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Abstract
The accurate evaluation of diagonal unitary operators is often the most resource-
intensive element of quantum algorithms such as real-space quantum simulation
and Grover search. Efficient circuits have been demonstrated in some cases but
generally require ancilla registers, which can dominate the qubit resources. In
this paper, we give a simple way to construct efficient circuits for diagonal
unitaries without ancillas, using a correspondence between Walsh functions and
a basis for diagonal operators. This correspondence reduces the problem of
constructing the minimal-depth circuit within a given error tolerance, for an

arbitrary diagonal unitary ˆe ( )if x in the x basis, to that of finding the minimal-
length Walsh-series approximation to the function f(x). We apply this approach
to the quantum simulation of the classical Eckart barrier problem of quantum
chemistry, demonstrating that high-fidelity quantum simulations can be achieved
with few qubits and low depth.
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Quantum computation within the circuit model relies on the ability to construct efficient
sequences of elementary quantum operations, or gates, that produce a faithful representation of
the unitary operators appearing in quantum algorithms. We consider the situation where the
unitary of interest is diagonal. Some important algorithms where this applies are quantum
simulation of quantum dynamics [1–4], quantum optimization [5], and Grover search [6]. For
example, optimization—finding the maximum of a function g(x)—can be reformulated as the

problem of finding the ground state of the diagonal Hamiltonian, ˆ = − ∑H g x x x( )
x

,

which requires implementing =− ˆ ˆe e ( )iHt itg x .
To implement an n-qubit diagonal unitary exactly on a quantum computer generally

requires −+2 3n 1 one- and two-qubit gates [7]. However, one is usually interested in circuits
that approximate the unitary to within some error tolerance, ε. In order to be of practical value,
such a circuit must be efficient—the number of one- and two-qubit gates should scale no worse

than ε( )( )/O npoly , 1 [8]. Efficient circuits for diagonal unitaries have been demonstrated, but

with the requirement of ancilla qubits. In the real-space quantum simulation algorithm [1, 2], for
example, studies indicate that ancilla registers often dominate the qubit resources [3, 9]. Due to
limitations in the coherence time and number of qubits in any future practical implementation of
quantum computing, it is desirable to decrease these resources as much as possible.

In this paper, we provide a constructive algorithm that significantly reduces the qubit
resources through the use of a correspondence between Walsh functions [10] and a basis for
diagonal operators. Our construction builds on earlier work that established a connection
between the Walsh–Hadamard transform and the circuit required to implement a diagonal

unitary [11, 12]. These authors showed that an n-qubit diagonal unitary ˆe ( )if x can be
implemented exactly using a circuit with −2 1n z-axis rotation operators with rotation angles
proportional to the discrete Walsh transform coefficients of f (x). The circuit depth3 was found
to be −+2 3n 1 [12]. In this analysis f (x) was a real-valued function of an n-bit string, taking 2n

discrete values.
Here, we are concerned with approximate implementation of diagonal unitaries, as

described above. In particular, we are interested in the important case where f(x) is a real-valued
function of a continuous variable x, rather than an n-bit string. We show that this can be
accomplished using circuits of a similar type to those in [11, 12]. By identifying elementary
operators whose eigenvalues in the x-basis are Walsh functions, we show that an arbitrary
diagonal unitary may be approximated efficiently on a finite register by using a Walsh–Fourier
series approximation for f(x). Since the Walsh basis is the only basis with this property, it
follows that it is the natural basis for representing arbitrary diagonal unitaries. In this paper, we
quantify the error resulting from such approximations, and describe how to do them optimally.

We first consider approximating f(x) with a partial Walsh–Fourier series containing 2k

terms, with ⩽k n, where n is the number of qubits. Since the bound on the error in this
approximation is inversely proportional to the number of terms [13], the resulting gate sequence
is efficient. Next, we address the problem of finding the shortest possible gate sequence that

approximates the diagonal unitary ˆe ( )if x with error ε. This problem reduces to finding the
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3 In this paper, we use the term circuit depth synonymously with the number of elementary gates. Generally the
two terms differ, circuit depth meaning the number of time steps. We do not consider the number of time steps here
since it differs from the gate count by at most a factor of two.



minimal-length Walsh series f x( )
s

satisfying ε− ⩽f x f x( ) ( )
s

. This is in general an integer

programming problem [14], but its solution can be found to a good approximation by throwing
away the coefficients of the Walsh–Fourier series for f that fall below a certain bound [13–15].
This can lead to a significant reduction in circuit depth beyond the partial series approximation.

As a simple yet practical demonstration of these ideas, we describe a 1D implementation of
the real-space quantum simulation algorithm for a single particle tunneling through an Eckart
barrier [16]. This problem is a benchmark in classical computational methods of quantum
chemistry for simulating quantum dynamics. This example illustrates that high-fidelity quantum
simulations without ancillas can be achieved with few qubits and low depth.

1. Walsh functions and operators

In this section we identify the mapping between Walsh functions and a basis for diagonal
operators. We begin with some definitions.

1.1. Walsh functions

The Paley-ordered Walsh functions are defined on the continuous interval ⩽ <x0 1 as [13]

= − ∑
=( )w x( ) 1 , (1)j

j x
i

n

i i
1

for integer = … ∞j 0, 1, 2, , . They form a complete and orthonormal set,

∫ δ=w x w x dx( ) ( )j l jl0

1
. This definition may be extended to the entire real line by periodic

repetition. Here j
i
is the ith bit in the binary expansion, = ∑ =

−j j 2( )
i

n

i
i

1
1 , and xi is the ith bit in

the dyadic expansion, = ∑ =
∞ /x x 2
i i

i
1

, where n is the index of the most significant non-zero bit of

j. In standard binary notation, therefore, we have = …−( )j j j j
n n 1 1

and = …x x x x( )n1 2 , where the

most significant bit is on the left.
The wj with indices that are powers of two, =j 2n, = … ∞n 1, , are square waves known

as Rademacher functions. The Rademacher function of order n is denoted = −( )R x( ) 1n

xn. The
first eight Walsh functions are plotted in figure 1. Rademacher functions are in red.

Like trigonometric functions, Walsh functions can be used as a basis for orthonormal
expansion. For discretely sampled functions this is accomplished by a discrete Walsh–Fourier
transform. For arbitrary n, let us discretize the interval [ )0, 1 into =N 2n points, = /x k Nk ,

= … −k N0, , 1. We define discrete Walsh functions as =w w x( )jk j k . In terms of the bits of j,

k, and x, we have

= − = −∑ ∑
= =( ) ( )w 1 1 , (2)jk

j k j x
i

n

i i
i

n

i i
1 1

where ki is the ith bit in the dyadic expansion, = ∑ =
−k k 2( )

i

n
i

n i
1

. The second equality shows that
the functional form is the same whether x is continuous or discrete, the only difference being the
number of bits in the expansion of x. This makes Walsh series useful for representing discretely
sampled continuous functions.
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The orthonormality and completeness properties in the discrete case are δ∑ ==
−

w w
N k

N
jk lk jl

1
0

1

and δ∑ ==
−

w w
N j

N
jk jl kl

1
0

1 , respectively. The discrete Walsh–Fourier transform aj of a function

=f f x( )
k k is

∑=
=

−

a
N

f w
1

, (3)j
k

N

k jk
0

1

∑=
=

−

f a w . (4)
k

j

N

j jk
0

1

To complete the analogy with Fourier series, we recall that orthonormal functions arise as
the irreducible representations of symmetry groups [17]. For trigonometric functions, the
relevant group is that of translations. For Walsh functions up to order 2n, it is the group ⊗n

2 ,
which is formed by a basis for diagonal operators on n qubits. These are the Walsh operators
introduced below.

1.2. Walsh operators

The state of an n-qubit register in a quantum computer is typically expressed as a superposition,

ψ = ∑ =
−

c k
k

N
k0

1 , of =N 2n states in the computational basis [6], defined as

= …k k k, , . (5)n1

Here = … −k N0, 1, , 1 is represented as an n-bit dyadic expansion, as above,

= ∑ =
−k k 2( )

i

n
i

n i
1

. The bits =k 0i or 1 denote the state of the ith qubit. A unitary operator

ˆ = ˆ
U eif that is diagonal in this basis is given in terms of its eigenvalues as ˆ =f k f k

k
.
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Figure 1. First eight Walsh functions, in Paley order. Rademacher functions are in red.



Functions f(x) of a continuous variable, ∈ [ )x L0, , may be represented in this way if they are
discretely sampled. Here we will assume a constant sampling interval, and define the sampling
(grid) points as = /x kL Nk , so that ≡f f x( )

k k . To simplify the discussion, we use units such

that L = 1 to restrict the variable xk to the interval [ )0, 1 where Walsh functions are defined. The

results for general L are obtained by replacing w(x) by ( )/w x L . We will also use the notation

k , xk , and x interchangably, dropping the subscript k on x when there is no loss of clarity.

Let Ẑi denote the Pauli Z operator acting on the ith qubit,

ˆ … = − …( )Z k k k k, , 1 , ,i n

k

n1 1
i . We define the Walsh operator of order j on n qubits as

ˆ = ⊗ ˆ = ˆ ⊗ ˆ ⊗ … ⊗ ˆ
= ( ) ( ) ( ) ( )w Z Z Z Z , (6)j i

n
i

j j j

n

j

1 1 2
i n1 2

where = …j 1, , 2n, and j
i
is the ith bit in the binary expansion, = ∑ =

−j j 2( )
i

n

i
i

1
1 . Powers of Ẑi

are defined as ˆ ≡ ˆ( )Z Zi i

1
and ˆ ≡ ˆ( )Z 1i

0
. The set of all Walsh operators = …j 1, , 2n forms

a basis for diagonal operators on n qubits, given by all possible tensor products of
single-qubit Pauli Z gates. Their eigenvalues in the computational basis x , ∈ [ )x 0, 1 ,

are Walsh functions with index j and independent variable x: ˆ = ⊗ ˆ == ( )w x Z kj i
n

i

j

1
i

∏ − … = == ( ) k k w k w x x1 , , ( )
i

n j k

n jk j1 1
i i . For the case of Rademacher functions, this

relationship was pointed out by Sornborger [18], who observed that the eigenvalue of a single

Pauli Z gate acting on the ith qubit in (5) is a binary-valued function of x with period −/1 2( )i 1 .

The locations of the Ẑ operators in ŵj correspond to the positions of the 1ʼs in the bit-

reversed binary string for j. For example, the Walsh operator with j = 6 on n = 3 qubits is

ˆ = ⊗ ˆ ⊗ ˆw Z Z16 , since j = 6 in binary is =( ) ( )j j j 110
3 2 1

. The gate representation of w6 is

shown in figure 2. The general Walsh operator requires O(n) gates for its implementation: a
single Z gate and up to n2 controlled NOTs.

Using (4), any diagonal operator on n qubits may be expanded as a sum of =N 2n Walsh

operators, ˆ = ∑ ˆ=
−

f a w
j

N
j j0

1 . Walsh operators commute. Therefore any diagonal unitary may be

written as a product of exponentials of Walsh operators,

∏ˆ = =ˆ

=

−
ˆU e e . (7)if

j

N
ia w

0

1

j j

New J. Phys. 16 (2014) 033040 J Welch et al

5

Figure 2. ˆ = ⊗ ⊗w Z Z16 .



Each term in the product, ˆ = ˆU ej
ia wj j, is of the form − ⊗ ˆθ( )( )i Zexp i i

j

2
j i , where θ = − a2j j.

Hence the circuit for Ûj is identical to that for ŵj, except the Z-gate is replaced by a Z-rotation,

−( )R a2z j , where θ ≡ θ−( )R e /
z

iZ 2. The circuit for Û is given by successively applying the circuits

for Ûj.

Figure 3 shows two equivalent ways of implementing one such term, specifically Û7. As
seen in this figure, the gate configuration is not unique. We adopt the convention in figure 3(b)
where the CNOTs are always targeted on the highest order qubit possible. Then a precise rule

for constructing the circuit for Ûj can be given in terms of the binary expansion of j: a rotation

gate, −( )R a2z j , is placed on the qubit corresponding to the most significant non-zero bit (MSB)

of j. Then CNOTs are placed on either side, targeted on the same qubit as the rotation gate, and
controlled on the qubits corresponding to the 1ʼs other than the MSB in the binary expansion of

j. This rule will be used in the next section to construct an optimal circuit for Û .
Equation (7) easily generalizes to more than one dimension. For a d-dimensional system

represented by d registers of n qubits each, the single Walsh operators will be replaced by tensor
products of up to d Walsh operators over the different registers. The exact number depends on
the number of variables in the function f. For applications to quantum simulation, this does not
significantly increase the gate complexity as interaction potentials are generally few-body.
Since products of Walsh operators are also Walsh operators, the expansions have the same form
as (7) with =N 2dn.

The utility of (7) is that it relates the circuit depth of Û to the number of coefficients in the
Walsh series for f. If some of these coefficients are zero or may be neglected, this leads to a

reduction in the circuit depth for implementing Û . We will examine such cases below, but first
we discuss methods to find optimal-depth circuits given a Walsh series for f, as well as to
calculate the circuit depth based on the number of non-zero coefficients aj.

2. Optimal circuit constructions

Implementing all −2 1n Walsh functions (ignoring ˆ = ⊕w I n
0 as it will only contribute a global

phase, and hence will not affect the final result of any algorithm), for the unitary in (7) by
concatenation of the individual circuits for each Paley-ordered Walsh operator gives an
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Figure 3. For n = 3 qubits, equivalent circuits for implementing the operator
ˆ = ⊗ ⊗( )( )U ia Z Z Zexp7 7 in (7). We use the compact notation ≡ −( )R R a2j z j . We

follow the convention in (b) where the CNOTs are always targeted on the highest order
qubit possible.



elementary gate count that scales as ( )O n2n . Each operator for a given ŵj will require −( )h2 1j

CNOTs where hj is the Hamming weight of index j, and one θ( )Rz gate. Therefore to implement

all −2 1n Walsh operators in the expansion would require

∑ − = − +
=

+( ) ( )n
k k n2 1 2 2 2 (8)( )

k

n
n n

2

1

CNOTs and −2 1n single qubit rotation gates, which gives + − =( ) ( )n O n1 2 1 2n n . For n = 3
qubits, the general circuit found in this way is shown in figure 4, with vertical dashed lines
separating the different Walsh operators. However, as Bullock and Markov have shown [7], this
circuit construction is not optimal. They find that it is possible to reduce the gate count to

−+2 3n 1 and prove that this is optimal within a factor of two. In this section, we show that
putting the Walsh operators in sequency order automatically produces the optimal circuit. In
addition, we describe how to calculate the gate count for an arbitrary number of Walsh
functions ′ <N N , where =N 2n. This gate count scales as ′( )O N .

We begin by recalling the relationship between the gate sequence for a Walsh operator ŵj

and the binary expansion of its index, j. This gate sequence is given by placing a rotation gate,

−( )R a2z j , on the qubit corresponding to the most significant bit of j, and CNOTs on either side

targeted on the same qubit and controlled on the qubits corresponding to the other non-zero bits
of j. Since two identical CNOTs (CNOTs with the same targets and controls) cancel, it follows
that the CNOTs between the rotation gates in adjacent Walsh operators are controlled on the
non-zero bits of the bitwise XOR between their indices. For example, given a circuit with ŵ6

followed by ŵ7, the bitwise XOR of their indices is ⊕ = ⊕ =( ) ( )6 7 110 111 001. Thus there

will be a single CNOT controlled on qubit 1, located between the −( )R a2z 6 and −( )R a2z 7 gates
on qubit 3. The target of this CNOT is qubit 3, the common MSB of the two Walsh function
indices.

In order to minimize the number of CNOTs between rotation gates in a circuit containing
all −2 1n Walsh operators, the operators must be ordered in such a way that adjacent indices
have the minimal number of binary transitions between them. Such an ordering is given by the
Gray code [19], where the number of binary transitions between adjacent indices is exactly one.
Walsh functions sorted in this way are called sequency ordered [19]. This is also the order of
increasing number of zero crossings. For consistency with the rest of the paper, we keep the
indices of Walsh functions and operators in Paley order, and do not relabel them in sequency
order. In addition, we partition the Walsh functions according to their common MSBs.
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Figure 4. Non-optimal circuit implementing the Paley-ordered Walsh operators ŵ1

through ŵ7. Dashed lines separate the sub circuits for each of the individual Walsh

functions. The rotation gates are ≡ −( )R R a2j z j .



For >i 1, the circuit for the ith partition, corresponding to MSB j
i
, contains −2( )i 1 rotation gates

and −2( )i 1 CNOTs, for a total of 2i gates. When i = 1, there is only a single rotation gate. For an n
qubit system the total number of gates is then + ∑ = −=

+1 2 2 3,
i

n i n
2

1 which is the optimal gate
count found by Bullock and Markov [7].

To illustrate the procedure, we give an example with n = 3 qubits. First we reorder the
binary strings corresponding to the indices j (except j = 0) in Gray code. This is given by

= ={ } { } { }j j j 001, 011, 010, 110, 111, 101, 100 1, 3, 2, 6, 7, 5, 4
3 2 1

. Next, this set is parti-

tioned into subsets with a common MSB: = ={ } { }G 001 11 , = ={ } { }G 011, 010 3, 22 ,

= ={ } { }G 110, 111, 101, 100 6, 7, 5, 43 . Each partition Gi corresponds to a set of operators
with rotation gates on, and CNOTs targeted on, qubit i. Finally, adjacent entries in each Gi are
XORʼed to give the qubits containing the controls of the CNOTs. Since the last entry of each
partition is always a single 1 in the ith place, this approach extends formally to the left-most
CNOT in the corresponding circuit by taking an XOR between the first and last element of Gi.
For example, the sub circuit corresponding to G3 is found by evaluating

⊕ =
⊕ =
⊕ =
⊕ =

100 110 010,
110 111 001,
111 101 010,
101 100 001. (9)

From top to bottom, this gives CNOTs controlled on qubits 2, 3, 2, and 3, respectively. These
go to the left of each rotation gate. In this way, we reduce the initial non-optimal circuit in
figure 4 to the optimal circuit in figure 5.

While this method can be used to generate the optimal circuit containing all
− = −N 1 2 1n Walsh functions, it is not optimal when applied directly to the case of

′ < −N N 1 Walsh functions, since adjacent elements in the sets Gi will now contain multiple
binary transitions. In this case, we can use the following commutation relations between
CNOTs to simplify the circuit further. Letting Cj

i denote a CNOT with control i and target j,

=C Z Z C , (10)j
i

i i j
i

=C C C C , (11)j
i

j
k

j
k

j
i
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Figure 5. Optimal circuit implementing all 7 Walsh operators on 3 qubits. The Walsh
operators are first reordered in sequency order (but keeping the Paley indices). Then all
but one CNOT in between adjacent rotation gates cancels. This circuit is equivalent to

the one in figure 4. The rotation gates are ≡ −( )R R a2j z j .



=C C C C , (12)k
i

j
i

j
i

k
i

=C C C C C . (13)j
i

k
j

k
j

k
i

j
i

The first equation states that a Z gate commutes with the control of any CNOT. The second and
third equations state that CNOTs with common targets but different controls, or common
controls but different targets, commute. The final equation describes the case when the target of
one CNOT is the control of another. Then commuting the two introduces an additional CNOT
that is controlled by same qubit as the first and targeted on the same qubit as the second:

ð14Þ

Using these rules, we find that in most cases the gate count for a circuit with ′ <N N Walsh
operators on = ( )n Nlog

2
qubits can be reduced to ′( )O N gates.

3. Efficient circuits for diagonal unitaries

In this section, we consider approximating f(x) with a partial Walsh–Fourier series. If n is fixed,

this leads to an efficient circuit for Û . Otherwise it gives the minimum n necessary to represent

Û within the given error, ε.

Following [6], we define the error in implementing the operator V̂ instead of Û as
ˆ ˆ ≡ ˆ − ˆ( )E U V U V, , where ψˆ ≡ ˆ

ψA Amax is the spectral norm of the operator Â. The

maximum is taken over all normalized wavefunctions ψ ψ ψ= = 1. Letting

ˆ =ε
ˆεU e ( )if x , it follows from these definitions that εˆ ˆ ⩽ε( )E U U, iff ε− ⩽ ∀εf x f x x( ) ( ) , .

As discussed in the introduction, the circuit ε̂U approximating the operator Û with error ε is

efficient if it can be implemented using ε( )( )/O npoly , 1 one- and two-qubit gates. Our

approach is to resample f at a rate ⩽2 2k n, with k the smallest integer possible resulting in a
sampling error ε ε⩽k . The resampled function may be written in terms of a 2k-term partial

Walsh–Fourier series as = ∑ =
−

f x a w x( ) ( )
k i i i0

2 1k

. (x can be discrete or continuous.) For a

continuously differentiable function f(x), the absolute error, ε = −f x f xsup ( ) ( )k x k
, satisfies

ε ⩽ ′ /f xsup ( ) 2k x

k [13, 14]. (This expression works for discrete x as well, by interpreting

′f x( ) as a finite difference.) Since the number of terms in the series f
k
is 2k, this implies that the

number of Walsh functions necessary to approximate f(x) with absolute error ε ε⩽k is ε( )/O 1 .

The number of gates in the corresponding unitary operator εU is −+2 3k 1 [7], which is also

New J. Phys. 16 (2014) 033040 J Welch et al
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ε( )/O 1 and is a constant independent of n as long as ⩽k n. This proves that the operator ˆe ( )if xk

is an efficient gate sequence for ˆe ( )if x for any ⩾n k.
Although efficient circuits for diagonal unitaries can be constructed using partial

Walsh–Fourier series, the circuit depth can often be reduced further by minimizing the number
of Walsh functions used in the series for f(x). To be precise, consider the problem of finding a

Walsh series f x( )
s

that satisfies ε− ⩽f x f x( ) ( )
s

with the smallest possible number of Walsh

coefficients. This is an integer programming problem, whose solution can be found numerically
given f(x) and ε. However, Yuen has shown that simply throwing away the terms of the
Walsh–Fourier series for f(x) below an appropriate bound gives close to optimal results [14].
This is a much simpler procedure, and we apply it in the example in the next section. The
solution gives the non-zero Walsh coefficients aj as well as the minimum number of grid points,

2n, needed to represent the resulting function. This information can then be combined with the
circuit optimization methods described in the previous section to obtain a minimal-depth and

minimal-width circuit for Û .

4. Quantum simulation example: eckart barrier

As a practical example of the ideas above, we analyze the quantum simulation of tunneling
through an Eckart barrier by numerically implementing the real-space algorithm of Wiesner and
Zalka [1, 2]. The Eckart barrier problem is a benchmark in classical computational methods of
quantum chemistry for simulating quantum dynamics and transition states of chemical
reactions. The solution to the scattering problem can be used for calculating chemical reaction
rates [3].

4.1. Real-space algorithm

We evaluate the time evolution of a quantum system,

ψ ψ= − ˆ ( )t e( ) 0 , (15)iHt

using the real-space, or first quantized, representation of the wavefunction in terms of position

eigenstates, ∫ψ ψ=t t dx x x( ) ( ) . For a d-dimensional system ( =d m3 for m

particles), = …x xx d1 , and ≡d d xx d . Each xi is discretized, and represented on the

quantum computer in the computational basis as in (5). Using d registers of n qubits each, the
basis states corresponding to a grid of 2dn points can be represented.

Equation (15) is evaluated using the first-order Trotter formula [1, 3, 20, 21]. Assuming a

time-independent Hamiltonian ˆ = ˆ + ˆ( ) ( )H K p V x , where ⎡⎣ ⎤⎦ˆ ˆ ≠K V, 0, the quantum algorithm

for evaluating (15) is

ψ ψ= ˆ ˆδ δ
δ† − ˆ − ˆ( ) ( )t F e F e( ) 0 , (16)

/
iK t iV t

t t
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where δ/t t is an integer called the Trotter number. The F̂ operators are quantum Fourier

transforms (QFTs) and are inserted to diagonalize the kinetic energy operators K̂ . The potential

energy V̂ is already diagonal in the position representation.

4.2. Error analysis

It is generally not possible to evaluate the diagonal unitary kinetic and potential propagators in
(16) exactly. At the very least, there will be sampling error in going from the continuous x to

the discrete xk representation. This contribution to the total error is in addition to the Trotter

error from splitting the propagator into non-commuting parts. Letting Û denote the operator
on the right-hand side of (16), the total simulation error satisfies

α δˆ ≡ ˆ − ⩽ +− ˆ − ˆ( )E U e U e t t E, iHt iHt
G, where EG denotes the gate error in evaluating the

kinetic and potential propagators, α δt t is the first order Trotter error, and ⎡⎣ ⎤⎦α = ˆ ˆV K, is a

problem-specific constant.
As we have seen, the gate error in evaluating a diagonal unitary is equal to the absolute

error in the exponent. For the potential energy propagator, approximating V(x) with a function

εV x( ) satisfying ε− ⩽εV x V xsup ( ) ( )
x

, results in an error εδ⩽δ δ− ˆ − ˆ
ε( )E e e t,iV t iV t . Letting

εV be the error in V(x) and εK be the error in K(p), the total gate error for the algorithm satisfies

ε ε⩽ +E t tG V K . The total error in evaluating Û therefore satisfies

α δ ε εˆ ⩽ + +− ˆ( )E U e t t t t, . (17)iHt
V K

Since the diagonal unitaries can be implemented efficiently, and the QFT requires npoly ( )

gates, the entire algorithm is efficient, and requires ε ε δ( )/ / /O n t tpoly ( ), 1 , 1 ,V K gates.

The parameters δt, εV , and εK may be varied to obtain the shortest gate sequence for the
simulation given a combined total error tolerance. Here, we only consider the problem of
finding the shortest gate sequence for a single Trotter step. This corresponds to finding the
shortest Walsh series for the approximate potential and kinetic energies given εV and εK .

4.3. Simulation

The Eckart barrier is defined as A a xsech ( ) [16], and is plotted in figure 6 for A = 1, a = 0.05.
Also shown is a plot of a 19-term Walsh series for this potential that is accurate to 10%. This
series was constructed by including a subset of coefficients from the full Walsh–Fourier series
starting from the largest, then the next largest, etc until the function was reproduced within the
required 10% accuracy. We used a 2n-term Walsh–Fourier transform with n = 13 to approximate
the infinite series. This introduces a discretization error of about 0.1%. The 19 largest
coefficients included in the approximate Walsh series are those with Paley indices: 1, 2, 4, 7, 8,
11, 13, 14, 16, 19, 21, 22, 25, 32, 35, 37, 38, 64, and 67. The smallest power of 2 that is greater
or equal to every index is =2 1287 , which means that 7 qubits are necessary to represent the
series.
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This approach gives the minimal set of Walsh–Fourier coefficients, and is usually very
close to the fully optimized solution found when the magnitudes of the coefficients are allowed
to vary [14]. We find that only 7 qubits are necessary to represent the potential to 10% accuracy,
with the given set of parameters. If >n 7, only the qubits corresponding to the seven most
significant digits in the register will be used. This illustrates the resource savings possible if n is
large. Although useful for illustrating the approach, the classical algorithm we described for
finding best subset of Walsh–Fourier coefficients to approximate a function is not efficient since
it requires first calculating a high-dimensional Walsh–Fourier transform. In fact it is not
necessary to do this. For a given k, efficient methods exist for finding the best k-term
Walsh–Fourier series approximation to a given function without calculating the entire transform
[22].

Had we opted to use a partial Walsh–Fourier series (keeping all 2n coefficients for some
integer n) to approximate the Eckart barrier, we would also find that ⩾n 7 is required to obtain
better than 10% accuracy. (The discretization error with n = 7 is 7.8%, and with n = 6 is15.6%.)
The efficient circuit produced in this way requires a total of − =2 3 1257 gates, of which

=2 646 are rotation gates. (The Eckart barrier is an even function. Therefore half the Walsh
coefficients are zero.) In contrast, the truncation described in the previous paragraph gives a
circuit with a total of approximately 50 gates, of which 19 are rotation gates. This is more than a
factor of two improvement.

We performed numerical simulations of equation (16) for the Eckart barrier with multiple
error tolerances on the potential. The wavefunction was initialized to a Gaussian wavepacket
traveling towards the barrier. Since there is a known polynomial-time algorithm for the kinetic

energy propagator, ˆe /ip 22

[23], we evaluated it with maximum resolution. The time-evolution of
the wavefunction is shown in figure 7. One can see from these figures that relatively few Walsh
functions are needed for an accurate simulation. Even the lowest fidelity simulation reproduces
the important features of the quantum scattering problem, including interference fringes.
(Although here the fringes are due to periodic boundary conditions and are not physical.)
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Figure 6. Eckart barrier, A a xsech ( ), with A = 1, a = 0.05. In blue is the exact
function and in green is a 19-term partial Walsh–Fourier series, which is accurate to
10%. The largest Paley index of these terms is 67. Therefore at least seven qubits are
needed to implement this approximation.



For the present example, (17) drastically overestimates the total error, since it is a bound
over all wavefunctions. To quantify the error in the simulation for the particular initial states
under consideration, we found it more convenient to use the fidelity, defined as

ψ ψ=F t t( ) ( )
0

, where ψ t( )
0

is the exact final wavefunction. The fidelity is related

to the simulation error defined previously as = −ψ ( )E Fsup 2 1 . As a proxy for ψ t( )
0

, we
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Figure 7. Plots of ψ x t( , )
2
for the Eckart barrier simulation with different error

tolerances on the potential. Time t is on the horizontal axis, consisting of a
total evolution time of 0.6 divided into 1000 time steps (which gives a negligible
Trotter error of less than 1% for the simulation parameters given below).
The vertical axis contains 2n grid points, with n different for each figure and
− ⩽ <x5 5. The initial state ψ ( )x, 0 is a Gaussian wave packet given by

⎡⎣ ⎤⎦ψ σ∝ − − + −{ }( ) /x x x i p x x, 0 exp ( ) 2 ( )0
2 2

0 0 in units such that  = =m 1.

The parameter values are = −x 30 , =p 15
0

, σ = 0.5. The Eckart barrier potential is
=V x A a x( ) sech ( ) with A = 100, a = 0.5. The number of qubits n, errors in the

potential and kinetic energies, number of Walsh functions nW , and fidelity of the final
state compared to a 10-qubit simulation with maximal resolution (1% discretization
error in the potential energy and 0.4% in the kinetic energy) are (a) n = 10, ε = 1%V ,
ε = 0.4%K , =n 512W (‘exact’), F = 1, (b) n = 8, ε = 5%V , ε = 1.6%K , =n 30W ,
F = 0.9794, (c) n = 7, ε = 10%V , ε = 3.1%K , =n 19W , F = 0.9105, and (d) n = 6,
ε = 15%V , ε = 6.25%K , =n 14W , F = 0.6507.



used a 10-qubit simulation with maximum possible resolution (including all Walsh operators)
and 1000 time steps. By numerically analyzing the scaling of the error with the number of time
steps, we found this number of time steps gives a Trotter error of less than 1%.

5. Conclusion

We showed that Walsh functions correspond to a basis for diagonal operators, and used this
Walsh operator basis to prove that efficient circuits can be constructed for diagonal unitaries.
We also described how the truncated Walsh–Fourier series for a function f(x) leads to an

approximately minimal-depth circuit for the diagonal unitary ˆe ( )if x given an error tolerance on f.
This circuit has a gate count that scales proportionally to the number of Walsh functions in the
series for f(x). We applied this approach to the quantum simulation of tunneling through an
Eckart barrier, demonstrating that high-fidelity quantum simulations without ancillas can be
achieved with few qubits and low depth.
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