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Abstract
We study the computational complexity of quantum discord (a measure of
quantum correlation beyond entanglement), and prove that computing quantum
discord is NP-complete. Therefore, quantum discord is computationally
intractable: the running time of any algorithm for computing quantum discord is
believed to grow exponentially with the dimension of the Hilbert space so that
computing quantum discord in a quantum system of moderate size is not pos-
sible in practice. As by-products, some entanglement measures (namely entan-
glement cost, entanglement of formation, relative entropy of entanglement,
squashed entanglement, classical squashed entanglement, conditional entangle-
ment of mutual information, and broadcast regularization of mutual information)
and constrained Holevo capacity are NP-hard/NP-complete to compute. These
complexity-theoretic results are directly applicable in common randomness
distillation, quantum state merging, entanglement distillation, superdense cod-
ing, and quantum teleportation; they may offer significant insights into quantum
information processing. Moreover, we prove the NP-completeness of two typical
problems: linear optimization over classical states and detecting classical states
in a convex set, providing evidence that working with classical states is gen-
erically computationally intractable.
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1. Introduction

Quite a few fundamental concepts in quantum mechanics do not have classical analogs:
uncertainty relations [6, 11, 45, 46, 72], quantum nonlocality [19, 29, 42, 70], etc. Quantum
entanglement [42, 70], defined based on the notion of local operations and classical
communication (LOCC), is the most prominent manifestation of quantum correlation. It is a
resource in quantum information processing, enabling tasks such as superdense coding [10],
quantum teleportation [8] and quantum state merging [39, 40]. Various entanglement measures
[42, 70] are reported to quantify entanglement. However, nontrivial quantum correlation also
exists in certain separable (not entangled) states. For instance, deterministic quantum
computation with one qubit (DQC1) [53] is a model of mixed-state quantum computation
with little entanglement. It is argued [23] that quantum discord [37, 66] (a measure of quantum
correlation beyond entanglement; see section 3 for its definition) is responsible for the quantum
speed-up over classical algorithms. Quantum discord is also a useful concept in common
randomness distillation [24], quantum state merging [15, 59, 60], entanglement distillation
[60, 77], superdense coding [60], quantum teleportation [60], etc, and has established quantum
discord (and related measures of quantum correlation) as an active research topic over the past
few years [63]. Nevertheless, computing quantum discord is difficult. Despite considerable
effort, few analytical results are known even for ‘simple’ and useful states (e.g. two-qubit X
states [5, 17, 27, 48, 49, 57, 73]). Generally, quantum discord can only be computed
numerically.

The notion of NP-completeness [20] is fundamental and remarkable in computational
complexity theory. NP-complete problems are the hardest in NP in the sense that an efficient
algorithm for any NP-complete problem implies efficient algorithms for all problems in NP, and
NP-hard problems are at least as hard as NP-complete problems. An NP-hard/NP-complete
problem is computationally intractable: the running time of any algorithm for the problem is
believed to grow exponentially with the input size. The NP-completeness of the separability
problem (detecting whether a given state is separable) was first proved in [33, 34]; see [30, 52]
for technical improvements. This may be the reason why a lot of effort is devoted to
entanglement criteria [28, 32, 41, 42, 44, 47, 67, 76], which are simple sufficient conditions for
entanglement. The classicality problem (detecting whether a given state has zero quantum
discord) can be solved in polynomial time [16, 21, 43], but the computational complexity of
quantum discord is not known.

Here we prove that computing quantum discord is NP-complete (theorem 2). Therefore,
the running time of any algorithm for computing quantum discord is believed to grow
exponentially with the dimension of the Hilbert space, so that computing quantum discord in a
quantum system of moderate size is not possible in practice. As by-products, some
entanglement measures (namely entanglement cost [9], entanglement of formation [9], relative
entropy of entanglement [81], squashed entanglement [18], classical squashed entanglement,
conditional entanglement of mutual information [86], and broadcast regularization of mutual
information [69]; theorem 1) and constrained Holevo capacity [75] (corollary 1) are NP-hard/
NP-complete to compute. As direct applications (one-way), distillable common randomness,
regularized one-way classical deficit, entanglement consumption in extended quantum state
merging, and minimum loss due to decoherence of the yield of a family of protocols are also
NP-hard/NP-complete to compute; such complexity-theoretic results may offer significant
insights into quantum information processing. Moreover, we prove the NP-completeness of the
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following two typical problems: linear optimization over classical states (proposition 1) and
detecting whether there are classical states in a given convex set (proposition 2). The former is
the simplest optimization problem over classical states, and the latter is just one step further than
the classicality problem. Conceptually, the NP-completeness of these two problems provides
evidence that working with classical states is generically computationally intractable. We
conclude with some interesting open problems and research directions.

2. NP-hardness/NP-completeness of computing entanglement measures

Let us briefly recall the definitions of some entanglement measures (see the review papers
[42, 70] for details). Entanglement cost ρE ( )C [9] is the minimum rate j k to convert j copies of

the two-qubit maximally entangled state ψ = +( 00 11 ) 2 to k copies of the bipartite
state ρ by LOCC with vanishing error in the asymptotic limit → + ∞j k, . Conversely,

distillable entanglement ρE ( )D [9] is the maximum rate j k to convert ρ⊗k to ψ〉⊗j by LOCC
with vanishing error in the asymptotic limit. Entanglement of formation [9] is defined as

∑ρ ρ=
ψ

E p S( ) inf ( ), (1)F AB p
i

i A

i

{ , }
i i

where the infimum is taken over all ensembles of pure states ψp{ , }
i i

satisfying

ρ ψ ψ= ∑ p
AB i i i i

, and

ρ ρ ρ= −S ( ) tr ( log ) (2)
A

i

A

i

A

i

is the von Neumann entropy of the reduced density matrix ρ ψ ψ= tr
A
i

B i i
or the

entanglement entropy of ψ
i
. The relative entropy of entanglement [81]

 
ρ ρ σ ρ ρ ρ σ= ∥ = −

σ σ∈ ∈
E S( ) inf ( ) inf tr ( log log ) (3)R

quantifies the distance from the state ρ to the set  of all separable states, where ρ σ∥S ( ) is the
quantum relative entropy. The regularized relative entropy of entanglement is given by

ρ ρ=∞

→+∞

⊗E E k( ) lim ( ) . (4)R
k

R
k

Squashed entanglement [18] is defined as

ρ ρ ρ ρ ρ= + − −
ρ

E S S S S( )
1
2

inf{ ( ) ( ) ( ) ( )}, (5)sq AB AC BC C ABC
ABC

where the infimum is taken over all states ρ
ABC

in an extended Hilbert space satisfying

ρ ρ= tr
AB C ABC

, and ρ ρ= tr
AC B ABC

, etc. Classical squashed entanglement ρE ( )sq
C

AB
is given by (5)

where the infimum is taken with the additional restriction that ρ
AB C

is quantum-classical (23)

across the cut AB C. Conditional entanglement of mutual information [86] is defined as

ρ ρ ρ= −
ρ ′ ′ ′ ′

′ ′

E I I( )
1
2

inf { ( ) ( )}, (6)I AB AA BB A B
AA BB
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where the infimum is taken over all states ρ ′ ′AA BB
satisfying ρ ρ= ′ ′ ′ ′tr

AB A B AA BB
, and

ρ ρ ρ ρ= + −′ ′ ′ ′ ′ ′I S S S( ) ( ) ( ) ( ) (7)
A B A B A B

is the quantum mutual information. A state ρ ⊗X k with = ⊗⊗
=X Xk

i
k

i1 is a k-copy broadcast state

of ρ
X
if ρ ρ= ⋯ ⋯− +

⊗tr
X X X X X X Xi i k

k
1 2 1 1

for any = …i k1, 2, , . Broadcast regularization of mutual

information [69] is given by

ρ ρ=
ρ

∞

→+∞ ⊗ ⊗
⊗ ⊗ /I I k( )

1
2

lim inf ( ) , (8)b AB k A B
A k B k

k k

where the infimum is taken over all k-copy broadcast states of ρ
AB
.

Lemma 1. (a) The definition (1) of EF remains the same if the number of states in the ensemble
is restricted to be less than or equal to m n2 2 [64, 78], where m × n is the dimension of the
bipartite state ρ

AB
.

(b) ρ ρ ρ= =∞
→+∞

⊗E E E k( ) ( ) lim ( )C F k F
k [36].

(c) ρ ρ⩾E E( ) ( )F R [80], ρ ρ⩾E E( ) ( )C sq [18], ρ ρ ρ ρ⩾ ⩾ ⩾∞E I E E( ) ( ) ( ) ( )sq
C

b I sq [69].

(d) ρ ρ σ⩾ ∥ − ∥σ
∞

∈E mn( ) inf (2 log 2)R 1
2 [68], ρ ρ σ⩾ ∥ − ∥σ∈E ( ) inf (2448 log 2)sq 2

2

[13, 62], where ∥ ∥ = †X X Xtr1 and ∥ ∥ = †X X Xtr2 are the trace norm and the Frobenius
norm, respectively.

Accounting for the finite precision of numerical computing, hereafter, every real number is
assumed to be represented by a polynomial number of bits, and the formulation of each
computational problem is approximate. Indeed, we will prove that the problems are
computationally intractable even if small errors are allowed. We begin by recalling the
following lemma.

Lemma 2 (NP-completeness of the separability problem). Given a bipartite quantum state ρ
of dimension m × n with the promise that either (Y) ρ ∈ or (N)  ρ σ δ∥ − ∥ ⩾σ∈inf 2 , it is
NP-complete to decide which is the case, where δ = 1 poly(m, n) is some inverse polynomial in
m n, .

Remark 1. The NP-completeness of the separability problem with δ = −O m nexp ( ( , )) is
proven in [52], and the NP-hardness of the separability problem with δ = 1 poly(m, n) is

proven in [30]. The separability problem can be solved in δO m nexp ( ((log )(log ) ))2 time (a
quasi-polynomial-time algorithm for δ = m n1 poly(log , log )) [14].

Theorem 1 (NP-hardness/NP-completeness of computing entanglement measures).
Given a bipartite quantum state ρ of dimension m × n and a real number a with the promise
that either (Y) ρ ⩽E a( )F or (N) ρ ε⩾ +E a( )F , it is NP-complete to decide which is the case,
where ε = 1 poly(m, n). In the same sense, computing ER is NP-complete and computing

∞ ∞E E E E E I, , , , ,C R sq sq
C

I b is NP-hard.
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Proof. Computing E E,F R is in NP: the certificates of the yes instances (Y) are the optimal

ensemble of pure states ψp{ , }
i i

and the closest separable state σ, respectively. The NP-

hardness of computing entanglement measures is totally expected, as computing entanglement
measures is more difficult than just detecting entanglement. Indeed, the hardness proof is a
reduction from lemma 2. Set a = 0 and ε δ= =mn(2448 log 2) 1 poly2 (m, n). (Y) If ρ is
separable, then

ρ ρ ρ ρ ρ ρ ρ ρ= = = = = = = =∞ ∞E E E E E E E I( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0. (9)C F R R sq sq
C

I b

(N) If  ρ σ δ∥ − ∥ ⩾σ∈inf 2 , then

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ⩾ ⩾ ⩾ ⩾ ⩾ ⩾ ⩾∞ ∞E E E E E E E I E E( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ) ( ), (10)F R R F C sq sq
C

b I sq





ρ ρ σ

ρ σ δ ε

⩾ ∥ − ∥

⩾ ∥ − ∥ ⩾ ⩾
σ

σ

∞

∈

∈

/

/ /

E mn

mn mn

( ) inf (2 log 2)

inf (2 log 2) (2 log 2) , (11)

R 1
2

2
2 2


ρ ρ σ δ ε⩾ ∥ − ∥ ⩾ ⩾

σ∈
/ /E ( ) inf (2448 log 2) (2448 log 2) . (12)sq 2

2 2

□

Remark 2. The computational problem in theorem 1 requires a guess of ρE ( )F as an input. This
formulation is reasonable: if there is an efficient subroutine for the problem, a binary search for

ρE ( )F can be done by calling the subroutine ε =O mn O m n(log (log ( ) )) (log , log ) times to
achieve the precision ε = 1 poly(m, n). The hardness proof does not apply to ED, as ρE ( )D can
be zero for an entangled state ρ. It is an open problem whether computing

∞ ∞E E E E E I, , , , ,C R sq sq
C

I b is in NP. For instance, it is not clear how large the dimension of ρ
ABC

should be so that the right-hand side of (5) is optimal (or sufficiently close to optimal).

3. NP-completeness of computing quantum discord

As a measure of quantum correlation (beyond entanglement), quantum discord [66]

ρ ρ ρ= −D B I J B( ) ( ) ( ) (13)
AB AB AB

is the difference between total correlation (quantified by quantum mutual information) and
classical correlation [37]

∑|ρ ρ ρ= −
Π

J B S p S( ) ( ) inf ( ), (14)
AB A

i
i A

i

{ }i

where Π{ }i is a measurement on the subsystem B; ρ Π=p tr ( )
i AB i is the probability of the ith

measurement outcome; and ρ ρ Π= ptr ( )
A
i

B AB i i
is the post-measurement state. The infimum is

taken over either all von Neumann measurements or all generalized measurements described by
positive-operator valued measures (POVM); the corresponding notations are J D,N N and J D,P P,
respectively. See [65] for an introduction to von Neumann measurements and POVM
measurements. The definitions of J D,P P remain the same if the number of operators in the

POVM is restricted to be less than or equal to n2, where n is the dimension of the subsystem B.
This is because the optimal POVM must be extremal [35], and an extremal POVM contains at
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most n2 operators [22]. Regularized classical correlation and quantum discord are given by

| | | | |ρ ρ ρ ρ ρ ρ= = − =∞

→+∞

⊗ ⊗ ∞ ∞

→+∞

⊗ ⊗( )/ /J B J B k D B I J B D B k( ) lim ( ) , ( ) ( ) ( ) lim . (15)
AB k AB

k k

AB AB AB k AB

k k

Theorem 2 (NP-completeness of computing quantum discord). Given a bipartite quantum
state ρ

AB
of dimension m × n and a real number b with the promise that either (Y) |ρ ⩽D B b( )P AB

or (N) |ρ ε⩾ +D B b( )P AB
, it is NP-complete to decide which is the case, where ε = 1 poly(m,

n). In the same sense, computing D J,N N P, is NP-complete and computing ∞ ∞D J,N P N P, , is NP-hard.

Proof. Computing DN P, is in NP: the certificates of (Y) are the optimal measurements Π{ }i on
the subsystem B. The hardness proof is basically a reduction from theorem 1 via the
Koashi–Winter relation [54] between EF and DP, and technically we derive a similar relation
between EF and DN (note that the Koashi–Winter relation is between EF and DP rather than
between EF and DN). Given a bipartite state ρ

AB
of dimension m × n, by diagonalizing ρ

AB
we

construct a tripartite pure state ΨABC of dimension × ×m n m n2 2 satisfying

ρ Ψ Ψ= tr
AB C ABC ABC (note that such a tripartite pure state of dimension × ×m n mn exists,
but a larger dimension of the subsystem C will be useful later). (i) A POVM measurement Π{ }i
on C produces an ensemble ρp{ , }

i i
satisfying ρ ρ= ∑ p

AB i i i
, where Ψ Ψ Π=p tr ( )

i ABC ABC i

and ρ Ψ Ψ Π= ptr ( )
i C ABC ABC i i

. (ii) For any ensemble ρp{ , }
i i

satisfying ρ ρ= ∑ p
AB i i i

, a

POVM measurement Π{ }i exists on C such that Ψ Ψ Π=p tr ( )
i ABC ABC i and

ρ Ψ Ψ Π= ptr ( )
i C ABC ABC i i

; moreover, such a von Neumann measurement on C exists if
the dimension of C is greater than or equal to the number of states in the ensemble [50] (this
condition is satisfied due to lemma 1(a)). As the definition (1) of EF remains the same if the
infimum is taken over all ensembles of possibly mixed states ρp{ , }

i i
satisfying ρ ρ= ∑ p

AB i i i
, the

relation

ρ ρ ρ ρ= + −E D C S S( ) ( ) ( ) ( ) (16)F AB N P BC A AB,

follows immediately from the definitions of EF and DN P, (note that in the present case =D DN P,
though generically ≠D DN P). Set ρ ρ= − +b a S S( ) ( )

A AB
. We complete the reduction from EF

to DN P, by taking ρ
BC

as the input to the computational problem in theorem 2. The regularized
relation

ρ ρ ρ ρ= + −∞E D C S S( ) ( ) ( ) ( ). (17)C AB N P BC A AB,

implies a reduction from EC to ∞DN P, . These reductions are polynomial-time reductions. □

4. NP-completeness of computing constrained Holevo capacity

A quantum channel Φ is a completely positive trace-preserving linear map [65] from states of
dimension ni to states of dimension no. The constrained Holevo capacity [75] is defined as
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∑χ ρ Φ ρ Φ ψ ψ= −Φ ψ〉
S p S( ) ( ( )) inf ( ( )), (18)

p
i

i i i{ , }
i i

where the infimum is taken over all ensembles of pure states ψp{ , }
i i

satisfying

ρ ψ ψ= ∑ p
i i i i

. The definition (18) of χ ρΦ ( ) remains the same if the number of states in

the ensemble is restricted to be less than or equal to ni
2 [65]. The regularized constrained Holevo

capacity is given by

χ ρ χ ρ=Φ Φ
∞

→+∞

⊗
⊗ /k( ) lim ( ) . (19)

k

k
k

The Holevo capacity χ χ ρ=Φ ρ Φsup ( ) is the maximum rate at which classical information can be

transmitted through the quantum channel Φ using product states as codewords [38, 74]. The
regularized Holevo capacity is given by

χ χ χ ρ= ≠Φ Φ
ρ

Φ
∞

→+∞

∞
⊗ /klim sup ( ). (20)

k
k

Corollary 1 (NP-completeness of computing constrained Holevo capacity). Given a
quantum channel Φ, a quantum state ρ of dimension ni, and a real number c with the promise
that either (Y) χ ρ ⩾Φ c( ) or (N) χ ρ ε⩽ −Φ c( ) , it is NP-complete to decide which is the case,

where ε = n n1 poly( , )i o . In the same sense, computing χ ρΦ
∞ ( ) is NP-hard.

Proof. Computing χ ρΦ ( ) is in NP: the certificate of (Y) is the optimal ensemble of pure states

ψp{ , }
i i

. The hardness proof is a reduction from theorem 1 via the relation [61, 75] between

EF and χ ρΦ ( ). Given a bipartite state σAB of dimension m × n, let U be a unitary embedding such
that σ ρ= U ( )AB for a state ρ of dimension σrank ( )AB . The quantum channel Φ is defined as
Φ ρ ρ′ = ′U( ) tr ( )B , where σ= =n O mnrank( ) ( )i AB and =n mo . Then

σ Φ ρ χ ρ= − ΦE S( ) ( ( )) ( ). (21)F AB

Set Φ ρ= −c S a( ( )) . We complete the reduction from σE ( )F AB to χ ρΦ ( ). The regularized
relation

σ Φ ρ χ ρ= − Φ
∞E S( ) ( ( )) ( ) (22)C AB

implies a reduction from σE ( )C AB to χ ρΦ
∞ ( ). These reductions are polynomial-time reductions. □

Lemma 3 (NP-completeness of computing Holevo capacity). Given a quantum channel Φ
and a real number c with the promise that either (Y) χ ⩾Φ c or (N) χ ε⩽ −Φ c , it is NP-

complete to decide which is the case, where ε = n n1 poly( , )i o .

Remark 3. This is one of the main results of [7], in which, however, the scaling of ε is not
discussed. Indeed, additional work is needed to establish the NP-completeness of computing χΦ

with ε = n n1 poly( , )i o . We are not going to present the complete proof here. The
computational complexity of χΦ

∞ remains an open problem. The set of all states of dimension
ni is convex, and χ ρ− Φ ( ) is a convex function as Φ ρS ( ( )) is concave and the infimum in (18) is
convex. Thus an alternative proof of the NP-hardness of computing χ ρΦ ( ) is a polynomial-time
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reduction from lemma 3 via convex optimization [12]; moreover, the NP-hardness of
computing EF can be proved1 based on lemma 3.

5. Applications

Common randomness is a resource in information theory and cryptography [3, 4]. One-way

distillable common randomness ρD B( )cr AB
is the maximum rate at which common randomness

can be extracted from the bipartite state ρ
AB

by local operations and one-way classical

communication in the asymptotic limit. It is equal to regularized classical correlation ρ∞J B( )P AB

[24], and also equal to regularized one-way classical deficit [25]. Thus Dcr and regularized one-
way classical deficit are NP-hard to compute.

In quantum state merging, Alice and Bob share a bipartite state, and the goal is to transfer
Aliceʼs part of the state to Bob by entanglement-assisted LOCC [39, 40]. The minimum amount
of entanglement that must be consumed in extended quantum state merging (a variant of
quantum state merging) is an operational interpretation of quantum discord [15], and thus NP-
complete to compute.

Quantum discord quantifies the effect of decoherence in a family of protocols. It is the
minimum difference between the yield of the fully quantum Slepian-Wolf (FQSW) protocol [1]
in the presence and absence of decoherence [60]. The same holds for all descendant protocols of
FQSW, where ‘yield’ refers to the amount of entanglement consumed in quantum state merging
[59], the amount of distilled entanglement in entanglement distillation [77], the amount of
classical information encoded in superdense coding, and the number of teleported qubits in
quantum teleportation (see [60] for details). Thus computing the minimum loss due to
decoherence of the yield of all aforementioned protocols is NP-complete.

6. Computational complexity of classical states

A bipartite state ρ
AB

is separable if it can be expressed as

∑ρ ψ ψ ψ ψ= ⊗p , (23)
AB

i
i i

A
i
A

i
B

i
B

where ψ ψ,
i
A

i
B are pure states in the subsystems A B, , respectively, and ⩾p 0

i
satisfies

∑ =p 1
i i

. ρ
AB

is quantum-classical if

∑ρ ρ Π= ⊗p , (24)
AB

i
i i

A
i
B

where ρ
i
Aʼs are normalized, possibly mixed states in A, and Π{ }i

B is a von Neumann

measurement on B. ρ
AB

is quantum-classical if and only if ρ =D B( ) 0
AB

[66] (note that

ρ =D ( ) 0N AB
if and only if ρ =D ( ) 0P AB

). ρ
AB

is classical–classical if
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∑ρ Π Π= ⊗p , (25)
AB

i j
ij i

A
j
B

,

where ⩾p 0
ij

satisfies ∑ =p 1
i j ij,

.

Lemma 4 (NP-completeness of linear optimization over separable states [52]). Given an
operator O on a bipartite Hilbert space of dimension m × n and a real number d with the
promise that either (Y)  ρ ⩾ρ ∈ O dmax tr ( )

ABAB
or (N)  ρ ϵ⩽ −ρ ∈ O dmax tr ( )

ABAB
, it is NP-

complete to decide which is the case, where ϵ = m n1 poly( , ).

Let  () be the set of all quantum-classical (classical–classical) states.

Proposition 1 (NP-completeness of linear optimization over classical states). Given an
operator O on a bipartite Hilbert space of dimension m × n and a real number d with the
promise that either (Y)  ρ ⩾ρ ∈ O dmax tr ( )

ABAB
or (N)  ρ ϵ⩽ −ρ ∈ O dmax tr ( )

ABAB
, it is NP-

complete to decide which is the case, where ϵ = m n1 poly( , ). The same holds for linear
optimization over .
Proof. Linear optimization over  is in NP: the certificate of (Y) is the optimal state ρ

AB
.

  ⊆ ⊆ implies

  
ρ ρ ρ⩽ ⩽

ρ ρ ρ∈ ∈ ∈
O O Omax tr ( ) max tr ( ) max tr ( ). (26)

AB AB AB
AB AB AB

For any separable state σ ψ ψ ψ ψ= ∑ ⊗pAB i i i
A

i
A

i
B

i
B ,

 ∑ ∑σ ψ ψ ψ ψ ρ ρ= ⊗ ⩽ =
ρ ρ∈ ∈

O p O p O Otr ( ) tr ( ) max tr ( ) max tr ( ), (27)AB

i
i i

A

i

A

i

B

i

B

i
i AB AB

AB AB

as ψ ψ ψ ψ⊗ ∈
i
A

i
A

i
B

i
B and ∑ =p 1

i i
[71]. Thus,

  
ρ ρ ρ= =

ρ ρ ρ∈ ∈ ∈
O O Omax tr ( ) max tr ( ) max tr ( ). (28)

AB AB AB
AB AB AB

□

Lemma 5 [26, 55]. A bipartite quantum state ρ
AB

is separable if and only if there exists a state
ρ ∈′ ′AA BB

in an extended Hilbert space such that ρ ρ= ′ ′ ′ ′tr
AB A B AA BB

, or if and only if a state

ρ ∈′A BB
exists such that ρ ρ= ′ ′tr

AB B ABB
.

Remark 4. The definition (23) of separability remains the same if the number of terms in the
summation is restricted to be less than or equal to m n2 2 [41], where m × n is the dimension of
the bipartite state ρ

AB
. By slightly modifying the original proofs in [26, 55], the dimensions of

ρ ′ ′AA BB
and ρ ′A BB

can be required to be ×m n m n3 2 2 3 and ×m m n2 3, respectively.

Proposition 2 (NP-completeness of detecting classical states in a convex set). Given a
convex set K of bipartite quantum states (K is given by a polynomial-time algorithm outputting
whether a state is in K) with the promise that either (Y) ∩ ≠ ∅K or (N)

 ρ σ δ∥ − ∥ ⩾ρ σ∈ ∈inf K , 1 , it is NP-complete to decide which is the case, where

δ = m n1 poly( , ). The same holds for detecting quantum-classical states in K.
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Proof. Detecting classical–classical states in K is in NP: the certificate of (Y) is an element in
∩ ≠ ∅K . The hardness proof is a polynomial-time reduction from lemma 2. Given a

bipartite state ρ
AB
, define the convex set

ρ ρ ρ= =′ ′ ′ ′ ′ ′K { tr }. (29)
AA BB AB A B AA BB

(Y) If ρ
AB

is separable, then ∩ ≠ ∅K . (N) If  ρ σ δ∥ − ∥ ⩾σ ∈inf
AB AB 2AB

, then for any

ρ ∈′ ′ K
AA BB

and σ ∈′ ′AA BB ,

ρ σ ρ σ ρ σ ρ σ δ∥ − ∥ ⩾ ∥ − ∥ = ∥ − ∥ ⩾ ∥ − ∥ ⩾′ ′ ′ ′ ′ ′ ′ ′ ′ ′tr ( ) , (30)
AA BB AA BB A B AA BB AA BB AB AB AB AB1 1 1 2

as ∥ · ∥1 is non-increasing under partial trace [56] and σ σ= ′ ′ ′ ′trAB A B AA BB is separable. The NP-
completeness of detecting quantum-classical states in K can be proved analogously. □

7. Conclusion and outlook

We have proved that computing quantum discord is NP-complete. Therefore, the running time
of any algorithm for computing quantum discord is believed to grow exponentially with the
dimension of the Hilbert space so that computing quantum discord in a quantum system of
moderate size is not possible in practice. As by-products, some entanglement measures and
constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic
results are directly applicable in quantum information processing, and may offer significant
insights. Moreover, we have proved the NP-completeness of two typical problems related to
classical states, providing evidence that working with classical states is generically
computationally intractable.

The NP-completeness of computing quantum discord raises some interesting open
problems. Is there an efficient approximation algorithm for computing quantum discord up to a
moderate (e.g. constant additive) error? Can quantum discord be efficiently computed for
certain important classes of states? What is the computational complexity of other measures of
quantum correlation beyond entanglement (e.g. geometric quantum discord [21, 58], quantum
deficit)? The computational complexity of quantum correlation in continuous-variable systems
is a new research direction. In particular, Gaussian states are of great theoretical and
experimental interest [82, 83]. The separability problem for multimode bipartite Gaussian states
[84] can be formulated as a semidefinite program [51] and solved efficiently in theory and
practice [79] (the analog of lemma 2 for Gaussian states is false). What is the computational
complexity of Gaussian entanglement of formation [85] and Gaussian quantum discord [2, 31]?
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