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Abstract
Although the spin is regarded as a fundamental property of the electron, there is no
universally accepted spin operator within the framework of relativistic quantum
mechanics. We investigate the properties of different proposals for a relativistic
spin operator. It is shown that most candidates are lacking essential features
of proper angular momentum operators, leading to spurious zitterbewegung
(quivering motion) or violation of the angular momentum algebra. Only the
Foldy–Wouthuysen operator and the Pryce operator qualify as proper relativistic
spin operators. We demonstrate that ground states of highly charged hydrogen-like
ions can be utilized to identify a legitimate relativistic spin operator
experimentally.

Keywords: spin, relativistic quantum mechanics, hydrogen-like ions

1. Introduction

Quantum mechanics forms the universally accepted theory for the description of physical
processes on the atomic scale. It has been validated by countless experiments and is used
in many technical applications. However, even today quantum mechanics presents physicists
with some conceptual difficulties. In particular, the concept of spin is related to such difficulties
and myths [1, 2]. Although there is consensus that elementary particles have a quantum
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mechanical property called spin, the understanding of the physical nature of the spin is still
incomplete [3].

Historically, the concept of spin was introduced in order to explain some experimental
findings such as the emission spectra of alkali metals and the Stern–Gerlach experiment. A
direct measure of the spin (or more precisely the electronʼs magnetic moment) was, however,
missing until the pioneering work by Dehmelt [4]. Nevertheless, spin measurement experiments
[5–10] still require sophisticated methods. Pauli and Bohr even claimed that the spin of free
electrons was impossible to measure for fundamental reasons [11]. Recent renewed interest in
the fundamental aspects of the spin arose, for example, from the growing field of (relativistic)
quantum information [12–17], quantum spintronics [18], spin effects in graphene [19–21] and
in light-matter interaction at relativistic intensities [22–24].

According to the formalism of quantum mechanics, each measurable quantity is represented
by a Hermitian operator. Taking the experiments that aim to measure bare electron spins
seriously, we have to ask the question: what is the correct (relativistic) spin operator? Although
the spin is regarded as a fundamental property of the electron, a universally accepted spin operator
for the Dirac theory is still missing. The pivotal question we try to tackle is: which mathematical
operator corresponds to an experimental spin measurement? This question may be answered by
comparing the experimental results with the theoretical predictions originating from different spin
operators, and testing which operator is compatible with the experimental data.

A relativistic spin operator may be introduced by splitting the undisputed total angular

momentum operator Ĵ into an external part L̂ and an internal part Ŝ, commonly referred to as

the orbital angular momentum and the spin, viz. ˆ = ˆ + ˆJ L S. The question for the right splitting
of the total angular momentum into an orbital part and a spin part is closely related to the quest

for the right relativistic position operator [25–27]. This becomes evident by writing ˆ = ˆ × ˆL r p
with the position operator r̂ and the kinematic momentum operator p̂, which is in the atomic

units as used in this paper, ˆ = −p i . Thus, different definitions of the spin operator Ŝ induce
different relativistic position operators, r̂.

Introducing the position vector r and the operator Σ Σ Σ Σˆ = ˆ ˆ ˆ( ), ,1 2 3

T
via

Σ α αˆ = − i (1)i j k

with i j k( , , ) being a cyclic permutation of (1, 2, 3) and the matrices αα α α =( ), ,1 2 3

T
obeying

the algebra

α αα α α δ= + =1, 2 , (2)i i k k i i k
2

,

the operator of the relativistic total angular momentum is given by Σˆ = × ˆ + ˆJ r p 2. Thus, the

most obvious way of splitting Ĵ is to define the orbital angular momentum operator ˆ = × ˆL r pP

and the spin operator Σˆ = ˆS 2P , which is a direct generalization of the orbital angular
momentum operator and the spin operator of the nonrelativistic Pauli theory. This naive

splitting, however, suffers from several problems, e.g. L̂P and ŜP do not commute with the free
Dirac Hamiltonian nor with the Dirac Hamiltonian for central potentials. Thus, in contrast to

classical and nonrelativistic quantum theory, the angular momenta L̂P and ŜP are not conserved.
This has consequences, e.g. for the labeling of the eigenstates of the hydrogen atom. In
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nonrelativistic theory, bound hydrogen states may be constructed as simultaneous eigenstates of
the Pauli–Coulomb Hamiltonian, the squared orbital angular momentum, the z-components of
the orbital angular momentum and the spin. In the Dirac theory, however, the squared total

angular momentum Ĵ
2
, the total angular momentum in the z-direction Ĵ3, and the so-called spin-

orbit operator K̂ (or the parity) are utilized [28, 29]. In particular, it is not possible to construct

simultaneous eigenstates of the Dirac–Coulomb Hamiltonian and some component of ŜP.

2. Relativistic spin operators

To overcome conceptual problems with the naive splitting of Ĵ into L̂P and ŜP, several
alternatives for a relativistic spin operator have been proposed. However, there is no single
commonly accepted relativistic spin operator, leading to the unsatisfactory situation that the
relativistic spin operator is not unambiguously defined. We will investigate the properties of

different popular definitions of the spin operator that result from different splittings of Ĵ with
the aim of finding means that allow us to identify the legitimate relativistic spin operator by
experimental methods.

Table 1 summarizes various proposals for a relativistic spin operator Ŝ. These operators are
often motivated by abstract group theoretical considerations rather than by experimental
evidence. For example, Wigner showed in his seminal work [54–56] that the spin degree of
freedom can be associated with irreducible representations of the sub-group of the
inhomogeneous Lorentz group that leaves the four-momentum invariant. We will denote

individual components of Ŝ by Ŝi with index ∈ }{i 1, 2, 3 . The spin operators are defined in

terms of the particleʼs rest mass m0, the speed of light c, the matrix β such that

β αβ βα= + =1, 0 , (3)i i
2

the free particle Dirac Hamiltonian

α βˆ = · ˆ +pH c m c , (4)0 0
2

and the operator

ˆ = + ˆ( )pp m c . (5)
0 0

2 2 2 1 2

In the nonrelativistic limit, i.e. when the plane wave expansion of a wave packet has only
components with momenta that are small compared to m c0 , the expectation values for all
operators in table 1 converge to the same value. Note that the nomenclature in table 1 is not
universally adopted in the literature and other authors may utilize different operator names.
Furthermore, the spin operators can be formulated by various different but algebraically
equivalent expressions. For example, the so-called Gürsey–Ryder operator in [46, 47] is
equivalent to the Chakrabarti operator of table 1.

One may conclude that an operator can not be considered as a relativistic spin operator if it
does not inherit the key properties of the nonrelativistic Pauli spin operator. In particular, we
demand the following features from a proper relativistic spin operator.

(i) It is required to commute with the free Dirac Hamiltonian.
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(ii) A spin operator must feature the two eigenvalues ±1 2 and it has to obey the angular
momentum algebra

εˆ ˆ = ˆ⎡⎣ ⎤⎦S S S, i (6)i j i j k k, ,

with εi j k, , denoting the Levi–Civita symbol.

The first property is required to ensure that the relativistic spin operator is a constant of
motion if forces are absent, such that spurious Zitterbewegung of the spin is prevented. The
second requirement is commonly regarded as the fundamental property of angular momentum

operators of spin-half particles [57]. The physical quantity that is represented by the operator Ŝ
should not depend on the orientation of the chosen coordinate system. This can be ensured by
fulfilling [57]

εˆ ˆ = ˆ⎡⎣ ⎤⎦J S S, i . (7)i j i j k k, ,

The angular momentum algebra (6) and the relation (7) determine the properties of the spin and
the orbital angular momentum as well as the relationship between them. As a consequence of

(7), the orbital angular momentum ˆ = ˆ − ˆL J S that is induced by a particular choice of the spin

obeys εˆ ˆ = ˆ⎡⎣ ⎤⎦J L L, ii j i j k k, , . Thus, L̂ is a physical vector operator, too. As L̂ represents an angular

momentum operator, it must obey the angular momentum algebra. Furthermore, we may say

that the total angular momentum Ĵ is split into an internal part Ŝ and an external part L̂ only if

internal and external angular momenta can be measured independently, i.e. Ŝ and L̂ commute.
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Table 1. Definitions and commutation properties of various relativistic spin operators.

ˆ ˆ⎡⎣ ⎤⎦SH ,0
ˆ ˆ⎡⎣ ⎤⎦S S,i j Eigenvalues

Operator name Definition = 0? ε= Ŝi i j k k, , ? = ± 1 2?

Pauli
[30–32] Σˆ = ˆS

1

2P

no yes yes

Foldy–
Wouthuysen
[33–37]

Σ
Σβ αˆ = ˆ +

ˆ
ˆ × −

ˆ × ˆ × ˆ

ˆ ˆ +
( )

( )
S p

p p

p p p m c

1

2

i

2 2
FW

0 0 0 0

yes yes yes

Czachor [38]
Σ Σβ

αˆ =
ˆ

ˆ +
ˆ

ˆ × +
ˆ · ˆ

ˆ
ˆS p

p
p

m c

p

m c

p p2

i

2 2Cz
0
2 2

0
2

0

0
2

0
2

yes no no

Frenkel
[39–41] Σ β αˆ = ˆ + ˆ ×S p

m c

1

2

i

2F
0

yes no no

Chakrabarti
[42–48] Σ

Σ
αˆ = ˆ + × ˆ +

ˆ × ˆ × ˆ

+ ˆ
( )

( )
S p

p p

m c m c m c p

1

2

i

2 2
Ch

0 0 0 0

no yes yes

Pryce
[47, 49–52] Σ Σβ βˆ = ˆ + ˆ · ˆ −

ˆ
ˆ( )S p
p

p
1

2

1

2
1Pr 2

yes yes yes

Fradkin–Good
[46, 53] Σ Σβ βˆ = ˆ + ˆ · ˆ

ˆ

ˆ
−

ˆ
ˆ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S p

p

p

H

cp

1

2

1

2FG
0

0
2

yes no yes



Both conditions are fulfilled if, and only if, the spin operator Ŝ satisfies the angular momentum
algebra (6) because the commutator relations

ε εˆ ˆ = ˆ + ˆ ˆ − ˆ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦L Lj L S S S, i , i , (8)i i j k k i j i j k k, , , ,

εˆ ˆ = ˆ − ˆ ˆ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦L S S S S, i , (9)i j i j k k i j, ,

follow from (7). All spin operators in table 1 fulfill (7). The Czachor spin operator ŜCz, the

Frenkel spin operator ŜF, and the Fradkin–Good operator ŜFG, are however, disqualified as
relativistic spin operators by violating the angular momentum algebra (6). Furthermore, the

Pauli spin operator ŜP and the Chakrabarti spin operator ŜCh do not commute with the free Dirac
Hamiltonian, ruling them out as meaningful relativistic spin operators. According to our criteria,

only the Foldy–Wouthuysen spin operator ŜFW and the Pryce spin operator ŜPr remain as
possible relativistic spin operators.

3. Electron spin of hydrogen-like ions

The question of which of the proposed relativistic spin operators (if any) in table 1 provides the
correct mathematical description of spin can be answered definitely only by comparing
theoretical predictions with experimental results. For this purpose, one needs a physical setup
that shows strong relativistic effects and is as simple as possible. Such a setup is provided by the
bound eigenstates of highly charged hydrogen-like ions, i.e. atomic systems with an atomic core
of Z protons and a single electronic charge. These ions can be produced at storage rings [58] or
by utilizing electron beam ion traps [59, 60] up to Z = 92 (hydrogen-like uranium). The
degenerate bound eigenstates of the corresponding Coulomb–Dirac Hamiltonian

ˆ = ˆ −
r

H H
Z

(10)C 0

are commonly expressed as simultaneous eigenstates ψ κn j m, , ,
of ĤC, Ĵ

2
, Ĵ3, and the so-called spin-

orbit operator Σβˆ = ˆ · × − +{ rK [ ( i ) 1)]} fulfilling the eigenequations [28, 29]

ψ ψˆ = =κ κH n j n( , ) 1, 2 ,... , (11)C n j m n j m, , , , , ,


ψ ψˆ = + = −κ κJ j j j n( 1) , ,..., , (12)
n j m n j m

2

, , , , , ,
1
2

3
2

1
2

ψ ψˆ = = − −κ κJ m m j j j, ( 1),..., , (13)
n j m n j m3 , , , , , ,

ψ κψ κˆ = = − − +κ κK j j, . (14)
n j m n j m, , , , , ,

1
2

1
2

The eigenenergies are given with αel denoting the fine structure constant by

α

α
= +

− − + − −

−⎡

⎣
⎢
⎢⎢

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⎤

⎦
⎥
⎥⎥

( )
( )

n j m c
Z

n j j Z
, 1

1 2 1 2
. (15)0

2 el
2 2

2

el
2 2

1 2
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In order to establish a close correspondence between the nonrelativistic Schrödinger–Pauli

theory and the relativistic Dirac theory, one may desire to find a splitting of Ĵ into a sum
ˆ = ˆ + ˆJ L S of commuting operators such that both L̂ and Ŝ (i) fulfill the angular momentum

algebra, and (ii) form a complete set of commuting operators that contains ĤC as well as Ŝ3 and/

or L̂3.
The latter property would ensure that all hydrogenic energy eigenstates are spin eigenstates

and/or orbital angular momentum eigenstates, too. Such hypothetical eigenstates would be
superpositions of ψ κn j m, , ,

of the same energy. Consequently, these superpositions are eigenstates

of Ĵ
2
, too, because the energy (15) depends on the principal quantum number n as well as the

quantum number j. Thus, any complete set of commuting operators for specifying hydrogenic

quantum states necessarily includes Ĵ
2
. As a consequence of the postulated angular momentum

algebra for L̂ and Ŝ, the operator Ĵ
2
commutes with L̂

2
as well as with Ŝ

2
, but with neither Ŝ3

nor L̂3 [61], excluding Ŝ3 and L̂3 from any complete set of commuting operators for specifying
relativistic hydrogenic eigenstates. In conclusion, hydrogenic energy eigenstates are generally
not eigenstates of any spin operator that fulfills the angular momentum algebra.

In momentum space, the relativistic spin operators introduced in table 1 are simple
matrices. Thus, by employing the momentum space representation of ψ κn j m, , ,

, spin expectation

values of the degenerate hydrogenic ground states ψ ψ=↑ 1,1 2,1 2,1
and ψ ψ=↓ − −1,1 2, 1 2, 1

can be

evaluated [62]. For simplicity, we measure spin along the z-direction for the remainder of this
section. The spin expectation value of a general superposition ψ η ψ η ψ= + ζ

↑ ↓cos( /2) sin( /2)ei of

the hydrogenic ground states ψ↑ and ψ↓ is given by

ψ ψ η ψ ψ η ψ ψ

η η ζ ψ ψ

ˆ = ˆ + ˆ

+ ˆ

↑ ↑ ↓ ↓

↑ ↓

S S S

S

cos
2

sin
2

2cos
2

sin
2

cos Re . (16)

3
2

3
2

3

3

For all spin operators introduced in table 1, the mixing term ψ ψˆ
↑ ↓SRe 3 vanishes and,

furthermore, ψ ψ ψ ψˆ = − ˆ >↑ ↑ ↓ ↓S S 03 3 . Thus, the expectation value (16) is maximal for

η = 0 and minimal for η π= , and the inequality

ψ ψ ψ ψ ψ ψˆ ⩽ ˆ ⩽ ˆ
↓ ↓ ↑ ↑S S S (17)3 3 3

holds for all hydrogenic ground states ψ.
For every proposed spin operator in table 1, we get different values for the upper and lower

bounds in (17). The spin expectation values ψ ψˆ
↑ ↑S3 and implicitly ψ ψˆ

↓ ↓S3 for the operators

of table 1 are displayed as a function of the atomic number Z in figure 1. None of the spin

operators in table 1 commute with ĤC. Thus, the expectation values ψ ψˆ
↑ ↑S3 and ψ ψˆ

↓ ↓S3

generally do not equal one of the eigenvalues of Ŝ3. For small atomic numbers ( <Z 20), all spin
operators yield about ±1 2. For larger Z, however, the expectation values differ significantly
from each other. In particular, spin expectation values differ from ±1 2 even for spin operators
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with eigenvalues ±1 2. This means that it is possible to discriminate between different
relativistic spin operator candidates. The magnitude of the spin expectation value decreases with
growing Z when the Pauli, the Fouldy–Wouthuysen, the Czachor, the Chakrabarti, or the
Fradkin–Good spin operator is applied. The Frenkel spin operator yields spin expectation values
with the modulus exceeding 1 2, which is due to the violation of the angular momentum
algebra. Only the Pryce operator yields a spin expectation of ±1 2 for all values of Z. In fact,
calculations show that all hydrogenic states ψ κn j m, , ,

with = ±m j are eigenstates of the Pryce

spin operator, but not those states with ≠ ±m j.

4. An experimental test for relativistic spin operators

Theoretical considerations have led to several proposals for a relativistic spin operator, as
illustrated in table 1. The identification of the correct relativistic spin operator, however,
demands an experimental test. The inequality (17) may serve as a basis for such an experimental
test. More precisely, the inequality (17) allows falsification of the hypothesis that the spin

measurement procedure is an experimental realization of some operator Ŝ, where Ŝ is one of the
operators in table 1. In this test, the electron of a highly charged hydrogen-like ion is prepared in
its ground state ψ↑ first, e.g. by exposing the ion to a strong magnetic field in the z-direction and

turning it off adiabatically. (Preparing a superposition of ψ↑ and ψ↓ will reduce the sensitivity of

the experimental test.) Afterwards, the spin will be measured along the z-direction, e.g. by a
Stern–Gerlach-like experiment, yielding the experimental expection value s. Comparing this
experimental value to each of the seven bounds shown in figure 1 will allow exclusion of some
of the proposed spin operators. The hypothesis that the spin measurement procedure is an

experimental realization of the operator Ŝ is compatible with the experimental result s if, and

only if, the inequality ψ ψ ψ ψˆ ⩽ ⩽ ˆ
↓ ↓ ↑ ↑S s S3 3 is fulfilled. Otherwise, this operator is
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Figure 1. The spin expectation values ψ ψˆ
↑ ↑S3 of various relativistic spin operators for

the hydrogenic ground state ψ↑ as a function of the atomic number Z measured in the

z-direction. The spin expectation values for ψ↓ follow by symmetry via

ψ ψ ψ ψˆ = − ˆ
↑ ↑ ↓ ↓S S3 3 .



excluded as a relativistic spin operator by experimental evidence. In particular, realizing full
spin-polarization, i.e. = ±s 1 2, eliminates all operators in table 1 except the Pryce operator.

5. Conclusions

We investigated the properties of various proposals for a relativistic spin operator. Only the
Fouldy–Wouthuysen operator and the Pryce operator fulfill the angular momentum algebra, and
are constants of motion in the absence of forces. While different theoretical considerations lead
to different spin operators, the definite relativistic spin operator has to be justified by
experimental evidence. The energy eigenstates of highly charged hydrogen-like ions, in
particular the ground states, can be utilized to exclude candidates for a relativistic spin operator
experimentally. The proposed spin operators predict different maximal degrees of spin
polarization. Only the Pryce spin operator allows for a complete polarization of spin in the
hydrogenic ground state.
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