundamental problem in complex networks. Most of the tradi-
tional algorithms available focus only on vertices in a subgraph that are densely connected among
themselves while being loosely connected to the vertices outside the subgraph, ignoring the topologi-
cal structure of the community. However, in most cases one needs to make further analysis on the
interior topological structure of communities to obtain various meaningful subgroups. We thus pro-
pose a novel community referred to as a cograph community, which has a well-understood structure.
The well-understood structure of cographs and their corresponding cotree representation allows for
an immediate identification of structurally-equivalent subgroups. We develop an algorithm called the
Edge P, centrality-based divisive algorithm (EPCA) to detect these cograph communities; this algo-
rithm is efficient, free of parameters and independent of additional measures mainly due to the novel
local edge P, centrality measure. Further, we compare the EPCA with algorithms from the existing
literature on synthetic, social and biological networks to show it has superior or competitive perfor-
mance in accuracy. In addition to the computational advantages over other community-detection
algorithms, the EPCA provides a simple means of discovering both dense and sparse subgroups based
on structural equivalence or homogeneous roles which may otherwise go undetected by other algo-
rithms which rely on edge density measures for finding subgroups.

1. Introduction

As one hotspot and keystone of the research on complex networks, community or module detection has been
heavily developed in the past few decades [1]. While a range of algorithms have been proposed to focus mainly
on how to detect a cohesive group of vertices as a rough community, they primarily use the macroscopic
property of communities, since they are internally edge-dense while being sparse outside and pay little attention
to the interior topological structure. The fact that these traditional algorithms do not reveal a specific structure in
their detected communities means that extra work will have to be done in order to identify the important
subgroups or modules within the community. In applications of complex networks, one often needs to
investigate the next-level structure of sub-communities or modules. For example, while protein complexes
(modeled as modules) detected in protein—protein interaction (PPI) networks can help us understand biological
networks, they still cannot provide enough information due to the fact that we also want to obtain the core
components of the complexes [2] or to identify the essential proteins [3]. Additionally, for communities
detected on practical networks we also want to know not only which vertices are grouped together from a
network partition but also the relationships among the individual members of the obtained communities such
as the hierarchical organization of actors in a social network [4]. Traditional algorithms cannot meet such
requirements without extra tools from network analysis.

While the main approach to community detection has been to find the resulting network clusters via
partitive algorithms, there has been some work done in attempting to characterize the topological structure of
the community, which leads to an alternate algorithmic approach of attempting to find these special structures.
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This approach has been used to attempt to detect structures such as the clique [5], quasi-clique [6, 7], n-club, n-
clan, k-plex, etc [1] as the expected community or module structure in complex networks or to characterize the
topological structures of communities based on statistical methods [8]. These algorithms can obtain specific
graceful topological structures, but they suffer from prohibitive computational complexity due to the inherent
combinatorial complexity of the prime graphs on large-scale practical complex networks. The familial groups in
social networks proposed by Nastos and Gao [4] and their corresponding comparability tree arrangements of
the groups are one example in which the structural definition of a community reveals much interior structure in
the communities, but they also show that the computational problem of detecting these groups is NP-complete.
It does, however, open new strategies for defining communities or modules by structural analyses.

From the viewpoint of structural analyses, we consider not only the traditional macroscopic clustering
property of communities being internally dense while being externally sparse but also the topological structure
of the communities found. We propose a polynomial-time approach of network partitioning, called the EPCA,
which detects connected cograph communities in a network. A graph (network) is a cograph when it excludes a
specific subgraph configuration called a P4, defined in the next section. Cographs have attracted persistent
attention lately [9-13]. Our algorithm uses an edge-centrality measure called P, centrality, defined in section 3,
and the resulting cograph communities reveal superior or competitive accuracy in community detection when
compared to communities obtained by the state-of-the-art algorithms, as shown in the experiments in
section 4.1. Most importantly, cographs have a unique cotree representation, which is efficiently constructed (an
example is displayed in appendix A); this allows us to analyze the topological structure of our communities. By
this nontraditional structural analysis, we can obtain various meaningful subgroups within
cograph communities which the traditional algorithms cannot detect since the sub-modules may be sparsely
connected.

This paper is organized as follows: section 2 introduces several terminologies used in the latter part of this
paper. Section 3 first presents the EPCA based on the novel edge P, centrality and then demonstrates the
properties of cograph communities. The accuracy analysis and nontraditional structural analysis of
cograph communities using their corresponding cotrees are given in section 4. The conclusions and discussion
are presented in section 5.

2. Terminologies and definitions

The terminology used in this paper is compatible with [9]. A network will be equivalently referred to as a graph.
The nodes of a network can be referred to as vertices. A connection joining two nodes # and v is an edge, written as
uv or (u, v). Ifaset of objects V are nodes in a network, and the edges joining these nodes are E, we refer to this
networkasG = (V, E). We define several relevant terms here:

2.1.Induced subgraphs and the P

An induced subgraph of a network is specified by a set of vertices, and all of the edges that exist on those vertices in
the network are also part of the induced subgraph. More formally, for anetworkG = (V, E),asubnetwork

H = (V’, E’)isaninduced subgraphof Gif V' C V,E’ C E, where for every pairu andv of V', uv isin E’ only if
uv isin E. A P,isan induced graph on four ordered vertices, which are connected as a simple path [9]. That s, it
contains three consecutive edges and, just as importantly, there are no additional edges within these four
vertices. An exampleofaP,a — b — ¢ — d isshown in figure 1(a), and these four vertices would notbeaP,ina
network if the network contained an edge joining a and ¢, for example.

2.2. Cographs

A graph s called a cograph (also known as a P, restricted graph), if it does not contain a P, as an induced
subgraph [9]. A single vertex is a trivial cograph, as is any network with three or fewer vertices. An example of a
cograph is shown in figure 1(b), and we reiterate that while vertices b, d, c and w form a path, they do not inducea
path since those four vertices also contain edges bw and dw.

2.3. Cograph community

Cograph communities are defined as the connected components of a network that has no P, subgraph. As will be
seen in the following section, algorithm EPCA will delete edges that have high P,-centrality until our modified
network is a cograph. The resulting connected components will define the cograph communities.

2.4. Cotree
The rooted tree representing the parse structure of a cograph in normalized form is referred to as a cotree. The
leaves of a cotree are the vertices of the corresponding cograph, and each internal tree vertex represents the
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(a) (b)

Figure 1. [llustration of the terminologies; (a) a P4 consists of four vertices a, b, ¢ and d; (b) a cograph consists of 11 vertices and 34
edges; (c) a cotree corresponding to the cograph shown in (b).

union or joint operation. In order to establish various properties about cographs we label each internal vertex of
a cotree as follows: the root is labelled 1, the children of a vertex with label 1 are labelled 0 and the children of a
vertex labelled 0 are labelled 1 [ 14, 15]. Figure 1(c) illustrates the cotree for the cograph depicted in figure 1(b).
The set of cographs is exactly the set of graphs which can be represented as a cotree, and every cograph has a
unique cotree representation.

2.5. Siblings

For a given vertex x in the complex network G (V, E), the neighbourhood of x denoted by N (x) is

{y € V|(x, y) € E}.Verticesx, y are called siblings if N (x) — {x, y} = N () — {x, y}. Thesiblings are called

strongif the vertices are adjacent and are called weak otherwise [9]. For example, as shown in figure 1(c), vertices

v and u are strong siblings, while vertices b and ¢ are weak siblings. Strong and weak siblings have also been called
true twins and false twins in other contexts. Cographs can also be characterized as graphs which can be generated

by repeatedly adding strong and weak siblings to a single vertex.

3. The approach EPCA and cograph communities

To detect the cograph communities of a complex network efficiently, we give an algorithm called the EPCA, a
typical divisive algorithm based on edge P, centrality. In the following, we first introduce edge P, centrality and
the approach EPCA; then, we demonstrate the properties of cograph communities.

3.1. EPCA based on P, centrality

3.1.1. P, centrality

The set of edges that link the vertices of the same community (also called intra-links) are generally expected to be
denser than the set of edges that link different communities (also called inter-links). That is, the inter-links are
relatively sparser than the intra-links. Intuitively, there are many more cycles embedded in intra-links, while one
does not expect to find many cycles using inter-links. This means that the inter-links tend to belong to more
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Table 1. A table with the details of the networks®, the complex golden standards and the high-level GO terms.

Network Vertices Edges Communities MIPS SGD PCDq CORUM |Go|®
SNs 1000 — — — — — — —
ZKCN 34 78 2 — — — — —
PBN 105 441 3 — — — — —
BDN 62 159 2 — — — — —
FN 115 613 12 — — — — —
SceDIP 4980 22 076 — 203 305 — — 1050
HsaHPRD 9269 36 917 — — — 1204 1294 4457

* The networks are the largest components of the original datasets.
]GOl is the number of the GO terms that have IC of more than 2.

paths. Since a P, is a very simple induced path there are no small cycles among those four vertices of a P,. Thus,
the inter-links tend to belong to more P,s since they tend to be part of paths, while the intra-links are inclined to
compose fewer P, since they tend to belong to more cycles. From these facts, we define the edge P, centrality,
which is a score assigned to edges which counts the number of Ps to which that given edge belongs. This
definition of edge P, centrality gives us a way to quantitatively measure the fact that an edge ij is more inter-link-
like than intra-link. Ifits P, centrality is large it is more likely to be an inter-link, while if its P, centrality is smaller
itis more likely to be an intra-link.

Formally, the edge P, centrality of an edgej is defined as the number of pairs of vertices {x, y} for which the
set{i, j, x, y} induces a P,. Note that these four vertices can extend edgeij to a P, in a number of ways:
X—i—j—yp,y—i—j—x%i—j—x—yi—j—y—xj—i—x—yj—i—y— xandcanextendall of
their reversals. If any of these configurations occur, this 4-set{i, j, x, y} contributes a score of 1 to the P,
centrality of the edge ij and to the two other edges on these four vertices.

One can check if four vertices induce a P, if the induced subgraph on these four vertices contains two vertices
of degree 1 and two vertices of degree 2. So, one could write a function IsP, (a, b, ¢, d) easily (but we omit the
details as this highly depends on the data structures one uses to store and access the elements of their graph).
Using such a function, a simple algorithm to compute the P, centrality of all of the edges would be to enumerate
all sets of 4-distinct vertices and test IsPy (a, b, ¢, d)and, ifitistrue, increment the centrality score for the three
involved edges. Of course, there are a number of improvements that can be added to this process, for example,
shortcutting the inner loops when the first three vertices induce degrees of 0, 0, 0 or 2, 2, 2, as these
configurations cannot extend to a P,. One can also limit the search for the next candidate vertex by only choosing
from the neighbourhood set of the appropriate vertices already in consideration. Of course, obtaining the
neighbourhood of a vertex is, once again, dependent on the graph data structure used; so, we do not discuss the
finer details of this process here.

We note that updating the P, centrality of all of the edges upon an edge deletion is much faster than the initial
calculation of all of the centrality scores, since after removing edge ab, we must only search over pairs of
candidate vertices{c, d}to find the affected changes rather than recalculate a search over all of the quadruplets.

To understand the edge P, centrality better, we compare it with edge anti-triangle centrality [16], the edge
clustering coefficient [17] and edge betweenness [ 18, 19], respectively. We choose edge anti-triangle centrality
for comparison because it has a similar definition, the edge clustering coefficient as it is a typical and efficient
local centrality and edge betweenness for its well-known accuracy in identifying an edge as being inside or
outside a community. We plot the scatters of the logarithm of edge P, centrality and edge anti-triangle centrality,
the edge clustering coefficient and the logarithm of edge betweenness, respectively, on the Zachary karate club
network (ZKCN) [20], the LFR synthetic network [21] with the mixing parameter mu = 0.5 and the S.cerevisiae
PPI networks (SceDIP) [22] obtained from the DIP. The details of these three network comparisons are
demonstrated in table 1. We compare these four centralities for the ability of discriminating inter-links from
intra-links on the ZKCN, the LFR synthetic network (mu = 0.5) and the SceDIP, successively. In particular, we
compare them for two important quantities: the first one is the fraction of vertices contained in the giant
component, denoted by RGC [23]. A sudden decline of RGC is observed if the network disintegrates after the
deletion of a certain fraction of edges. The second quantity is the so-called normalized susceptibility [23],
defined as
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Figure 2. Scatter plots of the centralities for comparison. Figures 2(a), (d) and (g) are the scatter plots of edge anti-triangle centrality
(E.A.) and the logarithm of edge P, centrality (log(E.P.)) on the ZKCN for 78 edges, the LFR synthetic network (mu = 0.5) for 7811
edges and the SceDIP for 22076 edges, respectively; figures 2(b), (e) and (h) are the scatter plots of the edge clustering coefficient (E.C.)
and also the log(E.P.) on the three networks, respectively; figures 2(c), (f) and (i) are the scatter plots of the logarithm of edge
betweenness (log(E.B.)) and the log(E.P.), respectively.

where 1, is the number of components with size s, N is the size of the whole network and the sum runs over all of
the components except the largest one. When S is a function of the fraction of removed edges f an obvious peak
can be observed that corresponds to the precise point at which the network disintegrates [23, 24].

In figures 2(a), (d) and (g), we plot the scatters of edge anti-triangle centrality and the logarithm of edge P,
centrality on the ZKCN, the LFR synthetic network (mu = 0.5) and the SceDIP, respectively. Figures 2(b), (e)
and (h) show the scatters of the edge clustering coefficient and the logarithm of edge P, centrality, also on these
three networks. Figures 2(c), (f) and (i) demonstrate the scatters of the logarithm of edge betweenness and
logarithm of edge P, centrality. Here, we utilize the logarithm function for edge betweenness and edge P,
centrality to obtain the same quantitative order with the edge anti-triangle centrality and edge clustering
coefficient. As expected on all three classical networks, the edge P, centrality is positively correlated to the edge
anti-triangle centrality and edge betweenness, while it is negatively correlated to the edge clustering coefficient,
although these relations are not revealed very rigorously from visual inspection. In particular, notice that the
edges with the highest edge P, centrality are neither always those with the highest edge anti-triangle centrality
and edge betweenness nor those with the lowest edge clustering coefficient. By figure 2, the positive relations
between the edge P, centrality and edge betweenness are revealed more distinctly than with the other two
centrality measures.

Figures 3(a)—(c) compare the edge P, centrality, edge anti-triangle centrality, edge clustering coefficient and
edge betweenness for the ability of discriminating inter-links from intra-links from the point of view of RGC on
the ZKCN, the LER synthetic network (mu = 0.5) and the SceDIP, respectively, and correspondingly from
figures 3(d)—(f) from the point view of normalized susceptibility S. Due to the high computational cost of edge
betweenness on the SceDIP we do not make comparisons to it in figures 3(c) and (f). As figure 3 shows, on the
ZKCN, edge P, centrality can gain better performance from the point of view of RGC and S, while on the
synthetic network and on the SceDIP it can be slightly poorer than the edge anti-triangle centrality and edge
betweenness, and it is better than the edge clustering coefficient on all three networks. Although edge P,
centrality is slightly poorer than edge anti-triangle centrality and edge betweenness from the point of view of
RGCand S on synthetic networks and on the SceDIP, the results of the communities obtained by the EPCA
based on the edge P, centrality are much better than the algorithms based on edge anti-triangle centrality and
edge betweenness. This is explained by the fact that we observed that the edges of the highest edge P, centrality
do not correspond to the edges of the highest edge anti-triangle or edge betweenness; so, the respective
algorithms, which delete these edges of high centrality, will make different deletion choices early in their
execution.
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Figure 3. Comparison for centralities on the ability of discriminating inter-links from intra-links. A comparison of the edge P,
centrality (E.P.), the edge anti-triangle centrality (E.A.), the edge clustering coefficient (E.C.) and the edge betweenness (E.B.)
pairwise. Figures 3 (a)—(c) are from the point of view of RGC on the ZKCN, the LFR synthetic network (mu = 0.5) and the SceDIP,
respectively; figures 3(d)—(f) are also from the point of view of normalized susceptibility S on the three networks, respectively, whereas
in figures 3(c) and (f) no comparison is performed for edge betweenness due to its high computational cost on the SceDIP.

Comparing edge P, centrality with edge anti-triangle centrality, edge clustering coefficient and edge
betweenness by plotting scatters and from the point of view of RGC and S, we can summarize that edge P,
centrality can be appropriate for community detection and obtain a significant competitive advantage over other
processes that remove edges.

3.1.2. EPCA for cograph community detection
We assume that the network G (V, E) is connected, undirected and unweighted. The EPCA repeatedly removes
the edge with the highest edge P, centrality score until the scores of the remaining edges are all zero. The EPCA is
described in detail as follows:

Input:G(V, E)

Output: cograph communities

Calculate the P, centrality score for each available edge

While the highest score #0 do

Remove the edge with the highest score

Recalculate the scores of those edges affected by the removal

End

The EPCA is a typical divisive algorithm for community detection, while it possesses two significant
differences to the general divisive algorithm. First, the EPCA does not need to remove the edges one by one until
there is no edge left in the complex network. It just removes part of the whole edge set until the P, centrality of
the remaining edges are all zero; this is sometimes only a small portion of the edge set. This makes it more
computationally efficient and free of any parameters. Second, unlike the general divisive algorithms, which
depend on additional measures to decide the community structure, the EPCA does not depend on any
additional measures, and it outputs the current components as the expected cograph communities. The
remaining components are cographs since they do not contain a P, and they possess additional algorithmic and
structural properties.

The P, centrality is a local centrality measure. The complexity of the EPCA is the same as that of EACH [ 16],

and the total space complexity of the EPCA is O (|E| ). The computational time-complexity is O ( k|| + IE4T> ,
where |E| is the number of edges, k is the average degree of the networks and T is the maximum number of

iterations. Here, we want to emphasize that T is not a real parameter of the approach EPCA and does not need to
be fixed a priori. The condition of the highest P, centrality score of the available edges equaling zero is the only
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condition used for ending the loop. The value T is just used to represent the maximum number of iterations to
express the complexity of the EPCA for convenience. The space and time complexities of other state-of-the-art
algorithms are listed in [16], and the complexity of the EPCA is much lower than the others and is the same as
that of the algorithm EACH.

3.2. Properties of a cograph community

A cograph community is a connected cograph, which is a special structure that has graceful topological
properties evidenced by its unique cotree. The sub-communities or modules of a cograph community are not
justa group of tightly-cohesive vertices, like in the case of traditional communities, they are also sparsely-
connected subgroups of vertices which are structurally identical. From the definitions of cographs and P, the
diameter of a cograph community is at most a two-hop since there is no induced P, and as a whole community it
reveals more intensive social roles or biological functions than those obtained by other traditional algorithms, as
demonstrated in section 4.1. Cographs possess a range of algorithmic and structural properties, for example,
they can solve the (otherwise NP-hard) problems such as coloring, clique detection, hamiltonicity, etc, which
can be done in polynomial time problems on cographs [ 14, 15].

Here, however, we are especially interested in the property that we can construct, which is its corresponding
unique cotree representation, and we are interested in extracting information on subgroups from it. Almost all
of the properties of cographs are revealed by the corresponding cotree; so, constructing the cotreeisa
prerequisite to making a comprehensive and deep study on cographs. The vertices of a cograph community,
organized by the cotree, can reveal more lucidly the interior structure and provide a convenient framework for
making a next-level analysis. One can construct a cotree in linear time (that is, in time proportional to the time
required to simply read the graph) by the algorithms given in the papers [14, 15] and note that the cotree for a
particular cograph is unique up to a permutation of the children of the internal vertices.

The cotree possesses the advantage of revealing various subgroups of the vertices of the corresponding
community. The vertices belonging to the same subgroup are characterized as those having the same adjacency
behavior to the remaining nodes in the community. That is, two vertices are in the same subgroup if their
neighbours outside of the subgroup are equivalent. The trivial subgroups are the whole community and each of
the isolated vertices. In addition to these trivial ones, the most basic subgroups are the strong siblings or weak
siblings. In a general subgroup, if vertex u of this subgroup is adjacent to some vertex v which is not in the
subgroup, all of the vertices of this subgroup are adjacent to v; this means the vertices of this subgroup possess
the same connecting pattern. Similarly, if vertex u (in the subgroup) is not adjacent to vertex v (outside of the
subgroup), none of the vertices in this subgroup are adjacent to v; that means they possess the same
disconnecting pattern. These subgroups have been called homogeneous sets, modules or indistinguishable sets due
to the fact that all of the vertices in the subgraph interact with the rest of the vertices (outside of the subgraph) in
identical ways.

As shown clearly in figure 1(c), the vertices v and u are strong siblings in the pale-green region, and the
verticesw and y form another pair of strong siblings in the hazel region, while the vertices b and ¢ are weak
siblings in the light-pink region, and vertices 4 and x are weak siblings. The larger subgroup ofb, ¢, d and e is
determined by the outer topological environment by being completely connected to the subgroup of v, u, w and
y while being disconnected to the subgroup of z, a and x.

Finding various meaningful subgroups of cograph communities according to their neighbours and non-
neighbours indeed brings new angles to investigating the relationships among the members of the communities.
What we want to emphasize is that these meaningful subgroups within cograph communities cannot be detected
by the traditional hierarchical algorithms, which focus only on obtaining hierarchical communities. The
essential difference is that a set of vertices can form a structurally-equivalent subgroup even when there is no
edge joining any two of them. Traditional community-detection algorithms that depend on identifying dense
clusters will never associate such a group of nodes together.

The vertices revealing similar functions or roles in real networks are not always densely linked by edges but
are sparsely linked by edges, as introduced by [25]. For these reasons, traditional hierarchical community-
detection methods cannot always find the sparse groups very accurately. It is reasonable and novel to investigate
the subgroups within cographs according to their outer topology.

The cotree has the natural advantage of demonstrating various subgroups according to their structural
similarity, and we can identify these sets easily. Thus, analyzing cograph communities based on their cotrees is
novel and very fascinating. Several examples of a cotree analysis of the cograph communities or modules
obtained by the EPCA on the practical networks are made in detail in section 4.2.
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4. Experiments and analyses

We produce the experiments and analyses in this section. In section 4.1 we compare the performance of the
EPCA with algorithms from the existing literature on synthetic, social and biological networks. In section 4.2 we
perform a next-level analysis of the cograph communities based their corresponding cotrees to obtain various
meaningful subgroups.

4.1. Accuracy analyses

Before making comparisons, we first introduce why we select these state-of-the-art algorithms; how we
implement them for performance comparison; where we obtain the synthetic, social and biological networks,
the protein complex golden standard sets and the high-level GO term sets; and what criteria we use to evaluate
the performance of the selected algorithms. After that, we compare all of the algorithms on synthetic, social and
biological networks to show that the EPCA has comparative and superior performance.

Considering the EPCA as a typical non-overlapping community or module detection algorithm, the main
compared algorithms here are non-overlapping identification algorithms. The state-of-the-art algorithms GN
[18,19],ECCAq [16,17],ECCAp [16,17],EAC[16] and EACH [16] are selected, as these algorithms are edge-
centrality-based. In particular, GN is based on edge betweenness centrality, which is a typical global centrality,
and depends on the Q value [18] to decide the community structure. Both the ECCAg and ECCAp are based on
the edge clustering coefficient, which is a typical local centrality. The ECCAq and ECCAp indicate the ECCA
based on the additional measures of the Q and D values [26], respectively. The EAC and EACH are based on the
anti-triangle centrality, whereas the EACH varies from the EAC by just including an added isolated vertex
handling strategy. Neither of them depends on an additional measure while deciding the community structure.
The NMF [27, 28] and SC [29, 30] possess matrix theory supports, while the CNM [31] attempts to optimize the
additional measures to decide the community structure. The MCL [32] is based on random walks and is well
known for its robustness. The INFOMAP [33] has significant accuracy performance, as reported in [34]. The
OSLOM [35] is the only algorithm for detecting overlapping communities; here, we use OSLOM2, a much faster
version from http://oslom.org/software.htm instead. The LOUVAIN [36] is very fast and widely used for
community detection. We use the NodeXL (http://nodexl.codeplex.com/) implementations of the GN and
CNM. The ECCA is implemented according to [17]; the NMF and SC are implementations in the R packages
NMEN [37] and clusterSim [38], respectively. Lastly, we obtain the source code of the MCL (http://micans.org/
mcl). The INFOMAP is implemented by the R package igraph [39], and we get the MATLAB version for the
LOUVAIN from http://perso.uclouvain.be/vincent.blondel/research/louvain.html. All of the parameters are at
default, as set in the corresponding tools or packages for the available algorithms.

For the sake of convenience, we first list several networks used in the experiments in table 1: the series of LFR
synthetic networks (SNs) [21], the Zachary karate club network (ZKCN) [20], the Political books network
(PBN) (http://www.orgnet.com/), the Bottlenose dolphins network (BDN) [40] and the Football network (FN)
[19, 41]. The parameters of the LER synthetic network are: average degree k = 15, mixing parameter mu = 0.5,
minimum community size minc = 20 and maximum community size maxc = 50. Here, we setmu = 0.5 since
its median is 0.5. In fact, aside from mu, all of the other parameters are defaults from the original code (http://
santo.fortunato.googlepages.com/inthepress2). Here, the SceDIP represents the S. cerevisiae PPI networks
obtained from the DIP [22], and HsaHPRD represents the H. sapiens PPI networks extracted from HPRD [42].
We use the largest components of these two networks as the input of the algorithms. There are four protein
complex golden standards: for the SceDIP we use the Munich Information Center for Protein Sequences (MIPS)
[43] and the Saccharomyces Genome Database (SGD) [44] golden standards, while for HsaHPRD the golden
standards are the Human Protein Complex Database with a Complex Quality Index (PCDq) [45] and the
Comprehensive Resource of Mammalian Protein Complexes (CORUM) [46]. We remove the golden standard
protein complexes, which consist of less than 2 proteins. The GO terms are not all of the terms but are instead the
high-level GO terms, which have information content that is more than 2 [47]. The definition of the information

content(IC) ofaGOterm g is IC = —log ( ﬂ) ,as given in the literature [47], where ‘root’ is the

|root]|
corresponding root GO terms (molecular function (MF), biological process (BP) or cellular component (CC))
of g. In addition, the GO terms that contain less than 2 proteins are removed. Lastly, we remove the protein
complexes or GO terms of which no members appear in the corresponding PPI networks. The details of the
SceDIP and HsaHPRD, the complex golden standards and the GO terms are also listed in table 1.

4.1.1. Synthetic networks and social networks

To quantify the accuracy performance of the compared algorithms on synthetic and social networks, we adopt
the widely used normalized mutual information (NMI) [48, 49] to measure the similarities between the obtained
communities and the real ones. The details of this issue are introduced in appendix B.
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Figure 4. Illustration of the average NMI values obtained by the compared algorithms on the series of LER networks as mu from 0.1 to
1.0 with astep of 0.1.

Table 2. Performance comparison with NMI on ZKCN, PBN, BDN and FN.

Algorithms NMI_ZKCN NMI_PBN NMI_BDN NMI_FN
GN 0.3084 0.4060 0.3534 0.6163
ECCAq 0.4456 0.0366 0.1000 0.8100
ECCAp 0.2841 0.0373 0.1126 0.7794
NMF 1.0000 0.4204 0.8006 0.7058
SC 1.0000 0.07874 0.0013 0.7080
CNM 0.4778 0.4035 0.3609 0.4305
MCL 0.8333 0.3359 0.1140 0.8332
EAC 0.6270 0.1042 0.0872 0.5960
EACH 1.0000 0.4255 0.2441 0.8159
INFOMAP 0.5032 0.2798 0.2262 0.8332
OSLOM2 0.9167 0.4547 0.7026 0.8150
LOUVAIN 0.2290 0.1665 0.1963 0.8361
EPCA 0.5906 0.0857 0.1144 0.6197

We compare the NMI values of the results obtained by the compared algorithms on the synthetic networks,
as shown in figure 4. Each node of the figure corresponds to the average NMI value of over 20 LFR networks
constructed with the same parameters. The NMI values of all of the algorithms decrease as the mixing parameter
mu increases. The reason for this is that the community structures of the LFR networks become increasingly
fuzzier and thus are more difficult to be detected correctly as mu increases. As figure 4 shows, the black line
represents the NMI value of the EPCA, and the results of the other algorithms are indicated by the corresponding
color lines with signs. The INFOMAP can obtain the best performance among these compared algorithms, as
reported in [34],and OSLOM2, LOUVAIN are not far behind. As figure 4 shows, the EPCA has superior
performance compared with the algorithms SC and CNM across all of the networks, while asmu > 0.6, itis
better than MCL, ECCAp and ECCAq,.

Note that the algorithms INFOMAP, OSLOM2, LOUVAIN, GN, ECCAp, ECCAq need to set the number of
output communities or must depend on the additional measures to decide the structure of the communities. As
well as the global edge betweenness centrality GN based has a very high computational cost, while the inflation
parameter of MCL affects the granularity of communities directly. By accounting for these factors, the EPCA can
gain impressive performance in general on synthetic networks since it does not need additional measures, is free
of parameters and is based on a typical local edge centrality at a very low computational cost.

Then, we compare the NMI values of the results obtained by the compared algorithms on the social
networks, as shown in table 2. As depicted in table 2, the EPCA has comparative performance on the four social
networks. Although the GN, ECCAp, ECCAq, MCL, SC, NMF, INFOMAP and OSLOM2 algorithms obtain
slightly better NMI values on some networks, they all depend on additional measures or a series of parameters;
among them, SC and NMF also need to set the number of expected communities, which may bring in great
difficulties if we do not have a prior knowledge of the networks. The NMI values of the EAC and EPCA reveal
that the edge P, centrality and the edge anti-triangle centrality [ 16] have similar performances for community
detection on small networks, while the EPCA may produce fewer isolated vertices on these social networks. The
better performance of EACH is just due to its isolated vertex handling strategy. However, the communities
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Figure 5. Illustration of the real groups and the cograph communities on the ZKCN. (a) the ZKCN consisting of 2 real communities;
(b) the cograph communities obtained by EPCA after removing just 23 edges.

obtained by EACH are no longer cographs after the isolated vertex handler is used since the diameter of the
communities obtained by EACH may be as high as a four-hop. So, the results obtained from EACH are not
conducive to a cotree-based deeper analysis of those communities. Here, the EPCA is free of any parameters and
haslower computational cost. Detecting communities by the EPCA is not only beneficial from the comparative
performance on accuracy but also provides cograph communities on which we can perform a deeper analysis
into the meaningful subgroups.

Figure 5 shows the cograph communities obtained by the EPCA on the ZKCN in detail. As figure 5(a) shows,
the ZKCN consists of 34 vertices and 78 edges, representing 34 members and 78 social relationships among the
members of the karate club. The club suffered a division which split the club into two, and the split very closely
corresponds to a mini-cut that separates the two opposing individuals of the largest influence of the vertices 1
and 34. As shown in figure 5(b), the EPCA obtains 3 communities and one isolated vertex by just removing 23
edges. In essence, the 3 cograph communities obtained by the EPCA match the practical division of two
communities comparatively well. Furthermore, the EPCA purifies the community headed by vertex 1 by
removing the attachment vertex 17 since it does not directly connect with the leader vertex 1, as shown in
figure 5(b). The EPCA partitions the community, led by vertex 34, by removing the sub-community, which
consists of vertices 32, 25, 26, since vertices 25 and 26 do not directly connect with the leader vertex 34, as shown
in figure 5(b).

Figure 6 depicts the cograph communities obtained by the EPCA on FN in detail. The FN consists of 115
vertices and 613 edges, representing 115 teams and 613 games played against each other, as shown in figure 6(a).
The 115 teams are grouped into 11 conferences, with a 12th group of independent teams. The EPCA gains 13
communities and 10 isolated vertices after removing 291 edges. Surprisingly, we find the 13
cograph communities matching the 12 groups comparatively well in general. Here, we focus on the nontrivial
cograph communities and ignore the isolated vertices. In fact, the two cograph communities in the shaded area
of figure 6(b) mainly correspond to the group presented by the red triangle in figure 6(a). The group presented
by the red triangles in figure 6(a) is realized as two smaller sub-communities because the group has the most

10



I0P Publishing NewJ. Phys. 17 (2015) 013044 SJiaetal

(a)

Flor&'ﬁfﬁ*clina Cﬂlwtaie @hh@aSlatc
Nonh(“]rmsmw G méﬁl?{ﬁ&!ﬂt’“ﬁ]@na— — SanDﬁSmm*STale CO@C{O A Ok@md

NN T RO .
@) : {\J‘@‘A Bnbh*fou“gblm*xmgx@= ,‘ NG Texis
K ’ Kdntdte M@un
IO“@‘“@ ech

cn.m- WA v,.,,,,

= = Wdh _1011 X & chadz‘s e\ ‘m
070 e o ,@rkﬁs&qw !

WTWUHWC - , e
SN Syf@Blise
Cmm‘londa W P >

Loul‘;ldlme he e

ue:-’- 3 = ; _]ﬁmd D l
. __'!Ech" \._‘ FtédaMlsﬁlpm \”\ : M‘wn.nmgwm

Edsw“‘“h‘m — g‘[’ ‘ A S"“'hc’ﬂ"%}&&m
mg Mla*)hlo 4 Y

T*io(:emmﬁc.hlb Fres@&atc )

NM:‘aliBwlmg‘ecnSmu — R

- N&da :
a!l“@““*":“’b%ﬁn : R‘t Texas@'ﬁ@ﬁm Paso

(b)
Vi‘il%ot.l‘cch Orc@Stdrmiz@Slam lﬁilD" e[\‘:' pXico K@M@ug@w

Cl.on ‘ | ay & ) ¥
Nonl.‘olmu ) l&on 74 ash:lﬁ)ﬂﬁgﬂ:“ymmg A_u‘rcc Ne@kn A Ok@ma
ate

] NonhC‘mdS te

Flor‘la(e &“ } ‘Was ?glor‘)Smt I\evadz‘s\r’t.bas@cx@cch | .
al..\rccl Stﬁ)rd K(,néggu,gklah@asdl@

M“.'"ﬂ.., c lifornia Wy‘ing c @do’r @&M
o ex;

Vaq@bﬂ(

LouisifjeTech N"""’m&ur@rzsﬁcky e labama @@mingt
. Alabama@#mingham

%rolina F]}ﬁlj Nor.exas

S = \ 1
Louisiaﬂdom&nuisim‘at‘ﬂ@é’“ /7 Virg uTt‘c]L .dwt\rk'l‘%al:..o-r.r LO‘.'”"

P Arl sas y Ci ati

MlddkTL‘:&.sccSthn@O"dd l@mb&l&?l\i see ]A Bm.l:? ‘ n.]
Boﬁo@mt@lﬁuﬂuﬁﬂsmw Al& chM..oShﬂ%t‘ﬂiMSomhen.SSiSSippi
A@.—.]Mis&ippl M‘.hiI.'c

ln@)ﬁ@alc &N da
Ie Tals: DS
R Tolido Bowlinsﬁcmsﬂ}gu S il
; : X1 Eastern@ichigan z J i .
I\on[@stcm ; 'Mi@gan honlu‘[lmol: Mi“‘?hi" Bl‘]o [& : H&”
Mich@Slaw .“®Ib Ct:ntr‘loridaCcm-‘h‘l‘chig‘zia ! _Con*licul Texas! "s_!ign' i Texaﬁﬁ{?aso

Mi r@m 7
Westerplilichigplate .
Pcl@utc l@; < r‘u ‘m '*‘ A‘ 2 Sanl @§&l&lwrﬂeﬂmdnsl

P

Figure 6. [llustration of the real groups and the cograph communities on FN. (a) The FN consisting of 12 groups; (b) the
cograph communities obtained by the EPCA after removing 291 edges.

members, and the members tend to be led by the two leaders Kent and BallState, respectively. The ten isolated
vertices emerge from the yellow, bright-blue circles and the triangle groups, as shown in figure 6(b), all of which
are relatively looser than the others. The 12th group consists of 8 independent teams, presented by green
triangles, as shown in figure 6(a); since they are the independent teams, two of them are likely mismatched into
the green circle group, and another two are arranged into the two cograph communities in the shaded area, as
shown in figure 6(b). Other than the independent and isolated teams, all of the other teams are arranged
correctly.

4.1.2. Biological networks

In the following, we perform experiments on biological networks, and we test the quality of the algorithm for
community or module detection by how well it can be applied to make predictions for protein complexes and
GO terms. Protein complexes typically have a dense modular structure within which proteins are highly
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connected. To examine whether the detected modules capture protein functional relationships other than just
protein complexes, we use the high-level GO terms in all three domains (MF, BP and CC) as the golden
standards for GO term prediction.

To evaluate the performance for the complex prediction, we use two independent quality measures [50] to
assess the similarities between the predicted complexes and the golden standard reference complexes. In our
experiments, we do not consider the one-protein module for all of the compared algorithms. The first measure
counts the number of predicted modules that match the golden standards. A predicted module N; with Vi,
proteins or genes is thought to match with a reference module N, with Vy, proteins or genes when the
neighborhood affinity is

‘VNI N Vn, ’
NA(M) Nz) = W Z w, (2)
N N>

where the threshold  is usually setas 0.2 or 0.25 [51, 52]. The second measure is the geometric mean of two
other measures, which are the cluster-wise sensitivity (Sn) and the cluster-wise positive predictive value (PPV)
[52]. Given thatr is predicted and s is the reference complexes, lett;; denote the number of proteins that exist in
both predicted complexi and reference complex j, and w; represents the number of proteins in reference
complex j. Then, Sn and PPV can be defined as

s
E max{tij}
=11
j=1

P (3)

=1

respectively. Since Sn can reach its maximum by grouping all proteins in one module, and PPV can be
maximized by putting each protein in its own module, we use their geometric mean

Acc = \/Sn X PPV (5)

as ‘accuracy’ to balance these two measures [50, 52], whereas higher Acc scores the better results.

To investigate the functional significance of identified modules, we follow the same strategy as used in the
literature [25, 47] to compute the F-measure based on high-level GO term prediction. The neighborhood
affinity score between a predicted module p and areal GO termrg, NA (p, rg)is used to determine whether they
match each other. If NA (p, rg) > w, theyare considered to be matched with each other. Here, we set @ to 0.20,
aswas done in the literature [51]. We assume that PC and RG are the sets of modules predicted by a
computational method and by real GO terms, respectively. N, is the number of correct predictions which
match atleast a real GO term, and N, is the number of real GO terms that match at least a predicted one.
Precision (P) and recall (R) are defined as follows [53]

Ny =|{p |p € PC, 31g € RG, NA(p, 1g) > w}|, (6)
Nug = |{rg | 7¢ € RG, 3 p € PC, NA(p, 1) > w}], (7)
N,
=== (8)
|PC]
Ner
= (9)
RG]

The F-measure (F) is the harmonic mean of precision and recall, and it is depicted as follows
2XPXR
F=22"22,

P+R (10)

Among the compared algorithms used in the previous section, here, GN, NMF and SC are not used to test on
the SceDIP and HsaHPRD. GN is excluded, for it is too slow on large networks due to the expensive edge
betweenness calculation. Both the NMF and SC need to fix the number of expected modules, which brings an
inconvenient ambiguity when we face different golden standards. Although we can follow the same strategy to
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implement a grid search using the number of expected modulesk = 500 ~ 3000 with an interval of 100, as in
the literature [25], we thought the step length to be too big. For uniformity in the comparisons, we exclude these
three algorithms.

We first depict the results of the protein complex prediction in table 3; then, we display the results of the GO
term prediction in figure 7. Table 3 shows the performance of complex predictions on the SceDIP and HsaHPRD
in detail. The column headings of table 3 include the network for testing, the golden standard, the algorithms for
comparison, the number of coverage proteins, the number of modules predicted, the average size of modules,
the number of matched protein complexes, the cluster-wise sensitivity (Sn), the cluster-wise positive predictive
value (PPV) and the accuracy score (Acc). We compare the results on the SceDIP according to the S. cerevisiae
protein complex golden standards MIPS and SGD, while on HsaHPRD we compare the results according to the
H.sapiens protein complex golden standards PCDq and CORUM.

As depicted in table 3, the Acc scores of the EPCA are obviously better than the ones of other algorithms on
SGD, and the scores of the EPCA on the MIPS is 0.3749 lower than the highest 0.3960 of INFOMAP; the scores
of the EPCA on the PCDq is 0.4607, which is just slightly lower than the highest 0.4613 of the ECCAp, while on
CORUM the score is 0.3088, which is also slightly lower than the highest 0.3153 of the MCL. The numbers of
matched protein complexes of the EPCA are the largest ones among the compared algorithms on MIPS and
PCDaq, respectively. The average size of the modules of the EPCA on the PCDq s 4.53, which is close to the
average size of the reference protein golden standards 4.51. Considering the Acc scores and the matched
numbers of the compared algorithms, EPCA, MCL and ECCAp, are the competitive ones, and they all
outperform others dramatically. As for the aspect of the GO term prediction, shown in figure 7, this aspect (a)
illustrates the F-measure of the compared algorithms and (b) shows the percentage of GO terms that are
considered to be correctly matched to at least one of the identified modules by different algorithms on SceDIP
and HsaHPRD, respectively. Figure 7 also clearly illustrates that the EPCA, MCL and ECCAp, are competitive, as
they also outperform others since the EPCA can obtain better F-measure scores on both the SceDIP and
HsaHPRD while having slightly fewer matched GO terms than ECCAp, on SceDIP. Summarily, the EPCA is
more attractive than MCL and ECCAp, since the EPCA is free of any parameters and has comparatively lower
computational cost. Namely, the inflation parameter of MCL can affect the granularity, and the ECCAp, depends
on the additional measure: the D value. Also, the ECCAp, performs better than the ECCAq, emphasizing the
drawback that the same algorithm operating with different additional measures can lead to different results.

To demonstrate the comparison intuitively, we display, for instance, the Arp2/3 complex predicted by the
compared methods in figure 8. The Arp2/3 complex consists of seven-subunit proteins, which play a major role
in the regulation of the actin cytoskeleton. As figure 8 shows, the EPCA can detect the complex perfectly, while
MCL can obtain a module that includes ten proteins, with three additional proteins. The ECCAp can obtain four
proteins of the Arp2/3 complex. None of the algorithms (EAC, EACH, INFOMAP and LOUVAIN) can extracta
candidate complex, including YDL029W, which is an essential protein member of the Arp2/3 complex. The
OSLOM2 obtains a candidate complex which includes 20 proteins, while 13 are not the correct members.
Unfortunately, the CNM and ECCAq cannot obtain a valuable candidate complex for the Arp2/3 complex.

4.2. Various meaningful subgroups realized as cotree subgroups
In this section we mainly make a next-level analysis for the cograph modules obtained by the EPCA based on
their corresponding cotrees to obtain various meaningful subgroups. As introduced in section 3.2, the structure
of a cograph module can be demonstrated more explicitly by the corresponding cotree. The reasons for detecting
subgroups this way are that the vertices belonging to a subgroup must possess structural similarity to the rest of
its network. This strategy lets us find not only the dense subgroups but also the sparse subgroups and even those
with no connections within the subgroup. The simple fact is that finding sparse or non-connected subgroups is a
remarkable property that exhibits the superiority of analyzing cograph modules by cotrees. In the following, as
shown in figure 9, we analyze four typical cograph modules obtained from HsaHPRD based on their cotrees in
detail.

Figures 9(a), (c), (e) and (g) depict the first, second, third and fourth cograph module, while (b), (d), (f) and
(h) display the corresponding cotrees, respectively. Figures 9(a) and (b) show the first cograph module, which
consists of 6 genes and its corresponding cotree. The three genes PIWIL1, PIWIL4 and PIWIL2 are partitioned
into the weak sibling subgroup in the light-blue region, which are all adjacent to DICER1 and nonadjacent to the
strong siblings of TARBP2 and PRKRA. In fact, the weak sibling subgroup of PIWIL1, PIWIL4 and PIWIL2
perfectly matches the GO term ‘piRNA binding’, numbered by GO:0034584. Here, we want to emphasize that
among these three genes, there are no interactions among them. So, if we use traditional algorithms that use
density, we can never identify the subgroup matching the term GO:0034584, while the three genes TARBP2,
PRKRA and DICER1 compose a subgroup shown in figure 9(b), which perfectly matches the term ‘RNA
interference, production of siRNA’, numbered by GO:0030422. The strong siblings of TARBP2 and PRKRA
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Table 3. Performance comparison for complex prediction on SceDIP and HsaHPRD.

N.w.* G.s.b Alg.* Cov. Mo.n.® Asf Ma.n.® Sn PPV Acc
s.h MJ — 1061 203 12.52 — — — —
ECCAq 4980 737 6.76 46 0.4486 0.2604 0.3418
ECCAp 4980 1563 3.19 75 0.2436 0.4096 0.3159
CNM 4980 42 118.57 4 0.6045 0.1058 0.2529
MCL 4736 928 5.10 69 0.3125 0.3689 0.3395
EAC 1691 98 17.26 29 0.2916 0.2854 0.2885
EACH 4980 98 50.82 20 0.4455 0.2191 0.3124
INFOMAP 4980 441 11.29 47 0.4915 0.3190 0.3960
OSLOM2 5442 85 64.02 21 0.5053 0.2382 0.3469
LOUVAIN 4980 675 7.38 35 0.5081 0.2571 0.3614
EPCA 4687 1019 4.60 82 0.3530 0.3982 0.3749
Sk — 1211 305 5.70 — — — —
ECCAq 4980 737 6.76 106 0.5549 0.3933 0.4672
ECCAp 4980 1563 3.19 166 0.4048 0.6288 0.5045
CNM 4980 42 118.57 4 0.7320 0.0986 0.2687
MCL 4736 928 5.10 124 0.5026 0.5585 0.5298
EAC 1691 98 17.26 36 0.3899 0.3897 0.3898
EACH 4980 98 50.82 34 0.5854 0.2720 0.3990
INFOMAP 4980 441 11.29 74 0.6354 0.4447 0.5316
OSLOM2 5442 85 64.02 24 0.6475 0.2745 0.4216
LOUVAIN 4980 675 7.38 79 0.6538 0.3598 0.4850
EPCA 4687 1019 4.60 129 0.5348 0.5943 0.5638
H.! p.! — 3433 1204 4.51 — — — —
ECCAq 9269 1464 6.33 194 0.4285 0.3717 0.3991
ECCAp 9269 2601 3.56 372 0.3590 0.5927 0.4613
CNM 9269 96 96.55 21 0.6426 0.0486 0.1768
MCL 8903 1789 4.98 316 0.3992 0.5322 0.4609
EAC 3506 251 13.97 66 0.3041 0.2130 0.2545
EACH 9269 251 36.93 56 0.4482 0.1514 0.2605
INFOMAP 9269 668 13.88 150 0.5192 0.3266 0.4118
OSLOM2 10016 208 48.15 19 0.5262 0.1686 0.2978
LOUVAIN 9269 1097 8.45 226 0.5385 0.2944 0.3981
EPCA 8807 1946 4.53 377 0.3856 0.5504 0.4607
cm — 1955 1294 5.06 — — — —
ECCAq 9269 1464 6.33 166 0.4251 0.1907 0.2847
ECCAp 9269 2601 3.56 278 0.3212 0.2720 0.2956
CNM 9269 96 96.55 12 0.7333 0.0334 0.1566
MCL 8903 1789 4.98 190 0.4041 0.2460 0.3153
EAC 3506 251 13.97 34 0.3650 0.0856 0.1768
EACH 9269 251 36.93 20 0.4743 0.0793 0.1939
INFOMAP 9269 668 13.88 73 0.5251 0.1591 0.2890
OSLOM2 10016 208 48.15 20 0.5425 0.0970 0.2294
LOUVAIN 9269 1097 8.45 95 0.5663 0.1310 0.2724
EPCA 8807 1946 4.53 196 0.3772 0.2529 0.3088

* N.w. denotes the network.

" G.s. denotes the Golden standard.

¢ Alg. denotes the algorithm.

4 Cov. denotes the number of coverage proteins.

¢ Mo.n. denotes the number of modules predicted.
f A.s. denotes the average size of the modules.

8 Ma.n. denotes the number of matched modules.
"'S. denotes SceDIP.

" H. denotes HsaHPRD.

’ M. denotes MIPS.

k'S. denotes SGD.

! P. denotes PCDq.

™ C. denotes CORUM.

interact with the gene DICERTI; together, they compose the dense larger subgroup of TARBP2, PRKRA and
DICERI, a clique in fact, as shown in figure 9(a).
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Figure 7. The bar plots illustrating the performance of algorithms for GO term prediction; (a) the comparison results based on the F-
measure on SceDIP and HsaHPRD; (b) the comparison of the percentages of matched GO terms in the complete set of selected high-
level GO terms.

The second cograph module and its cotree are shown in figure 9(c) and (d), respectively. The two distinct
subgroups of weak siblings are revealed clearly by the cotree. One of the two subgroups consists of NPY1R,
NPY2R, PPYRI and NPY5R in the light-yellow region, perfectly matching the 1139th term of the 4457 golden
standard terms. Furthermore, three genes of this subgroup are just the members of the 1396th term. We again
emphasize that there are no interactions among these genes; so, density-based clustering methods would fail to
detect them.

The third cograph module and its cotree are shown in figure 9(e) and (f), respectively. The cograph module
consists of 9 genes that form a typical star-shaped subgraph, and we can obtain two subgroups intuitively from
its cotree. One is the center BTK; the other is the weak siblings, including the rest of the 8 genes. Among the 8
genes, there are three genes in the light-blue region matching the term ‘1-phosphatidylinositol-5-phosphate 4-
kinase activity’, numbered by GO:0016309 perfectly.

The fourth cograph module and its cotree are shown in figure 9(g) and (h), respectively. The
cograph module consists of 10 genes, and distinct subgroups are revealed by the cotree. Surprisingly, the strong
siblings of BID and BAK1 in the light-blue region just match the three terms simultaneously. The three matched
terms are the ‘activation and oligomerization of BAK protein’, numbered by REAC:111452; the ‘tBID activates
BAK protein’, numbered by REAC:139895; and the ‘tBID binds to inactive BAK protein’, numbered by
REAC:168848, respectively. Also, the genes BIK, BOK from the weak siblings and the gene BAK1 from the strong
siblings together compose the subgroup which just matches the 1353th term. The cotree structure predicts more
meaningful subgroups and especially predicts the weak siblings of PMAIP1 and BBC3 to have the same or
similar functions since they are structurally-equivalent.

In summary, analyzing the cograph modules based on their corresponding cotrees can lead to an immediate
prediction of distinctive subgroups. The vertices organized by the cotree reveal very fascinating subgroups which
are not only dense but also sparse, even when there are no connections in the subgroups. Most importantly,
some of the subgroups revealed in this manner have significant biological meanings and also match the
corresponding GO terms perfectly.
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(a) Benchmark (b) ECCAp (¢) MCL

Figure 8. Illustration of the results predicted by the compared algorithms about the Arp2/3 complex. (a) The real Arp2/3 complex and
(b-i) the candidate Arp2/3 complex predicted by the ECCAp, MCL, EAC, EACH, INFOMAP, OSLOM2, LOUVAIN and EPCA,
respectively, where the proteins in the orange color are the members of the real Arp2/3 complex, and those in the green color are not.
CNM and ECCAq cannot extract a valuable candidate complex for the Arp2/3 complex.

5. Conclusion and discussion

In this paper, we propose the novel cograph community and develop an approach (EPCA) for extracting
cograph communities based on edge P, centrality. We compare the EPCA with algorithms from the existing
literature on synthetic, social and biological networks to show that the EPCA has superior or competitive
performance in accuracy and speed, in addition to having the advantages of being free of any parameters and
independent of additional measures. The cograph communities have a fine granularity, and their diameters are
at most a two-hop. More importantly, cograph communities exhibit a specialized internal structure, which
decomposes the community into structurally-equivalent subgroups. The equivalence to cotrees allows a simple
pictorial view for performing a next-level structural analysis for the purpose of finding meaningful subgroups
that have functional similarity. In particular, these structurally-equivalent subgroups reveal homogeneous roles
or functions that cannot be detected by traditional hierarchical clustering algorithms, which depend on edge
density for community detection. Analyzing networks with cograph communities can contribute greatly to
understanding the global structures and local structures of the networks more easily and distinctly.

Since edge P, centrality is defined for unweighted graphs, we cannot currently use the EPCA to detect
cograph communities on weighted and directed networks. In a future study, we will attempt to develop an
extended version of P, centrality for weighted and directed networks and propose a framework for detecting
overlapping and hierarchical [6, 48, 54] cograph communities. Being able to identify structurally equivalent
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Figure 9. lllustration of cograph modules obtained by the EPCA from HsaHPRD and their corresponding cotrees. (a), (c), (e) and (g)
depict the first, second, third and fourth cograph modules, successively, while (b), (d), (f) and (h) display their corresponding cotrees.

subgroups in directed networks may have immediate applications to network controllability [55] by controlling
communities with few drivers and thus controlling the whole network efficiently.

We feel that there are many interesting applications obtainable from studying other real biological or
complex networks with the EPCA and cotrees. Another avenue of potential research is to explore other uses of
these cograph communities and their cotree representations since they possess a multitude of algorithmic and
structural properties and benefits besides subgroup detection.

We do, however, stress that although we have shown numerous benefits granted by the EPCA, such as
polynomial runtime, ease of implementation, accuracy in finding cograph communities and the inherent ability
to detect meaningful subgroups, we also find that it suffers from the transition between the undetectable and
detectable regimes like virtually all community-finding algorithms [56—60], and we illustrate the details of this
transition in appendix C, where we test the EPCA on Block model networks analogous to those used by Radicchi
in [59].
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Appendix A. Simple construction of a cotree

We describe the simplest polynomial-time algorithm to compute a cotree of a cograph here [9]. Many existing
algorithms in the literature run in linear time (which is O (N'2) for dense graphs), and they rely on advanced
techniques in graph algorithms. Here, we describe a very simple O (N*)—time algorithm that will compute a
cotree for a given connected cograph. The only extra knowledge required to understand this process is the
operation of graph complementation: given agraph G = (V, E), the complement of G (denoted co-G) is the
graph on the same set of vertices V but with an edge uv in co-G only if there is no uv edge in G. Note that the
complement of co-G is G itself.

The name cograph originates from the term complement-reducible graphs, which describes the original
characterization of these graphs as those which can be completely decomposed into single vertices (leaf nodes)
through successively taking graph complementation. That is, if a cograph is connected, its complement is always
disconnected and thus decomposes into separate connected components.

A cotree is a tree that will contain two types of internal nodes: 1 and 0, which represent a complete join or a
disjoint union of the subgraphs below them. A 1 will only have 0 nodes (or leaf nodes) as its children and a 0 will
only have 1 nodes (or leaf nodes) as its children. The leaf nodes of the tree will be the vertices of the graph. In this
paper, the EPCA acts on a graph until it is guaranteed to be a cograph; so, for our purposes here, we will assume
that we will always begin our cotree-building process on a connected cograph.

We will use the example cograph and cotree in figures 1(b) and (c) to illustrate this process. We initialize
with a 1 node as the root and associate with it a set of all nodes of G, which denotes the set of all leaf nodes
underneath this root. Since this is a cograph, its complement is disconnected; so, taking the graph complement
of this cograph reveals a graph with two connected components: S; = {u, v, w, y}and
S, =1{a, b, ¢, d, x, z, e}. Thus, underneath the 1 root node, we create two 0 nodes: one associated with S;
and the other associated with S,.

On each of these 0 nodes, we perform the graph complementation again in order to find further
decomposition. However, recall that co-G is simply G; so, to obtain the second complement, we only take the
induced graph on these sets: S; and S,. We find that S; decomposes into the connected components {u, v}and
{w, y};then, each of these is associated with its own 1 underneath S;. Similarly, the induced graph of S, shows us
the connected components{a, x, z},{b, ¢, d}and{e};so,each oftheseisassigned to its own 1 underneath S,.

When a node is trivially associated with a set of two or fewer vertices, those vertices are placed beneath that
node asleaf nodes of the cotree. In our example, this meansu and v are under their own 1 node, w and y are
under their own 1 node, and e is under the 0 node, which was associated with S,, as that is where it came from.
Sincef{a, x, z}and{b, ¢, d}areassociated to their own 1 nodes, we apply graph complementation to these and
find the resulting connected components, which are now{a, x}and{z}inone caseand{b, c}and{d}in the
other. We are then left with trivial subgroups; so, all of the leaf nodes are constructed, and the cotree is complete.

Appendix B. The detail of normalized mutual information

In this paper we use NMIy gy [49] to evaluate the compared results for NMIy;gy and to correct the so-called
unintuitive behavior of NMI| g [48]; we obtain an available code for NMIygy from https://github.com/
aaronmcdaid/Overlapping-NMI. In fact, NMIygy is based on NMI| g [48] in which the authors extend the
normalized mutual information for evaluating overlapping communities from evaluating non-
overlapping ones.

The definition of corresponding normalized mutual information NMI gy [49] is demonstrated as

I1(X:Y)
NMI = , B.1
M max (H (X), H(Y)) e
where I (X:Y)is the mutual information and H (X), (H (Y)) are the unconditional entropy of cover X, (Y).
1
T(X:Y): = Z[H(X) = HX|Y) + H(Y) = H(Y )], (B.2)
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Kx
H(X) = ZH(Xi)
i=1

=§[h[zn:[xim= 1], n] + h[zn‘,[[ximz o], n]]] (B.3)

m=1 m=1

where Z"m: . [X,—m = 1] counts the number of vertices in clusteri and an: . [Xl-m = O] counts the number of
vertices not in clusteri.
HX|Y)= Y H(X,»|Y). (B.4)
ie{1,..Kx}

H(X,»|Y) = je?llj.l.‘le}H*(Xi

;). (B.5)

H (Xi|v;)if h(a, n) + h(d, n)
V) =93 Shb n+hic n : (B.6)
h(c+d, n) + h(a + b, n) otherwise

H* (Xi

H(X |v;)=H (X, Y;) - H(Y))
=h(a, n) + h(b, n) + h(c, n)

+h(d, n)—h(b+d, n)—h(a+c n). (B.7)
a=Y" [Xm=0AYn=0] (B.8)
b=3" [Xm=0nAYm=1] (B.9)
c=3" [Xim=1AYm=0] (B.10)
d=3" [Xim=1AYm=1] (B.11)

X andY are matrices of the community membership. There aren objects. The first cover has K
communities; hence, X isan X Kx matrix,andY isan X Ky matrix. Xj,, is 1 if vertex# is in communityi in
cover X. More details can be found in the original references [48, 49].

Appendix C. EPCA suffering from the transition between undetectable and detectable
regimes

Recently, a very novel counter-intuitively paradox in-community detection was proposed by F Radicchi [59],
which tells us that the detection of well-defined modules is more difficult than the identification of ill-defined
communities. The paradox is mainly due to the fact that virtually all algorithms are affected by the so-called
detectability threshold [56—60]. It has been shown that community identification algorithms are able to detect a
modular structure only when A > A., where

A= <kin> - <k0ut>) (Cl)
A = <kin> + <kout> > (C.2)

< kin > ( < kout > ) is the average internal (external) degree. Here, we also test our proposed algorithm EPCA,

which suffers from the so-called transition between undetectable and detectable regimes from numerical
computations. The detectability threshold A, depends not only on the average values of internal and external
degrees but also on the correlation between their degree distributions. The correlations between the internal and
external degree distribution are independent, positive and negative, respectively. Concretely, the tests are
performed on the Block model [36], as used by F Radicchi [59]. As shown in figure C1, we test the EPCA on the
Block model composed of two and four communities. We plot the fraction of vertices that the algorithm
correctly classified as a function of A. Each node of the figure represents the average performance of the EPCA in
20 realizations, (a) the model composed of two communities with 50 vertices and the average degree

< kin > + < kout > = 16 and (b) the model composed of four communities with 30 vertices and the average degree

< kin > +3 < kout > = 16. Figure C1 obviously reveals that the algorithm EPCA does suffer from the transition
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Figure C1. Illustration of how the EPCA suffers from the transition between undetectable and detectable regimes on the Block model;
(a) two pre-imposed communities; (b) four pre-imposed communities.

between undetectable and detectable regimes; thus, we indeed need to reconsider the relation with the notation
of communities and clusters identified by the algorithms.
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