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Abstract
We show that Kitaevʼs construction of Feynmanʼs clock, in which the time-
evolution of a closed quantum system is encoded as a ground state problem, can
be extended to open quantum systems. In our formalism, the ground states of an
ensemble of non-Hermitian Kitaev–Feynman clock Hamiltonians yield sto-
chastic trajectories, which unravel the evolution of a Lindblad master equation.
In this way, one can use the Kitaev–Feynman clock not only to simulate the
evolution of a quantum system, but also its interaction with an environment such
as a heat bath or measuring apparatus. A simple numerical example of a two-
level atom undergoing spontaneous emission is presented and analyzed.

Keywords: mathematical physics, quantum computation, open quantum systems

1. Introduction

The notion that quantum computers can efficiently simulate the time-evolution of other
quantum systems was originally pioneered by Feynman [1–3] and has since spurred a plethora
of experimental and theoretical work in the field of quantum computation and simulation.
Feynman and later Kitaev [4] envisioned a quantum simulator, in which the simulated system is
entangled with a clock particle and the entire history of the simulation is encoded as the ground
state of a Hamiltonian. This construction, which we refer to as the ‘Kitaev–Feynman clock’ is
particularly appealing, since it enables simulation of time-dependent quantum mechanics on a
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quantum computer using a time-independent setup [5, 6, 10]. The Kitaev–Feynman clock has
also been an important tool in proving theorems, such as the equivalence of the adiabatic and
gate models of quantum computation [6].

The Kitaev–Feynman clock in itʼs original formulation is restricted to isolated quantum
systems evolving unitarily. However, many quantum systems of interest in chemistry and
physics are not isolated, but undergo energy exchange and decoherence due to interaction with
a thermal environment or measuring apparatus. Examples include energy transfer in
photosynthetic and excitonic complexes [11], condensed phase spectroscopy and cavity
quantum electrodynamics to name a few. In all these systems, there still exists sufficient
quantum coherence that one expects quantum mechanics to be important, but interactions with
the environment are certainly not negligible. Several important studies have explored the
possibility of using an open quantum system to simulate the evolution of another open quantum
system [7–9].

In the present manuscript, we will present a construction analogous to the Kitaev–
Feynman clock, but which unlike the original construction is applicable to open quantum
systems. This construction is useful for a number of reasons. First, by mapping the open-system
dynamics onto a ground state problem, it becomes time-independent and variational. This can
be used to develop computational methods, which simulate open quantum systems on classical
computers. This use of the Kitaev–Feynman clock for closed quantum systems was presented in
[5]. Second, it is a useful tool for proving theorems about quantum computation, when the
dynamics are no longer assumed to be unitary [8]. In this way, many of the proofs that use the
Kitaev–Feynman clock for unitary evolution might be extendable to open quantum systems.
Third, as large-scale quantum computing devices are experimentally realized, it may be possible
to build a Kitaev–Feynman clock as a quantum simulator. In fact, this is what Feynman
originally had imagined. For many realistic applications, a Kitaev–Feynman clock would need
to be able to not only simulate a quantum system, but also its interaction with an environment.

The manuscript is organized as follows. In section 2, we review the Kitaev–Feynman clock
for unitary evolution and also the stochastic unraveling of the Lindblad master equation.
Section 3 presents the formal theory behind the Kitaev–Feynman clock for the Lindblad master
equation. In section 4, the formal theory is demonstrated with a numerical study of a two-level
atom undergoing spontaneous emission. Section 5 provides a conclusion by discussing
experimental implementations and extensions of the theory to non-Markovian systems. We
have set = 1 throughout, unless specified otherwise.

2. Background

Our goal in section 3 will be to construct an ensemble of Kitaev–Feynman clock Hamiltonians,
which will have as their ground states the stochastic trajectories that unravel a Lindblad master
equation. As a prelude, in this section we will separately review the Kitaev–Feynman clock for
unitary evolution and the stochastic Schrodinger equation (SSE) method of evolving the
Lindblad equation.

2.1. The Kitaev–Feynman clock

Feynmanʼs original clock construction assumes an ideal quantum simulator, which simulates
another system described by a wave function evolving under the time-dependent Schrödinger
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equation, ψ ψ〉 = 〉∂
∂ t H ti | ( ) ˆ | ( )
t

, whose solution is ψ ψ〉 = 〉−t| ( ) e | (0)Hti ˆ , given an initial state
ψ 〉| (0) . The entire simulation is then encoded as a superposition in a ‘history state’

η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |t

T t t
T

0 , where 〉t| denotes the state of an auxiliary quantum system

known as the ‘clock,’ used to keep track of the evolution over the time of the simulation from
t = 0 to t = T. The clock can be any quantum degree of freedom, discrete or continuous, that can
be coupled with the system we wish to simulate. By performing a projective measurement of the
clock at a specific time of interest t, the history state collapses to the wave function at that time,
ψ 〉t| ( ) .

In the construction of Kitaev [4], η〉| can be encoded as the ground state of the Hamiltonian

∑ δ δ

δ δ ψ ψ

= − ⊗ + − ⊗ + +

+ + + + − ⊗

δ

=

−

 U t t t U t t t t t

t t t t (1 (0) (0) ) 0 0 , (1)
t

T t

0

†

where = δ−U e H ti ˆ and δt is the time-step which represents the distance between sites of the
clock, assumed to be discrete. The first four terms in equation (1) ensure the history state
encodes the correct time evolution, while the last term enforces the correct initial state. It can be
readily verified that η〉 = | 0 and because  is positive semidefinite, η〉| is the unique ground
state of  with eigenvalue 0. In general, while the ground state encodes the history state,
excited states of the Kitaev–Feynman clock do not have an obvious physical interpretation.

2.2. Stochastic unraveling of the Lindblad master equation

We wish to use a Kitaev–Feynman clock construction to simulate an open quantum system,
described by a density matrix evolving under the widely used Markovian Lindblad master
equation [15]

∑ ∑ρ ρ ρ ρ ρ= − + +⎡⎣ ⎤⎦ ( )H C C C C C C
d
dt

ˆ i ˆ , ˆ 1
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (2)s s s

m

m m s s m m
m

m s m
† † †

Here, ρ̂s is the density matrix of the system, Ĥs is the system Hamiltonian, Ĉm and Ĉm
†
describe

interactions of the system with its environment. Because equation (2) describes the evolution of
a mixed-state density matrix and not a pure-state wave function, a straightforward
generalization of the Kitaev–Feynman clock (equation (1)) is not possible. However, the
SSE procedure deals directly with wave functions and therefore serves as an ideal starting point
for extending the Kitaev–Feynman clock to open quantum systems [12–14].

The SSE simulates a set of m individual realizations of the open quantum system, whose
wave functions ψ 〉t{| ( ) }i yield the ensemble averaged density matrix in equation (2) by
averaging over stochastic trajectories according to

∑ρ ψ ψ=
=

t
m

t tˆ ( )
1

( ) ( ) . (3)s
i

m
i i

1

It can be shown that in the limit → ∞m , equation (3) converges to the exact density matrix
[14]. Each realization can be thought of as simulating a single experiment on an individual
member of the ensemble, such as a single-molecule fluorescence measurement or single-atom–

photon detection experiment. The actual number of SSE trajectories required to yield a good
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approximation in equation (3) depends on the particular system and the type of operators whose
expectation values one wishes to calculate. For local operators, which depend for instance on
only a single atom in a large sample, one must have ≫m n, where n is the size of the atomʼs
Hilbert space. For global operators such as the average kinetic energy of an entire sample of
atoms, one must have ≫m 1. Therefore, the SSE becomes optimal for calculating global
properties of many-body systems [12]. For a detailed discussion of the convergence properties
of the SSE with rigorous bounds, we refer the reader to section 7 of [12].

In the SSE, the set of wave functions ψ 〉t{| ( ) }i are simulated as follows. At time t, one
evolves with a non-Hermitian Hamiltonian to δ+t t according to

∑ψ δ δ
ψ

δ
+ = − −

−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t t H t C C

t

p t
( ) 1 i ˆ 1

2
ˆ ˆ

( )

1 ( )
, (4)i

s

m
m m

i
†

with probability δ− p t1 ( ), where δ δ= ∑p t p t( ) ( )m m and δ δ ψ ψ= 〈 〉p t t t C C t( ) ( )| ˆ ˆ | ( )m
i

m m
i†

. On
the other hand, with probability δp t( ), one instead collapses the wave function to the state

ψ δ
ψ

δ δ
+ =t t

C t

p t t
( )

ˆ ( )

( )
, (5)i

m
i

m

chosen from among the bath operators Ĉm with probability δp t( )m . δp t( ) is typically small, so
the majority of the time the system evolves freely without interaction with the environment. The
Hamiltonian is non-Hermitian, because by learning that the system has not interacted with the
environment, we have gained information, i.e. indirectly measured the system. Occasionally,
with a small probability δp t( ), the system interacts with its environment causing wave function
collapse.

3. The stochastic Kitaev–Feynman clock—formal theory

In this section we develop a formalism where history states are constructed, which correspond
to the non-deterministic evolution of the stochastic trajectories discussed in section 2.2. Each
history state is encoded as the ground state of a non-Hermitian Hamiltonian, chosen
probabilistically to enforce the correct stochastic jump probabilities. By ensemble averaging
these history states, one can recover the entire history of the density matrix in equation (2).
Before including stochastic jumps, however, we will begin with a deterministic, but non-
Hermitian clock describing the free evolution in equation (4).

3.1. The non-Hermitian Kitaev–Feynman clock

Our goal is to construct a history state, η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |t

T t t
T

0 , where ψ 〉t| ( ) is identical

to the evolution described by equation (4). Such a history state would encode the non-Hermitian
evolution of an open system on the interval [0, T], when no stochastic jumps are generated. For
an atom–photon experiment for example, η〉| encodes the history of an atom, which is observed
to evolve freely with no photons emitted. This history state is explicitly given by
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∑η δ
δ δ

ψ=
+ −

⊗
=

( )t

T t

R

p t
t

ˆ

1 ( )
(0) , (6)

t

T
t

0

where δ δ= − − ∑R H t t C Cˆ 1 i ˆ ˆ ˆ
s m m m

1

2

†
, up to corrections of order δt2. This is equivalent to

keeping only the first-order term in a Suzuki–Trotter expansion [16, 17]. In order to construct a
Kitaev–Feynman clock, we need to write this history state as the ground state of a Hamiltonian.
It can be readily verified that the history state in equation (6) satisfies η〉 = | 0 where

∑ δ δ

δ δ ψ ψ

= − + − + +

+ + + + − ⊗

δ

=

−
− R t t t R t t t t t

t t t t

ˆ ˆ

(1 (0) (0) ) 0 0 , (7)
t

T t

0

1

and δ δ= + + ∑−
R H t t C Cˆ 1 i ˆ ˆ ˆ

s m m m
1 1

2

†
. The Hamiltonian in equation (7) is non-Hermitian, so it

is not immediately obvious that η〉| is the ground state or if this even has any meaning if the
spectrum were complex. However, in the appendix we show that  has a complete, non-
degenerate and real spectrum of positive eigenvalues. Therefore, η〉| is in fact the ground state
and we have succeeded in constructing a Kitaev–Feynman clock, which encodes the free
evolution of an open system when no jumps occur.

3.2. The stochastic Kitaev–Feynman clock

So far we have constructed a non-Hermitian Kitaev–Feynman clock describing the free SSE
evolution, without stochastic jumps. We now show that it is possible to generate an ensemble of
history states η 〉{| }i where

∑η δ
δ

ψ=
+

⊗
=

t

T t
t t( ) , (8)i

t

T
i

0

is the history state of the ith stochastic trajectory and the set ψ 〉t{| ( ) }i are identical to those
obtained from the SSE procedure in equations (4) and (5). This is done by choosing an
ensemble of stochastic Kitaev–Feynman clock Hamiltonians { }i according to the following
procedure. For each i, write  i as a sum of local terms according to,

∑ δ ψ ψ= + + − ⊗
δ

=

−

 h t t( ) (1 (0) (0) ) 0 0 . (9)i

t

T t
i

0

Then for each value of t one chooses these terms to be

δ δ
δ δ

δ δ

δ δ
δ

δ δ

δ δ

+ = − −
− +

+

− − +
−

+

+ + + +

−

h t t
p t

p t t
R t t t t

p t t

p t
R t t t t

t t t t t t

( )
1 ( )

1 ( )
ˆ ( )

1 ( )

1 ( )
ˆ ( )

, (10)

i
i

i

i

i

1

with probability − p t1 ( )i , where δ δ ψ ψ= ∑ 〈 〉p t t t C C t( ) ( )| ˆ ˆ | ( )i
m

i
m m

i†
. On the other hand, with

probability p t( )i one instead chooses
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δ δ
δ

ψ ψ δ δ+ = − ⊗ + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h t t

t

p
C t t C t t t t( ) 1 ˆ ( ) ( ) ˆ , (11)i

m
i m

i i
m
†

from among the various bath operators Ĉm
†
with probability δ δ ψ ψ= 〈 〉p t t C C t( )| ˆ ˆ | ( )m

i i
m m

i†
. The

terms in equation (10) force the ground state to have free evolution at the specified times, while
the terms in equation (11) force the ground state to have the appropriate collapsed wave
function corresponding to a jump. For a given Hamiltonian  i generated in this way, it can be

verified by direct substitution that the state η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |i t

T t t
T i

0 satisfies

η 〉 = | 0,i i provided the states ψ 〉t| ( )i are generated from the SSE with the same realization
of jumps. The set of history states, η 〉{| }i , encode the entire evolution of individual trajectories
and can be used to compute ensemble averages. The density matrix of equation (2) can be
obtained by making projective measurements of the clock and then ensemble averaging these
measurements according to

∑ ∑ρ η η ψ ψ= =
= =

⎡⎣ ⎤⎦t
m

Tr t t
m

t tˆ ( )
1 1

( ) ( ) . (12)s
i

m
i i

i

m
i i

1 1

We see that the Hamiltonian in equation (9) is a nonlinear functional of the state η 〉| i . This
nonlinearity enters in two ways. First, there is an implicit nonlinearity, because the choice of
terms in the Hamiltonian is determined probabilistically from the state η 〉| i . Second, there is an
explicit dependence on η 〉| i appearing in the terms in equations (10) and (11). In the appendix,
we show that despite this nonlinearity, the spectrum of each  i is strictly real and there exists a
corresponding η 〉| i that is the ground state with eigenvalue 0. Because finding the spectrum of
the stochastic Kitaev–Feynman clock is a nonlinear eigenvalue problem, it needs to be solved
self-consistently to obtain an exact solution. However, in the next section we consider a
perturbative expansion, which yields a valid approximation when the system–bath interaction
is weak.

3.3. Perturbative expansion of the stochastic Kitaev–Feynman clock

As discussed in the previous section, the exact stochastic history states are solutions to a
nonlinear eigenvalue problem, which must be solved self-consistently. However, it is often the
case that the environment interacts only weakly with the system. In these situations, one expects
that a majority of terms in the Hamiltonian will be of the form in equation (10) describing free
evolution. Only occasionally does a jump occur, with a term of the form in equation (11)
appearing. We can therefore linearize the stochastic Kitaev–Feynman clock and develop a
perturbative expansion about the free evolution.

One first solves the linear eigenvalue problem for the non-Hermitian Hamiltonian in
equation (7), and obtains the history state in equation (6), which describes free evolution when
no jumps occur. We denote this state η 〉| 0 , which serves as the zeroth-order history state in our
perturbative expansion. From η 〉| 0 , the set of jump probabilities
δ δ δ δ δ δ δ… −p p t p t p T t{ (0)}, { ( )}, { (2 )}, { ( )}m m m m for all bath operators m at each time-step
are generated as follows. First, the initial set of jump probabilities δp{ (0)}m are obtained with a
projective measurement of the clock particle at t = 0 and simultaneous measurement of the bath

operator C Cˆ ˆ
m m
†

according to δ δ η η δ ψ ψ= 〈 ⊗ 〉〈 〉 = 〈 〉p t C C t C C(0) |( ˆ ˆ |0 0|) | (0)| ˆ ˆ | (0)m m m m m0
†

0
†

.
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The remaining jump probabilities are obtained recursively, since the jump probabilities
δ δ+p t t( )m at time δ+t t, can be obtained from the history state η 〉| 0 and jump probabilities at
earlier times δ δ δ δ…p p t p t{ (0)}, { ( )}, , { ( )}m m m through the relation

δ δ δ
δ

η δ δ η+ =
− ∑ ′

⊗ + +
′=

( )p t t
t

p t
C C t t t t( )

1 ( )
ˆ ˆ , (13)m

t
t m m

0
0

†
0

where ′ <t t. This entire procedure necessitates storage of
δ

M T

t
copies of the state η 〉| 0 , where M

is the number of bath operators, i.e. the algorithm is polynomial in the size of the systemʼs
Hilbert space and the run time of the simulation.

From the set of jump probabilities just obtained and ground state η 〉| 0 , we now generate an
ensemble { }i of ‘single-jump’ stochastic clock Hamiltonians. This is done by writing the ith
Hamiltonian in the ensemble as a sum of terms acting locally as in section 3.2,

δ≡ ∑ +δ
=
− h t t( )i

t
T t i

0 . Using the probabilities obtained in equation (13), we generate the
ensemble by choosing

δ δ
δ δ

δ δ

δ δ
δ

δ δ

δ δ

+ = − −
− +

+

− − +
−

+

+ + + +

−

h t t
p t

p t t
R t t t t

p t t

p t
R t t t t

t t t t t t

( )
1 ( )

1 ( )
ˆ ( )

1 ( )

1 ( )
ˆ ( )

, (14)

i

1

with probability δ δ= − ∑p t p t( ) 1 ( )m m . On the other hand, one chooses

δ δ
δ

ψ ψ δ δ+ = − ⊗ + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h t t

t

p t
C t t C t t t t( ) 1

( )
ˆ ( ) ( ) ˆ (15)i

m
m m0 0

†

with probability δp t( )m , where ψ η〉 ≡ 〈 〉t t| ( ) |0 0 . Once a jump has occurred, terms at later times
are chosen to have the form in equation (10), which enforces the one-jump approximation. The
terms in equation (14) force the ground state of  i to have the correct free evolution before and
after the jump, while the terms in equation (15) generate energy penalties that enforce the jumps
with the correct probabilities. The Hamiltonian  i generated this way is block diagonal, with
each block corresponding to the free evolution before and after the jump has occurred. The
ground state of  i will have eigenvalue zero and be two-fold degenerate, with one eigenstate
corresponding to evolution before the jump and the other eigenstate to evolution after the jump.
The physical history state, given as an equal superposition of these two degenerate states yields

a single stochastic trajectory, η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |i t

T t t
T i

1 0 1 . The set of history states η 〉{| }i
1

are first-order in the system–bath interaction. The set of wave functions ψ 〉t{| ( ) }i
1 are precisely

the wave functions from a SSE evolution, when only one jump has occurred.
It is clear that the single-jump stochastic clock Hamiltonians depend only on η 〉| 0 , so we

need only solve a set of linear eigenvalue equations to to obtain the first-order history states
η 〉{| }i

1 . Similarly, the set of first-order history states can be used to generate linear eigenvalue

equations for a set of second-order history states η 〉{| }i
2 , which describe stochastic trajectories in

which two jumps occur. The expansion can be continued up to order =
δ

N T

t
, which is

equivalent to the solution of the nonlinear eigenvalue equations in section 3.2. In the appendix,
we bound errors involved in truncating the expansion. Presently, we demonstrate the formal

7

New J. Phys. 16 (2014) 113066 D G Tempel and A Aspuru-Guzik



theory with an exactly solvable model system, in which the perturbation expansion to first-order
is exact.

4. Numerical demonstration—a two-level atom undergoing spontaneous emission

As a simple numerical demonstration, we construct the stochastic Kitaev–Feynman clock for a
two-level atom undergoing spontaneous emission, as determined by its interaction with a
photon detector [12, 13]. If no photon is detected at time t, spontaneous emission has not
occurred and the atom continues to evolve freely to time δ+t t. If on the other hand a photon is
detected, spontaneous emission has occurred and the measurement causes the atomic wave
function to jump to the ground state. In this situation the one-jump approximation is exact,
because measurement causes the wave function to collapse to an eigenstate of the atomic
Hamiltonian, leaving no possibility for a second jump to occur. The atomic wave function can
be expanded in terms of the ground state 〉|0 and excited state 〉|1 as ψ α β〉 = 〉 + 〉t t t| ( ) ( ) |0 ( )|1 .
The system Hamiltonian is then given by ω= 〉〈Ĥ |1 1|s , where ω is the excitation energy. There
is a single jump operator resulting from the measurement process given by Γ= 〉〈Ĉ |0 0|,
where Γ is the emission rate.

An ensemble of two-level atoms in this setup is described by the Lindblad master equation

ρ ρ Γ σ σ ρ ρ σ σ Γσ ρ σ= − + ++ − + − − +⎡⎣ ⎤⎦ ( )
t

H
d
d

ˆ i ˆ , ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (16)s s s s s s

where σ = 〉〈+ˆ |1 0| and σ = 〉〈−ˆ |0 1|. The above density matrix is obtained by averaging over
stochastic trajectories of the SSE as described in section 2.2.

For the simulation, we choose the initial state to be an equal superposition of the atomic
ground state and first excited state, i.e. α β= =(0) (0) 1

2
. The deterministic non-Hermitian

clock Hamiltonian in equation (6) is constructed and the ground state

η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |t

T t t
T

0 0 0 is obtained via an exact numerical diagonalization of the

clock Hamiltonian, 0. The populations and coherence obtained from the coefficients
ψ η〉 = 〈 〉t t| ( ) |0 0 are shown in figure 1 as a function of 〉t| . As expected, the free non-Hermitian
evolution causes the excited state population and coherence to decay, while the ground state
population of the atom remains unchanged. Although we have solved for the ground state of a
time-independent Hamiltonian, we get exactly what we would expect from a propagation of the
SSE with no jumps. Figure 2 shows the spectrum of 0, which has a single non-degenerate zero
eigenvalue corresponding to η 〉| 0 . In general, the excited states of 0 are unphysical and only
the ground state encodes a valid evolution, which is true of the unitary Kitaev–Feynman clock
as well [5]. Figure 3 shows populations and coherences of a single stochastic Kitaev–Feynman
clock, in which a jump penalty (equation (15)) corresponding to a photon detection has been
imposed at ω= t 1.0( ). The ground state is two-fold degenerate, with one ground state
corresponding to free evolution before the jump and the other after the jump has caused the
wave function to collapse to the atomic ground state. In figure 4, one sees that in general, the
spectrum is divided into pairs of degenerate states for every energy level. For each pair, one
state is localized before the jump occurs, while the second is localized afterward. This happens
because the clock Hamiltonian assumes a block diagonal form, with one block acting only on
clock states 〉t{| } before the jump and the other block acting only on states after the jump.
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Figure 5(a) shows the elements of the density matrix obtained from averaging the ground
states of 20 stochastic Kitaev–Feynman clock Hamiltonians, for a runtime of ω= T 1.0( ). The
density matrix is seen to be nearly identical to that obtained from a conventional propagation of
the SSE using the same realization of the random number generator, shown in figure 5(b). This
serves to demonstrate that the stochastic Kitaev–Feynman clock exactly reproduces the
unraveling of the Lindblad equation with the SSE (equation (16)).

In a realistic experimental setup one expects imperfections in the stochastic clock
Hamiltonian to cause the history state to deviate from the open-system dynamics simulated in
real-time by a SSE. To study the effects of such imperfections, we include diagonal static
disorder by choosing the stochastic clock Hamiltonians to have the form δ+ i , where δ is a

Figure 1. Ground state of the non-Hermitian clock—projections of the ground state η 〉| 0

of the deterministic non-Hermitian clock are plotted as a function of the ‘time’
parameter characterizing the clock states 〉t| . α η= 〈 〉t t| ( ) | | | |2

0
2 (red) is the ground state

population of the atom and β η= 〈 〉t t| ( ) | | | |2
0

2 (blue) is the excited state population.

Figure 2. Spectrum of the non-Hermitian clock Hamiltonian—the spectrum of the non-
Hermitian clock Hamiltonian is non-degenerate, with a single zero eigenvalue
corresponding to the ground state η 〉| 0 (see inset). The spectrum is bounded between
0 and 4, except for a single state at energy 7.3 corresponding to an excited state that
violates the initial condition imposed by the Hamiltonian,

ψ ψ− 〉〈 ⊗ 〉〈(1 | (0) (0)|) |0 0|.

9
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positive-semidefinite diagonal random matrix. In figure 6, we see that for small runtimes the
static disorder has little effect and the density matrix produced by ensemble averaging
stochastic clock history states still agrees faithfully with that from the SSE evolution. However,
as the runtime increases, the density matrix from the stochastic clock history states are seen to
deviate appreciably from the SSE evolution. This occurs due to contamination from excited
states of the stochastic clocks, which do not correspond to physical evolution. Specifically, the
gap between the ground and first excited history state of the clock is proportional to

T

1
2
[5], so

the effects of noise become appreciable when δ ∼T 1max
2 , where δmax is the maximum

eigenvalue of the matrix δ. However, the error grows only polynomially in the runtime and in
general static disorder can be minimized more easily than dynamic disorder. From a quantum

Figure 3. Ground state of a stochastic clock Hamiltonian with a single jump—
populations and coherences of the two lowest eigenstates of a stochastic Kitaev–
Feynman clock Hamiltonian, that implements a jump at ω= t 1.0( ). The ground state
is two-fold degenerate, with one of the eigenstates (solid lines) giving evolution before
the jump and the other (dashed lines) giving evolution after.

Figure 4. Spectrum of the stochastic clock Hamiltonian with a single jump—with a
single jump imposed, the spectrum splits into pairs of degenerate eigenstates, localized
either before or after the jump. The ground state is two-fold degenerate, with
eigenvalue 0.
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simulation standpoint, this might offer an advantage of the stochastic clock construction over
conventional simulation in real-time, in which decoherence results during evolution.

5. Conclusion and outlook

Experimental implementation of the stochastic Kitaev–Feynman clock should be possible with
a variety of highly tunable quantum systems, such as ultracold atoms [18], superconducting
qubits [19] and quantum dots [20]. For instance, with ultracold atoms in an optical lattice, the
optical lattice can be tuned to a very large local potential at a randomly chosen site to impose
stochastic jumps. In contrast, a perfectly periodic optical lattice in the superfluid regime will
have delocalized eigenstates corresponding to a history state with free evolution. Non-
Hermitian evolution can be generated by coupling sites representing the history state to a large
number of other sites in the lattice, effectively generating a continuum. Furthermore, many
stochastic history states can be generated in parallel in a single experiment and stored in
disconnected sites of the optical lattice. The coefficients of the history states can be read and

Figure 5. Density matrix of the stochastic Kitaev–Feynman clock and the stochastic
Schrodinger equation—(a) the open system density matrix of a decaying two level atom
obtained by ensemble averaging 20 history states generated by the stochastic Feynman
clock procedure. (b) The open system density matrix generated using the SSE. The two
density matrices are nearly indistinguishable. In both cases the runtime of the evolution
is ω= T 1.0( ).
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manipulated as required by our procedure using a high resolution quantum gas microscope as
presented in [18].

From an experimental standpoint, the Kitaev–Feynman clock formulation of quantum
simulation may offer an advantage over conventional simulation in real-time, for certain
systems. By recasting the simulation as a time-independent problem, all quantum gates can be
constructed as ground-state interaction terms and no ultrafast, real-time manipulations are
needed. Such real-time manipulations can introduce unwanted decoherence, therefore the time-
independent setup used in a Kitaev–Feynman clock may offer an advantage. However, as
demonstrated in section 4, imperfections in the couplings introduce mixing of unphysical
excited states, which become increasingly problematic as the gap between the ground and first-
excited state grows with the simulation time. Therefore, one trades the problem of decoherence
in conventional real-time quantum simulation, for contamination from excited states in the
Kitaev–Feynman clock method. Which method is more beneficial depends on the specific
system and experimental tunability of the couplings.

Many theoretical results in quantum computation rely on the unitary Kitaev–Feynman
clock to prove theorems. We anticipate that the stochastic Kitaev–Feynman clock can be a
useful tool for extending many of these results to open quantum systems. Examples include the

Figure 6. Open-system density matrix for different run times with static disorder—(a)
ground (blue) and excited state (red) populations of the density matrix obtained from the
SSE (solid lines) and clock history state (dashed lines) for a runtime of ω= T 2.5( ). (b)
The same as in part a, but with a runtime of ω= T 10.0( ).
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equivalence of the adiabatic and circuit models of quantum computing [6, 21] and the
complexity of k-local Hamiltonians [22]. We have focused specifically on Markovian
environments, but it is also possible to construct non-Markovian stochastic Kitaev–Feynman
clocks starting from a non-Markovian quantum jump model [23]. Also, we have chosen to work
directly with wave functions by using the SSE as our starting point, rather than the master
equation for the density matrix. This is the most straightforward generalization of the unitary
Kitaev–Feynman clock, since one still works within a Hilbert space. However, this approach
has the obvious disadvantage that the stochastic Kitaev–Feynman clock Hamiltonians are non-
linear functionals acting in the Hilbert space. In future work, we will explore the possibility of
formulating the Kitaev–Feynman clock in Liouville space, which allows one to derive linear
equations for the density matrix [24].
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Appendix A. Spectrum of the non-Hermitian clock

In section 3.1 we introduced the non-Hermitian clock  and found that the history state

η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |t

T t t
T

0 satisfies η〉 = | 0. Our goal is to show that the spectrum of 
is real and positive so that η〉| is in fact the ground state.

We first show that the operator  is normal and therefore admits a spectral decomposition
[25]. We can write = +   as a sum of a Hermitian part  and anti-Hermitian part,  .
Explicitly,

∑ δ δ δ δ

δ δ ψ ψ

= − − + − + + +

+ + + + − ⊗

δ

=

−

 ( ) ( )tH t t t tH t t t t t

t t t t

1 i ˆ 1 i ˆ

(1 (0) (0) ) 0 0 (A.1)
t

T t

0

and

∑δ δ δ= + − +
δ

=

−

 ⎡⎣ ⎤⎦t D t t t D t t tˆ ˆ , (A.2)
t

T t

0

where δ= ∑D t C Cˆ ˆ ˆ
m m m

1

2

†
. Working out the commutator of  with its adjoint † and keeping

only terms linear in δt one finds

δ ψ ψ ψ ψ≈ − + − ⊗ ⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦( ) ( )( ) t D D, ˆ 1 1 ˆ 0 0 . (A.3)0 0 †
0 0 0 0

We notice two things. First, while the operator  is not normal strictly speaking, it becomes
normal in the limit δ →t 0. Second, the commutator is non-zero only if the bath operator D̂ does
not commute with the projector ψ ψ≡ 〉〈 ⊗ψP I| |0 0 0 . Consequently
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=ψ ψ ⎡
⎣⎢

⎤
⎦⎥( )P P, 0, (A.4)0

0 0 †
0

and  is normal in the subspace of history states satisfying the initial condition. Therefore, 
has a complete spectrum of eigenstates η 〉{| }k satisfying

η λ η= , (A.5)k k k
0

either in the limit δ →t 0 or to all orders in δt within the projected space of ψP 0.
We now prove that all of the eigenvalues λk are real and positive. To this end, we introduce

an operator Ô, which acts on the clock states as δ〉 = + 〉O t t tD tˆ | (1 ˆ )| . It has an inverse whose

action is δ〉 = − 〉−
O t t tD tˆ | (1 ˆ )|

1
. We may then re-write equation (A.5) as

η λ η=−O O O Oˆ ˆ ˆ ˆ , (A.6)k k k
1

where

∑ δ δ

δ δ δ

ψ ψ

= − − +

− + + + + + +

+ − ⊗

−

=

−

 ⎡⎣
⎤⎦

( )

( )

O O H t t t

H t t t t t t t t t

ˆ ˆ 1 i ˆ

1 i ˆ

(1 (0) (0) ) 0 0 . (A.7)

t

T
1

0

This transformed Hamiltonian is Hermitian, positive semidefinite and has eigenvalues between
0 and 4. Since it has an identical spectrum to the original Hamiltonian in equation (A.5), this is
true of the Hamiltonian  as well.

Appendix B. The spectrum of the stochastic Kitaev–Feynman clock

We now show that despite being nonlinear functionals of their respective ground states, the
stochastic Kitaev–Feynman clock Hamiltonians { }i have a real and positive spectrum.

Consequently, for each realization the state η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |i t

T t t
T i

0 , which satisfies

η 〉 = | 0i i is the ground state. To show this, consider a particular realization

∑ δ ψ ψ= + + − ⊗
δ

=

−

 h t t( ) (1 (0) (0) ) 0 0 , (B.1)i

t

T t
i

0

which has local jump Hamiltonians of the form

δ
δ

ψ δ ψ δ= − − − ⊗
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )h s

t

p
C s t s t C s s( ) 1 ˆ ˆ , (B.2)j

m
m j j m j j

†

at a set of n times s{ }j and free non-Hermitian evolution at other times. The Hamiltonian in
equation (B.1) can be written as

∑=
=

  s( ), (B.3)
j

n

j

0
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where

∑ δ
δ δ

δ δ

δ δ
δ

δ δ

δ δ
δ
δ

ψ δ ψ δ

= − −
− +

+

− − +
−

+

+ + + + +

− − − ⊗

=

−

+


⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

)( ) ( )

s
p t

p t t
R t t t t

p t t

p t
R t t t t

t t t t t t
t

p
C s t s t C s s

( )
1 ( )

1 ( )
ˆ ( )

1 ( )

1 ( )
ˆ ( )

1

ˆ ˆ . (B.4)

j

t s

s i

i

i

i

m
m j j m j j

1

†

j

j 1

We see from the above expression, that each  s( )j has the form of a free non-Hermitian clock

Hamiltonian, starting from the initial state ψ δ− 〉δ
δ

C s tˆ | ( )t

p
m j

m

instead of ψ 〉| (0) . Furthermore,

the various  s( )j commute with one another. Therefore,  has a block diagonal structure, and
the eigenvalue equation η λ η〉 = 〉 | |k k k separates into separate eigenvalue equations in each
block

η λ η= s s s s( ) ( ) ( ) ( ) . (B.5)j k j k j k j

Applying the results of (appendix A), each λ s( )k j is real and positive. Therefore,
λ λ= ∑ s( )k j k j is real and positive as well. The state

∑

∑ ∑

∑

η δ
δ

ψ

ψ δ

ψ δ

=
+ −

⊗

+
−

− ⊗

+
−

− ⊗

δ

δ

=

−

= =

−

=
+

δ

δ

δ

+
−

+

− +

( )

( )

t

T t

R

p t
t

R

p t
C s t t

R

p t
C s t t

ˆ

1 ( )
(0)

ˆ

1 ( )
ˆ

ˆ

1 ( )
ˆ , (B.6)

t

s t

j

n

t s

s t

m j

t s

T

m n

0

0

1

t
t

j

j
t s j

t

n

t sn
t

0

1

1

1

satisfies η〉 = | 0, so it is the ground state. From inspection, we see that this state has exactly

the form η ψ〉 = ∑ 〉 ⊗ 〉δ
δ+ = t t| | ( ) |i t

T t t
T i

0 , with ψ 〉t| ( )i being the wave functions generated by

an SSE propagation for the same realization of jumps. This proves the desired result, that the
ground states of the stochastic Kitaev–Feynman clock Hamiltonians are history states of the
stochastic trajectories.

Appendix C. Locality of the stochastic clock Hamiltonian

Thus far, we have written the non-Hermitian evolution operator R̂ appearing in equation (7) in a
completely general form, which in principle can involve interactions involving any number of
variables. In order for the stochastic clock Hamiltonian to be experimentally implemented on a
quantum computer or simulator, it must be possible to construct R̂ from terms that involve only
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a few qubits at a time. In this section, we write the stochastic clock Hamiltonian in an explicitly
local form and provide examples.

Let the system consist of N variables represented by qubits and the dimension of the
Hilbert space be 2N . Following Lloyd [26], we first decompose the system Hamiltonian as

= ∑ =H Hˆ ˆs i
l

i1 , where each Ĥi acts on a space of dimension <m 2i
N . Similarly, we decompose

the bath operator as = ∑ =D Dˆ ˆ
i
p

i1 , where each D̂i acts on a space of dimension <m 2i
N .

Therefore, δ δ= − −R H t D tˆ 1 i ˆ ˆs can be written as δ δ= − ∑ − ∑= =R H t D tˆ 1 i ˆ ˆ
i
l

i i
p

i1 1 , which is

a sum of +l p operators acting on a space of dimension <m 2i
N and containing at most k of the

N variables. Using this decomposition, the non-Hermitian clock Hamiltonian in equation (7)
can be written as

∑

∑ ∑ ∑

δ δ δ δ

δ δ δ

ψ ψ

= ⊗ − + − + + + + +

+ + ⊗ + − +

+ − ⊗

δ

δ

=

−

= = =

−


⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

I t t t t t t t t t t t t

t i H D t t t t t tˆ ˆ

(1 (0) (0) ) 0 0 , (C.1)

s

t

T t

c

i

l

i

i

p

i

s t

T t

c

s c

0

1 1 0

where the subscripts s and c denote operators acting in the state space of the system and clock
respectively. The first line in equation (C.1) contains terms that are at most two-local, acting on
two clock qubits. The second line contains a sum of terms that are at most (k + 2)-local, acting
on k system qubits and 2 clock qubits. As written, the locality of the operator in the third line
depends on the initial state ψ 〉| (0) . However, it is always possible to encode the preparation of
the state ψ 〉| (0) as evolution from the state Π 〉 ⊗ 〉=[ |0 ] |0i

N
i s c0 . This can be enforced with a term

in the Hamiltonian, = ∑ 〉〈 ⊗ 〉〈=Ĥ [ |1 1| ] |0 0|i
N

i s cinit 1 , which is two-local acting on a single
system-qubit together with the initial clock-qubit. Therefore, examining equation (C.1) we see
that the non-Hermitian clock Hamiltonian acts in a Hilbert space of dimension ×+ +δ δ2 2N N tT

t
T
t ,

but it can be written as a sum of terms, which in the worst case act in a Hilbert space of
dimension ×+ +2 2k k2 2, where in general ≪ δ+ +2 2k N T t2 (see examples below). Furthermore,
for an arbitrary clock-Hamiltonian  containing at worst (k + 2)-local terms, it is always
possible to construct a new Hamiltonian with the same ground state that contains only

+ =2 2 4-local terms, using the method of perturbative gadgets [22, 27].
As an example, consider the Haken–Strobl model of pure dephasing, which describes the

transfer of a localized excitation (exciton) through a system of coupled molecules such as
chromophores in the presence of an environment [28] . The Haken–Strobl–Lindblad equation is
given by equation (2), with ϵ= ∑ 〉〈 + ∑ ∑ 〉〈 ′ + ′〉〈= = ′ = ′H m m V m m m mˆ | | (| | | |)s m

N
m m

N
m
N

m m1 1 1 ,

and Γ= 〉〈C m mˆ | |m , where N is the number of molecules. Here, 〉m| describes an excitation
localized on the mth molecule with energy ϵm, ′Vm m, describes energy transfer between

molecules and Ĉm describes fast vibrations due to the environment, which introduce
decoherence without energy exchange. We can easily encode this Hamiltonian with qubits, if

〉|1 describes an excited molecule and 〉|0 describes a molecule in its ground state. Then

σ σ σ σ σ= ∑ + + ∑ ∑ +ϵ
= = ′ = ′

+
′

− −
′

+H Vˆ (1 ˆ ) ( ˆ ˆ ˆ ˆ )s m
N

m
z

m
N

m
N

m m m m m m1 2 1 1 ,
m and σ= +ΓĈ (1 ˆ )m m

z
2

. If we
further assume that the excitation begins localized on the jth molecule, ψ 〉 = 〉j| (0) | and
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equation (C.2) becomes

∑

∑ ∑ ∑

∑

δ δ δ δ

δ
ϵ Γ

σ σ σ σ σ

δ δ

σ

= ⊗ − + − + + + + +

+
−

+ + +

⊗ + − +

+ − ⊗

δ

δ

=

−

= = ′=
′

+
′

− −
′

+

=

−


⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )( )

I t t t t t t t t t t t t

t V

t t t t t t

i
i

2
1 ˆ ˆ ˆ ˆ ˆ

1 ˆ 0 0 . (C.2)

s

t

T t

c

m

N
m

m
z

m

N

m

N

m m m m m m

s

t

T t

c

j
z

s c

0

1 1 1

,

0

We see that this Hamiltonian can be engineered with at most four-local couplings, which can be
further reduced to two-local couplings using gadgets [22, 27].

The above Hamiltonian is non-interacting. In the case of an interacting system, there will
be 4-local terms within the system, which lead to 6-local terms when coupled to the clock.
When the interacting system is fermionic, fermion operators must be encoded into qubits using
the Jordan–Wigner transformation, which introduces additional non-locality [29]. Nevertheless,
with gadgets even fermionic systems can be efficiently reduced to two-local interactions [30].
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