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Abstract. In this work we derive and analyse coarse-grained descriptions of
self-propelled particles with selective attraction–repulsion interaction, where
individuals may respond differently to their neighbours depending on their
relative state of motion (approach versus movement away). Based on the
formulation of a nonlinear Fokker–Planck equation, we derive a kinetic
description of the system dynamics in terms of equations for the Fourier modes
of the one-particle density function. This approach allows effective numerical
investigation of the stability of solutions of the nonlinear Fokker–Planck
equation. Further on, we also derive a hydrodynamic theory by performing
a closure at the level of the second Fourier mode of the one-particle density
function. We show that the general form of equations is in agreement with
the theory formulated by Toner and Tu. The stability of spatially homogeneous
solutions is analysed and the range of validity of the hydrodynamic equations is
quantified. Finally, we compare our analytical predictions on the stability of the
homogeneous solutions with results of individual-based simulations. They show
good agreement for sufficiently large densities and non-negligible short-ranged
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repulsion. The results of the kinetic theory for weak short-ranged repulsion
reveal the existence of a previously unknown phase of the model consisting
of dense, nematically aligned filaments, which cannot be accounted for by the
present hydrodynamics theory of the Toner and Tu type for polar active matter.
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1. Introduction

In recent decades, there has been an increased research focus on far-from-equilibrium systems
in biology and physics which is referred to as ‘active matter’. The relevant length scales of
such systems span several orders of magnitude. They range from the (sub-) micrometre scale
governing the dynamics of individual active units in motility assays in vitro [1] and the actin
cortex in vivo [2], via the mesoscopic length scales of interest in collective dynamics of large
bacterial ensembles [3, 4] and artificial self-propelled particles [5], up to the macroscopic
scales of driven granular matter [6, 7] or flocks of birds [8], schools of fish [9] and swarms
of insects [10–12], where the spatial dimensions can be in the order of kilometres.

Despite the apparent variety, all these systems share the fundamental property of local
uptake and/or conversion of internal energy into kinetic energy of motion by their individual
units. This—together with additional interactions between those units—distinguishes these
systems from related equilibrium systems and yields fascinating examples of self-organization
and collective dynamics.

The question of universal properties of such active matter systems from the statistical
physics point of view is a vibrant research field. To a large extent, it was initiated by the
numerical study of a minimal, individual-based model of active matter published by Vicsek
et al in 1995 [13]. Shortly after this publication, Toner and Tu made a seminal contribution
by formulating the hydrodynamic equations of polar active matter at largest relevant length
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and time scales purely based on symmetry arguments [14, 15]. The analysis of these generic
equations, as well as their counterparts for nematic order, improved our understanding of the
fundamental properties of active matter, such as the existence of long-range order or giant
number fluctuations [16, 17].

However, the direct derivation of a hydrodynamic theory of the Toner and Tu type
from microscopic models of active matter was a long standing problem. Only recently,
such a link between microscopic parameters determining the dynamics of individual active
units and parameters governing the macroscopic flow of active matter was established
by formulating kinetic equations for minimal models of self-propelled particles with
velocity-alignment [18–21] and self-propelled aligning rods [22]. Furthermore, coarse-grained
descriptions for active particles with variable speeds and velocity-alignment were derived
in [23–27].

In this paper, we will derive a kinetic and a hydrodynamic description for self-propelled
agents interacting via a selective attraction and repulsion interaction. A corresponding model
was recently introduced to describe the onset of collective motion in insect swarms and is
directly motivated by response of individual agents to looming visual stimuli and in particular
the distinction of approaching and moving away objects [28, 29].

A fundamental difference between our model and the Vicsek model is its formulation
in continuous time using stochastic differential equations. The interaction of individuals is
modelled by superposition of (binary) interaction forces. This allows, on the one hand, a
straightforward generalization of the model, e.g. towards variable speed of individuals, and,
on the other hand, can be directly coarse grained by deriving the Fokker–Planck equation (FPE)
for the corresponding probability density functions (PDFs), the latter being the main focus of
this work.

The model shows different phases including large-scale collective motion, a disordered
clustering phase and a nematic phase despite the absence of an explicit velocity-alignment
interaction.

First, we will introduce the microscopic, individual-based model in terms of stochastic
differential equations. Then we will proceed with the discussion of a kinetic description of the
collective dynamics based on the nonlinear FPE for the one-particle density function, which
allows efficient numerical analysis of the stability of solutions of the FPE in Fourier space.
Further on, we will derive a hydrodynamic theory for self-propelled particles with selective
attraction–repulsion interaction, which yields hydrodynamic equations in agreement with the
theory by Toner and Tu. A direct comparison of the kinetic approach, which in principle can
be considered up to arbitrary accuracy, to the hydrodynamic theory, which corresponds to a
closure at the level of the second Fourier mode of the PDF, reveals the range of validity of
the hydrodynamic equations at large wavenumbers. Moreover, the analysis provides insights
into the origin of unphysical divergences at large wavenumbers related to the approximations
used, namely the usage of Taylor expansions. Finally, we compare the results of the kinetic and
hydrodynamic theory with direct numerical simulations of the individual-based model.

2. Microscopic model

We consider N self-propelled particles of mass m = 1 in two spatial dimensions, so-called
agents. Each individual moves at a constant speed s0, thus the velocity vector of each agent
is determined by its polar orientation angle ϕi . The equations of motion for the positions r i and
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the polar orientation angles ϕi read

dr i

dt
= s0 ei,h(t) = s0

(
cos ϕi(t)
sin ϕi(t)

)
, (2.1a)

dϕi

dt
=

1

s0

(
Fi,ϕ +

√
2Dϕ ξi(t)

)
. (2.1b)

Here, Fi,ϕ = Fi · ei,ϕ is a projection of an effective social force vector Fi on the angular
degree of freedom ϕi . It corresponds to a torque, which induces a turning behaviour of the
focal individual due to social interactions. ei,ϕ = (−sin ϕi , cos ϕi)

T is the angular unit vector
perpendicular to ei,h . In the following, despite considering here only agents moving with
constant speed, we will use for simplicity the term ‘forces’ instead of ‘torques’ when referring
to the social interactions. This takes into account that the general social forces introduced here
naturally extend to the variable velocity case, where the social forces induce not only turning
behaviour, but also accelerations and deceleration of individuals.

The second term within the brackets in (2.1b) stands for random angular noise with
intensity Dϕ . ξi(t) are independent, Gaussian random processes with vanishing mean and
temporal δ-correlations, i.e.

〈
ξi(t)ξ j(t + τ)

〉
= δi j δ(τ ) (Gaussian white noise).

The total social force is given by a sum of three components:

Fi = f i,r + f i,m + f i,a. (2.2)

The first term represents a short-ranged repulsion allowing for finite sized agents. It reads

f i,r = −

N∑
j=1 j 6=i

µr(r j i)r̂ j iθ(lc − r j i) (2.3)

with µr(r j i)> 0 being a repulsive turning rate, which, in general, depends on distance r j i =∣∣r j i

∣∣= ∣∣r j − r i

∣∣ between two particles. We assume that this repulsive interaction is strictly short
ranged, i.e. it vanishes above a finite repulsive radius lc, as indicated by the Heaviside (unit-step)
function θ(x).

The other two forces read

f i,m =

N∑
j=1 j 6=i

µm(r j i)r̂ j iθ(ls − r j i)θ(r j i − lc)
∣∣ṽ j i

∣∣ θ(+ṽ j i), (2.4a)

f i,a =

N∑
j=1 j 6=i

µa(r j i)r̂ j iθ(ls − r j i)θ(r j i − lc)
∣∣ṽ j i

∣∣ θ(−ṽ j i). (2.4b)

These forces can be considered as a sum over binary interactions, which act always along
the unit vector r̂ j i = (r j − r i)/r j i pointing towards the centre of mass of the neighbouring
particle j . The corresponding response strengths µa,m(r j i) are distance dependent and may in
general be both positive (attraction) and negative (repulsion). Furthermore, the overall response
to other individuals is assumed to vanish above a finite sensory range ls: µa,m(r j i > ls) = 0,
whereby ls > lc.

The decisive factor in the distinction of the two forces is the sign of the relative velocity ṽ j i

defined by the temporal derivative of the distance ṙ j i between particles i and j , and equals the
projection of the velocity difference v j i = v j − vi of neighbour j and the focal individual i
on the relative position unit vector r̂ j i : ṽ j i = v j i · r̂ j i = ṽi j . Hence f i,a is the response to
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Figure 1. Visualization of the spatial regions for approaching and receding self-
propelled particles for a binary interaction of the i th particle with velocity vector
vi (heading angle ϕi ), and a neighbouring particle j with velocity v j (heading
angle ϕ j ) within its sensory range ls. The centre of the circle corresponds to the
position of the focal particle i . The dotted line, determined by the mean angle
(ϕi + ϕ j)/2, represents the border between the two distinct spatial regions (half-
discs) corresponding to approaching and moving away of individual j . If the j th
particle is located above the dotted line in the red region, the two particles are
coming closer (approaching). Otherwise, if the neighbouring particle is located
in the blue region, the two particles move away from each other (as shown in this
example).

approaching individuals characterized by a negative relative velocity ṽ j i<0, whereas f i,m is
the corresponding response to moving away (or receding) individuals characterized by positive
relative velocity ṽ j i>0. Both force terms are proportional to the absolute value of the relative
velocity, leading to stronger responses to faster approaching or receding individuals. Using the
definition ṽ j i = ṙ j i , one obtains the relative velocity

ṽ j i = ṽ j i(ϕi , ϕ j , α j i) = 2s0 sin
(ϕ j + ϕi

2
− α j i

)
sin

(
ϕi − ϕ j

2

)
(2.5)

as a function of the velocity angles ϕi , ϕ j and the angle α j i of the distance vector r j i , with
r j i = r j i

(
cos α j i , sin α j i

)
. From (2.5), one finds the two different spatial regions of approaching

and receding particles, respectively, where the relative velocity has a different sign for fixed ϕi

and ϕ j in the interval ϕi 6 ϕ j < ϕi + 2π :

ṽ j i > 0 for
ϕ j + ϕi

2
< α j i <

ϕ j + ϕi

2
+ π moving away,

ṽ j i < 0 for
ϕ j + ϕi

2
+ π < α j i <

ϕ j + ϕi

2
+ 2π approaching.

(2.6)

Hence, a particle located in the half-sphere in a clockwise direction from the mean angle
(ϕ j + ϕi)/2 approaches the focal particle i , whereas particles located in the other half-sphere
anticlockwise from the mean angle are moving away (see figure 1). Please note that for ϕ j = ϕi

the social force vanishes as ṽ j i = 0 according to (2.5).
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(A) µm > 0, µa < 0 (B) µm > 0, µa > 0

(C) µm < 0, µa < 0 (D) µm < 0, µa > 0

Figure 2. Turning of self-propelled particles due to the social interaction in the
four regions of the (µm, µa)-parameter space. In each panel, the left drawings
correspond to movement away ṽ j i>0 and right drawings to approach ṽ j i<0 of
the agents. The red arrows indicate the torques acting on the agents, whereas
the dashed line indicates the axis connecting the interaction partners: (A)
effective alignment, (B) pure attraction, (C) pure repulsion and (D) effective anti-
alignment.

Four different regions in the (µm, µa)-parameter space are distinguished [29]:

• pure attraction: µm > 0, µa > 0;

• effective alignment: µm > 0, µa < 0, i.e. attraction to particles moving away, repulsion
from particles coming closer;

• pure repulsion: µm < 0, µa < 0;

• effective anti-alignment: µm < 0, µa > 0, i.e. attraction to particles coming closer,
repulsion from particles moving away.

A schematic visualization of the turning behaviour of interacting agents in the different regimes
is shown in figure 2. Some typical spatial snapshots obtained from individual-based simulations
of (2.1) are shown in figure 3.

Please note that in previous publications [28, 29], the ‘effective alignment’ regime was
referred to as ‘escape and pursuit’, whereas ‘effective anti-alignment’ was labelled ‘head on
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Figure 3. Spatial snapshots of the microscopic model for different interaction
strengths after the system relaxes towards a steady state: (A) disordered,
homogeneous state for µa = µm = −0.6 (pure repulsion), (B) diffuse collectively
moving bands for µa = −0.6, µm = 0 (repulsion from approaching individuals),
(C) collectively moving bands for µa = −0.6, µm = 0.6 (effective alignment),
(D) dense, collectively moving cluster for µm = 0.6, µa = 0 (attraction
to individuals moving away), (E) cluster state for µm = µa = 0.6 (pure
attraction), (F) disordered, homogeneous state for µm = −0.6, µa = 0.6
(effective anti-alignment). The velocity vectors of individual particles are
coloured corresponding to their polar direction of motion according to the inset
of (A). The inset in (D) indicates the positions of the snapshots in the (µm, µa)-
parameter plane. Other parameters: N = 4000, L = 40, Dϕ = 0.02, ls = 1,
lc = 0.2, µr = 5, s0 = 0.25.

head’. These previous labels had their origin in the context of heterogeneous agents [28] and the
respective response of a focal agent to neighbours irrespective of their behaviour. Furthermore,
an asymmetric alignment response for µm > 0, µa < 0, yields in the present model the same
qualitative dependence of the observed spatial patterns on the interaction strengths as in the
original ‘escape and pursuit’ model [33]. Nevertheless, for self-propelled agents with constant
speed, the above labels appear more appropriate.

One could argue that in the effective-alignment regime the macroscopic dynamics is
essentially identical to other models, as for example the minimal Vicsek model. However,
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for strong attraction to particles moving away in comparison to the repulsion to approaching
particles, we observe the emergence of dense, collectively moving clusters, which do not appear
in simple alignment models.

Our model corresponds to the ones studied in [28, 29] if the distance-dependent interaction
strengths µr(r j i) and µa,m(r j i) are assumed to be constant and the forces are rescaled by the
number of particles within the interaction area of the focal particle.

3. Kinetic description

3.1. Mean-field theory—derivation and analysis of a nonlinear Fokker–Planck equation

In this section, we derive a kinetic description for the above individual-based model (2.1). For
this purpose, we introduce the N -particle PDF

PN (r1, ϕ1; r2, ϕ2; . . . ; r N , ϕN ; t) (3.1)

which determines the probability to find particle i at position r i moving into the direction ϕi

(i = 1, 2, . . . , N ) at time t . It is normalized with respect to integration over all positions and
angles:  N∏

j=1

(∫
d2r j

∫ 2π

0
dϕ j

) PN (r1, ϕ1; r2, ϕ2; . . . ; r N , ϕN ; t) = 1. (3.2)

In agreement with (2.1), we can write down the FPE for the dynamics of the PDF as follows:

∂ PN

∂t
= −s0

N∑
i=1

∇r i ·
(
ei,h PN

)
−

N∑
i=1

∂

∂ϕi

(
Fi,ϕ PN

s0

)
+

Dϕ

s2
0

N∑
i=1

∂2 PN

∂ϕ2
i

. (3.3)

From the linear FPE above one can derive an evolution equation for the marginal PDF

P(r i , ϕi , t) =

 N∏
j 6=i

(∫
d2r j

∫ 2π

0
dϕ j

) PN (r1, ϕ1; r2, ϕ2; . . . ; r N , ϕN ; t) (3.4)

by integrating (3.3) over the degrees of freedom of particles j 6= i . In what follows, we
assume that correlations between particles can be neglected. Therefore, the N -particle PDF
factorizes, i.e.

PN (r1, ϕ1; r2, ϕ2; . . . ; r N , ϕN ; t) =

N∏
i=1

P(r i , ϕi , t). (3.5)

By this means, one obtains an effective one-particle description

∂ P(r i , ϕi , t)

∂t
= −s0∇r i ·

(
ei,h P

)
−

N − 1

s0

∂

∂ϕi

(
Fϕ P

)
+

Dϕ

s2
0

∂2 P

∂ϕ2
i

, (3.6)
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where the force Fϕ is given by the following integral over P(r i , ϕi , t):

Fϕ(r i , ϕi , t) = 2s0

∫ ϕi +2π

ϕi

dϕ j sin

(
ϕi − ϕ j

2

)∫ ls

lc

dr j i r j i

×

[
µm(r j i)

∫ ϕi +ϕ j
2 +π

ϕi +ϕ j
2

dα j i sin(α j i − ϕi) sin
(ϕi + ϕ j

2
− α j i

)
P(r i + r j i , ϕ j , t)

−µa(r j i)

∫ ϕi +ϕ j
2 +2π

ϕi +ϕ j
2 +π

dα j i sin(α j i − ϕi) sin
(ϕi + ϕ j

2
− α j i

)
P(r i + r j i , ϕ j , t)

]

−

∫ ϕi +2π

ϕi

dϕ j

∫ lc

0
dr j i r j i

∫ 2π

0
dα j i µr(r j i) sin(α j i − ϕi)P(r i + r j i , ϕ j , t). (3.7)

The factor N − 1 in (3.6) arises, because (3.3) was integrated over the positions and angles of
N − 1 identical particles. In other words, the focal particle can interact with N − 1 identical
neighbours. For the same reason, the particle index i is omitted henceforward.

The FPE (3.6), which was derived from the linear FPE (3.3) governing the dynamics of
PN , is nonlinear since the force terms Fϕ depend on P(r, ϕ, t). In this sense, assumption (3.5)
is a mean-field approximation: a single particle is affected by a force due to its own PDF (3.7).

By introducing the one-particle density function p(r, ϕ, t) = N P(r, ϕ, t), we can
eliminate the factor (N − 1) ≈ N from (3.6). Accordingly, p(r, ϕ, t) is interpreted as particle
density obeying the nonlinear FPE

∂p(r, ϕ, t)

∂t
= −s0∇r · (eh p) −

∂

∂ϕ

Fϕ(r, ϕ, t) p

s0
+

Dϕ

s2
0

∂2 p

∂ϕ2
. (3.8)

First, we assume a spatially homogeneous situation where p(r, ϕ, t) = p(ϕ, t) holds. In
this case, (3.8) is reduced to

∂p(ϕ, t)

∂t
= −

Dϕ

s2
0

∂

∂ϕ

[
κ

ρ0

∫ ϕ+2π

ϕ

dϕ j sin(ϕ j − ϕ)p(ϕ j , t) p(ϕ, t) −
∂p

∂ϕ

]
, (3.9)

where the dimensionless coupling parameter

κ =
πρ0s2

0

2Dϕ

∫ ls

lc

dr j i r j i

(
µm(r j i) − µa(r j i)

)
(3.10)

is introduced. Here, ρ0 = N/L2 is the homogeneous particle density, with L being the linear
spatial dimension of the two-dimensional square-shaped system.

One obtains the same FPE as (3.9) for self-propelled particles interacting via a velocity-
alignment mechanism or globally coupled Kuramoto oscillators [36, 37]. Hence, the selective
attraction–repulsion interaction reduces to effective velocity-alignment as considered in [38]
(continuum time form of the original Vicsek model [13]), if spatial inhomogeneities are
neglected. Furthermore, the effective-alignment strength is proportional to µm − µa and may
be negative, leading to anti-alignment as a consequence of repulsion from particles moving
away and attraction to particles coming closer, respectively (see also figure 2(D)).

The spatially homogeneous, time-independent particle density

p(8)(ϕ) =
ρ0

2π

exp (κ8 cos(ϕ − ϕ0))

I0(κ8)
(3.11)
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is a solution to both nonlinear FPEs (3.8) and (3.9), as can be easily shown by inserting (3.11)
into (3.9). Iν(x) denotes the modified Bessel function of the first kind. Without loss of generality,
we choose the frame of reference such that the direction of collective motion ϕ0 defines the
x-coordinate, i.e. ϕ0 = 0. From the definition of the polar order parameter

8 =
∣∣〈eiϕ

〉∣∣= ∣∣∣∣∫ 2π

0
dϕ p(8)(ϕ)eiϕ

∣∣∣∣ , (3.12)

we can determine the order parameter by solving the transcendental equation

8 =
I1(κ8)

I0(κ8)
. (3.13)

Equation (3.13) is always fulfilled for 8 = 0. In that case, (3.11) yields the uniform
distribution (spatially homogeneous, disordered state), i.e.

p(0)
=

ρ0

2π
. (3.14)

If κ > 2 (high effective-alignment strength µm − µa and low noise Dϕ, respectively), there is
a second non-trivial solution 8 > 0 to (3.13) describing a spatially homogeneous state with
polar order (collective motion; swarming phase). In this parameter region, the distribution p(8)

describing polar order (8 > 0) is stable with respect to spatially homogeneous perturbations
δp = δp(ϕ, t), whereas the homogeneous distribution p(0) is stable for κ < 2 [36, 37].

The critical line κ = 2 for the order–disorder transition is translated to microscopic model
parameters as follows:∫ ls

lc

dr j i r j i

(
µm(r j i) − µa(r j i)

)
=

4Dϕ

πρ0s2
0

. (3.15)

The above is a generalization of the previous result obtained in [29]. Since the order–disorder
transition described by (3.13) is continuous, the right-hand side of (3.13) can be expanded in
a Taylor series so that the dependence 8 = 8(κ) is known close to the critical point κc = 2
analytically:

8(κ) '
√

κ − 2 +O
(
(k − 2)3/2

)
. (3.16)

The stability analysis of the spatially homogeneous solutions p(8) with respect to arbitrary
perturbations δp = δp(r, ϕ, t) is carried out in the next section.

3.2. Stability analysis in Fourier space

In this section it is shown how the stability of solutions of the nonlinear FPE (3.8) can be
analysed in Fourier space. A similar approach was used by Chou et al [30] in order to achieve a
kinetic theory for self-propelled particles with metric-free interactions.

In order to analyse the FPE (3.8) analytically and especially to solve the integral (3.7), it
is convenient to work in Fourier space with respect to the spatial coordinates r and the angular
variable ϕ. The dynamics of the Fourier coefficients

ĝn(k, t) =

∫
d2r

∫ 2π

0
dϕ p(r, ϕ, t)eik·r+inϕ (3.17)
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reads

∂ ĝn(k, t)

∂t
−

ikxs0

2

(
ĝn+1 + ĝn−1

)
−

kys0

2

(
ĝn+1 − ĝn−1

)
= −n2 Dϕ

s2
0

ĝn

+
in

(2π)3s0

∞∑
j=−∞

∫
d2q ĝ j(q, t)K̂n− j(k − q, t), (3.18)

where the Fourier coefficients of the force (3.7) are defined as

K̂n(k, t) =

∫
d2r

∫ 2π

0
dϕ Fϕ(r, ϕ, t)eik·r+inϕ. (3.19)

Obviously, the FPE turns into an infinite hierarchy of equations (3.18) in Fourier space.
For the stability analysis, the Fourier coefficients K̂n(k, t) of the force (3.7) are required.

Due to the fact that the force Fϕ(r, ϕ, t) depends on the integral over p(r, ϕ, t) (3.7), the
Fourier coefficients K̂n(k, t) of the force can be written as a linear combination of the Fourier
coefficients ĝr(k, t)

K̂n(k, t) =

∞∑
r=−∞

K̃n,r(k) ĝr(k, t) (3.20)

using an infinite-dimensional matrix K̃n,r(k). Details on the calculation of the matrix elements
are given in appendix A. Consequently, the dynamics of the Fourier coefficients ĝn(k, t) read

∂ ĝn(k, t)

∂t
−

ikxs0

2

(
ĝn+1 + ĝn−1

)
−

kys0

2

(
ĝn+1 − ĝn−1

)
= −n2 Dϕ

s2
0

ĝn

+
in

(2π)3s0

∞∑
j=−∞

∞∑
r=−∞

∫
d2q ĝ j(q, t)ĝr(k − q, t)K̃n− j,r(k − q). (3.21)

Let ĝ(0)
n (k, t) be a solution of the equation above. The dynamics of a small perturbation

δĝn(k, t) = ĝn(k, t) − ĝ(0)
n (k, t) is determined by the linearized equation

∂δĝn(k, t)

∂t
−

ikxs0

2

(
δĝn+1 + δĝn−1

)
−

kys0

2

(
δĝn+1 − δĝn−1

)
= −n2 Dϕ

s2
0

δĝn +
in

(2π)3s0

×

∞∑
j=−∞

∞∑
r=−∞

∫
d2q

(
δĝ j(q, t)ĝ(0)

r (k − q, t) + ĝ(0)

j (q, t)δĝr(k − q, t)
)

×K̃n− j,r(k − q). (3.22)

The stability analysis of the solutions

p(8)(ϕ) =
ρ0

2π

exp (κ8 cos ϕ)

I0(κ8)
(3.23)

requires the corresponding Fourier coefficients

ĝn(k; 8) = (2π)2ρ0
In(κ8)

I0(κ8)
δ(k). (3.24)
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Inserting those in (3.22) yields the following linearized ordinary differential equations:

∂δĝn(k, t)

∂t
=

∞∑
r=−∞

M̃n,r(k) δĝr(k, t) (3.25)

with the matrix

M̃n,r(k) =
ikxs0

2

(
δn+1,r + δn−1,r

)
+

kys0

2

(
δn+1,r − δn−1,r

)
− n2 Dϕ

s2
0

δn,r

+
inρ0

2πs0

∞∑
j=−∞

I j(κ8)

I0(κ8)

(
K̃n−r, j(0) + K̃n− j,r(k)

)
. (3.26)

The eigenvalues σ of the matrix above, given by the solutions of det(M̃ − σ I) = 0, determine
the stability of p(8). In order to calculate the eigenvalues numerically as a function of the
wavevector k (dispersion relation σ(k)), it is necessary to find an appropriate closure of the
infinite-dimensional system of linear equations. Here we assume that a critical ñ>0 exists, such
that δĝn = 0 for |n| >ñ holds approximatively (cf [30]). That assumption is reasonable, because
the nth Fourier coefficient is strongly damped, since

∂δĝn(k, t)

∂t
∝ −n2 Dϕ

s2
0

δĝn(k, t). (3.27)

For the numerical analysis, ñ = 50 is assumed. Using this approximation, the stability of
the spatially homogeneous states can be studied. Please note that only two approximations
were used: firstly, correlations between particles are neglected (3.5) (mean-field); secondly,
the truncation of the hierarchy of equations (3.25). In principle, it is possible to analyse the
stability for arbitrary wavevectors k, notably, there is no restriction to small wavenumbers
k. The procedure described above implies arbitrary directions of perturbations (with respect
to the direction of collective motion) of the homogeneous distribution p(8). However, the
wavevector k = (k, 0)T is chosen parallel with respect to the direction of collective motion.
Thus, possible instabilities in the ordered state correspond to the emergence of band-like
structures perpendicular to the direction of motion, commonly observed in related systems (see
figure 2(B)).

The illustrated method allows us to explore the structure of the phase space of the
dynamical system. In particular, we are interested in the stability of the solutions p(8) in the
(µm, µa)-parameter space. For κ < 2, the stability of p(0)

= ρ0/(2π) is investigated (8 = 0),
whereas the solution p(8)(ϕ) (8 > 0) describing polar order is inserted in (3.26) for κ > 2.
Figures 4 and 5 show the results of the stability analysis in the (µm, µa)-parameter space and
the dispersion relations for specific points (named (A)–(F) in figures 4 and 5), respectively.

The kinetic approach reveals instabilities nearby the points (A) and (B). In these parameter
regions, an interval of wavenumbers becomes unstable (cf figure 5). In (A), nematic filaments
are found in the individual-based simulations (see section 5). However, a long-wavelength
instability of the spatially homogeneous, disordered state p(0) is found in (C). According to the
individual-based simulations, a clustering phase emerges nearby the point (C) (cf figure 3(E)
for a snapshot of a related simulation).

Close to the order–disorder transition line in the regime of collective motion (κ >

2), a long-wavelength instability emerges as can be seen in figure 5(D). According to
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Figure 4. Stability of the solutions p(8) in the (µm, µa)-parameter space as
predicted by the kinetic theory (truncation of (3.26) at ñ = 50): black crosses
indicate stable solutions, red plus signs indicate instabilities. The blue (solid)
line corresponds to the critical line κ = 2 (3.15). Collective motion is possible for
κ > 2. The dispersion relation for the specific points (A)–(F) is given in figure 5.
Whereas an interval of wavenumbers become unstable in (A) and (B), long-
wavelength instabilities are found in (C)–(F). Parameters: Dϕ = 0.5; ρ0 = 1.5;
lc = 0.2; ls = 1; s0 = 1; µr = 1; µa and µm piecewise constant.

figures 5(D)–(F), two hydrodynamic modes exist, which satisfy σ(k → 0) → 0, corresponding
to transversal and longitudinal perturbations with respect to the direction of collective motion.
The destabilization of the spatially homogeneous, ordered state p(8) is always determined by
these hydrodynamic modes, leading to long-wavelength instabilities.

Furthermore, there exists a region in the parameter space where p(8) is stable against
spatially dependent perturbations. According to figure 4, this region is approximately bounded
by the critical line κ = 2 (3.15) and the secondary diagonal µm = −µa, which is equally
confirmed by the individual-based simulation (see section 5).

In summary, it can be stated that the kinetic approach enables the prediction of the structure
of the phase space as well as the dispersion relation for any microscopic model parameters.
However, the analysis involves numerical methods. Unfortunately, it is not possible to deduce
further analytical criteria for the stability of the solutions considered. For that purpose, addi-
tional assumptions are necessary, namely the restriction to the lowest Fourier coefficients and
small wavenumbers, as shown in section 4. The hydrodynamic theory supplies analytical criteria
for the stability of the solutions considered, such as critical microscopic model parameters.

In this context, we would like to emphasize one difficulty which occurs if the focus
is put on the dynamics of the lowest Fourier coefficients on large length scales, i.e. small
wavenumbers k. The matrix elements K̃n,r(k) involve Bessel functions of the first kind of k (see
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Figure 5. Dispersion relation σ(k = (k, 0)) for specific points indicated in
figure 4. Whereas an interval of wavenumbers becomes unstable in (A) and (B),
long-wavelength instabilities are found in (C)–(F). Parameters: (A) µa = 3.5,
µm = −2.25; (B) µa = −3, µm = −2.75; (C) µa = 2.25, µm = 0.25; (D) µa =

−3, µm = −2; (E) µa = −3.5, µm = −2; (F) µa = −0.75, µm = 1.25. Other
parameters: Dϕ = 0.5; ρ0 = 1.5; lc = 0.2; ls = 1; s0 = 1; µr = 1; µa and µm

piecewise constant.
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appendix A and [30]), which are oscillating functions with alternating Taylor coefficients [31].
The approximation

Jν,N (kx) ≈

N∑
m=0

(−1)m

m! 0(m + ν + 1)

(
kx

2

)2m+ν

(3.28)

will only be valid in the vicinity of k = 0. For large k, Jν,N (kx) tends to either plus or minus
infinity, but never to zero. This issue will be important for the derivation of hydrodynamic
equations in the next section and is restricting their validity to small wavenumbers k and large
length scales, respectively.

4. Derivation of hydrodynamic equations

4.1. Expansion of the Fokker–Planck equation in the angular Fourier domain

In this section, a hydrodynamic description of the many-particle system is derived directly
from the one-particle FPE (3.8). For this purpose, it is convenient to work in Fourier space
with respect to the angular variable ϕ. Both the particle density p(r, ϕ, t) and the force
Fϕ(r, ϕ, t) (3.7) are 2π -periodic functions in ϕ. Hence, they can be expanded in a Fourier series
as follows:

p(r, ϕ, t) =
1

2π

∞∑
n=−∞

f̂ n(r, t) e−inϕ, (4.1a)

Fϕ(r, ϕ, t) =
1

2π

∞∑
n=−∞

Q̂n(r, t) e−inϕ. (4.1b)

The FPE in Fourier space is obtained by multiplying (3.8) with einϕ and integration over
ϕ ∈ [0, 2π ]:

∂ f̂ n

∂t
+ s0

(
∇˜ f̂ n−1 + ∇˜∗ f̂ n+1

)
=

1

2π

in

s0

∞∑
j=−∞

f̂ j Q̂n− j − n2 Dϕ

s2
0

f̂ n . (4.2)

In (4.2), the complex derivative ∇˜ = 0.5
(
∂x + i∂y

)
was introduced. The Fourier coefficients

f̂ n(r, t) =

∫ 2π

0
dϕ p(r, ϕ, t)einϕ

= ρ(r, t)
〈
einϕ

〉
(4.3)

obey the symmetry f̂
∗

n(r, t) = f̂ −n(r, t), since p(r, ϕ, t) is real valued. The lowest Fourier
coefficients are related to macroscopic physical quantities, namely the marginal particle density
ρ(r, t) and also the momentum field w(r, t) = (wx , wy) via

ρ(r, t) = f̂ 0(r, t), (4.4a)

wx(r, t) =
s0

2

(
f̂ 1(r, t) + f̂ −1(r, t)

)
, (4.4b)

wy(r, t) =
s0

2i

(
f̂ 1(r, t) − f̂ −1(r, t)

)
. (4.4c)

The second Fourier coefficients are related to the nematic order parameter
∣∣〈e2iϕ

〉∣∣ and the
symmetric temperature tensor, as defined in [24, 26, 29], which is a measure for the width

New Journal of Physics 15 (2013) 085014 (http://www.njp.org/)

http://www.njp.org/


16

of the velocity distribution (see appendix C for details). The dynamics of the temperature tensor
is not derived explicitly in this context.

In the following, the dynamics of the density and the momentum field is deduced from
(4.2). Therefore, the Fourier coefficients of the force Q̂n(r, t) are approximatively calculated by
expanding p(r + r j i , ϕ, t) into a multidimensional Taylor series for small

∣∣r j i

∣∣ [32], substituting
(4.1a) into (3.7) and evaluating the remaining integral. Here, we consider all terms up to the
second order of the Taylor expansion. This approximation holds for spatially slowly varying
densities, i.e. large system size compared to the interaction radius ls.

Again, the FPE turns into an infinite hierarchy of equations (4.2) in Fourier space. An
appropriate closure scheme is used in order to consider only the first Fourier coefficients.
Close to the order–disorder transition, the degree of polar order is assumed to be small, i.e.
|w| /(s0ρ0) ∝ ε, where ε is a small number and the particle density is locally close to the
homogeneous distribution. Furthermore, the dynamics of the Fourier coefficients (4.2) suggests

that
∣∣∣ f̂ 1

∣∣∣ is larger than
∣∣∣ f̂ n

∣∣∣ with |n| >1, because of the damping term in (4.2) proportional to

n2, leading to the scaling relations

ρ(r, t) − ρ0 ∝ ε, ∇˜ ∝ ε, ∂t ∝ ε, f̂ n ∝ ε|n|. (4.5)

In [21] it is argued that the scaling ansatz of the temporal and spatial derivatives reflects
the propagating nature of the system. This closure scheme described above was already used
in [18, 21, 23, 32] and in [22] in a modified way for nematic particles. A system of three
nonlinear partial differential equations is obtained by keeping all terms up to the order ε3.

∂ρ

∂t
= −s0

(
∇˜ f̂

∗

1 + ∇˜∗ f̂ 1

)
, (4.6a)

∂ f̂ 1

∂t
= (ξ1ρ − ξ5) f̂ 1 − ξ1 f̂ 2 f̂

∗

1 +

(
32

45
ξ3ρ0 − s0

)
∇˜∗ f̂ 2 +

(
32

9
ξ3ρ − ξ2ρ − s0

)
∇˜ρ

−
64

45
ξ3 f̂

∗

1∇˜ f̂ 1 +
ξ4ρ0

2

(
1 f̂ 1 + 2∇˜2 f̂

∗

1

)
, (4.6b)

∂ f̂ 2

∂t
= 2

[
−2ξ5 f̂ 2 + ξ1 f̂

2

1 −

(
s0

2
+

64

45
ξ3ρ

)
∇˜ f̂ 1 +

(
32

9
ξ3 − ξ2

)
f̂ 1∇˜ρ − ξ4ρ0∇˜2ρ

]
. (4.6c)

The following coefficients are introduced:

ξ1 =
π

4

∫ ls

lc

dr j i r j i

[
µm(r j i) − µa(r j i)

]
, (4.7a)

ξ2 =
π

s0

∫ lc

0
dr j i r 2

j i µr(r j i), (4.7b)

ξ3 =
1

π

∫ ls

lc

dr j i r 2
j i

[
µm(r j i) + µa(r j i)

]
, (4.7c)

ξ4 =
π

8

∫ ls

lc

dr j i r 3
j i

[
µm(r j i) − µa(r j i)

]
, (4.7d)

ξ5 =
Dϕ

s2
0

. (4.7e)
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Equation (4.6a) is simply the continuity equation representing the conservation of the particle
number N . Please note the difference in dependence of the transport coefficients in (4.6), due
to a consistent application of the scaling ansatz ρ(r, t) − ρ0 ∝ ε. Some depend on the global
density ρ0 whereas others depend on the local density ρ(r, t).

4.2. Hydrodynamic limit

Another simplification of the system (4.6) is reached by adiabatically eliminating f̂ 2, i.e.
∂t f̂ 2 ≈ 0, where

f̂ 2 ≈
1

2ξ5

[
ξ1 f̂

2

1 −

(
s0

2
+

64

45
ξ3ρ0

)
∇˜ f̂ 1

]
(4.8)

follows. This approximation is only valid if the first Fourier mode relaxes considerably more
slowly than f̂ 2. The assumption of a time scale separation between the first and second
Fourier modes can only be justified if |ξ1ρ − ξ5| � 4ξ5, which is equivalent to −6 � κ � 10.
Furthermore, ξ5 ∝ Dϕ > 0 has to hold.

Please note that all terms of the order ε3 were dropped in (4.8) according to the scaling
relations (4.5).

By identifying Fourier coefficients with physical quantities (4.4), familiar hydrodynamic
equations are obtained:

∂ρ

∂t
= −∇ · w (4.9a)

∂w

∂t
=
(
λ1 − η1 |w|

2
)
w + λ2∇ρ + λ4 1w + λ5∇(∇ ·w) + η2(w · ∇) w + η3(

1
2∇ |w|

2
− w (∇ ·w)).

(4.9b)

The transport coefficients {λi , ηi} as functions of ξi (4.7) read

λ1 = ξ1ρ − ξ5, (4.10a)

λ2 =
s0

2

(
32

9
ξ3ρ − ξ2ρ − s0

)
, (4.10b)

λ4 =
1

4

[
s0 −

32
45ξ3ρ0

2ξ5

(
s0

2
+

64

45
ξ3ρ0

)
+ ξ4ρ0

]
, (4.10c)

λ5 =
ξ4ρ0

2
, (4.10d)

η1 =
ξ 2

1

2ξ5s2
0

, (4.10e)

η2 =
3ξ1

8s0ξ5

(
256ξ3ρ0

135
− s0

)
−

32ξ3

45s0
, (4.10 f )

η3 =
5ξ1

8ξ5
−

32ξ3

45s0
. (4.10g)
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The hydrodynamic equations (4.9) are comparable in structure to the theory of Toner and
Tu [14, 15].

In the theory of Toner and Tu, the coefficients η2 and η3 are assumed to be non-zero
phenomenological parameters due to the absence of Galilean invariance [15]. Indeed, in our
model, η2 and η3 can take both negative and positive values. Likewise, λ2 can be positive
and negative. A positive λ2-term leads to a flow into the direction of higher densities and
consequently to clustering, as shown below. The damping coefficient η1 is positive for all
microscopic parameters, consistently. The sign of the different transport coefficients is discussed
in appendix B in detail.

The stability of the hydrodynamic equations (4.9) requires that λ4 and λ5 are greater than
zero. In this region, the hydrodynamic equations describe collectively moving bands and the
theory of Toner and Tu applies. In contrast to the original Vicsek model, in our model the
coefficients λ4 and λ5 may change signs. As shown in [3], a negative λ4 may lead to an instability
of spatially homogeneous states. In this case, higher order derivatives are needed in (4.9b) in
order to guarantee the stability of the dynamics4. Moreover, the time scale separation of the
first and second Fourier modes is only justified for λ1 ≈ 0. For the remaining analysis of the
hydrodynamic equations, we will assume the stability and validity of our hydrodynamic theory
(4.9).

Let us begin the analysis of (4.9) by neglecting the spatial derivatives and analysing the
fixed points of

dw

dt
=
(
λ1 − η1 |w|

2
)
w. (4.11)

That is the standard symmetry-breaking term present in all models of collective motion [3, 15,
19–21, 23, 32]. Apparently, two spatially homogeneous solutions exist: Firstly, w0 = 0
corresponding to a disordered phase and vanishing centre of mass velocity. Secondly,

w1 =

√
λ1

η1
e, (4.12)

where e denotes an arbitrary unit vector reflecting the isotropy of the system. Without loss of
generality we set e = ex . For λ1 < 0, only the fixed point w0 exists and is stable against spatially
homogeneous perturbations. For λ1 > 0, w1 is a second fixed point corresponding to an ordered
phase with non-zero mean-speed (swarming phase).

The supercritical pitchfork bifurcation in λ1 = 0, i.e.∫ ls

lc

dr j i r j i

(
µm(r j i) − µa(r j i)

)
=

4Dϕ

πρ0s2
0

(4.13)

corresponds to the order–disorder transition (3.16) described in section 3.1. By introducing the
dimensionless coupling strength κ (3.10) again,

κ =
πρ0s2

0

2Dϕ

∫ ls

lc

dr j i r j i

(
µm(r j i) − µa(r j i)

)
, (4.14)

the polar order parameter 8H = |w1| /(s0ρ0) as described by the hydrodynamic theory can be
written as follows5:

8H = 2

√
κ − 2

κ
. (4.15)

4 The derivation of those terms goes beyond the scope of the present work.
5 The density ρ(r, t) was approximated by ρ0 for that argument in accordance with (4.5).
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Figure 6. Comparison of the order parameter for the spatially homogeneous
obtained as an exact solution of the nonlinear FPE from (3.13) and the
hydrodynamic theory (4.15).

Close to the critical point κc = 2, one recovers the correct scaling behaviour 8H '
√

κ − 2 (3.16). However, for large κ the polar order parameter 8H tends to zero according
to (4.15) as shown in figure 6. This is a consequence of the approximations made, namely the
elimination of higher Fourier modes. If one allows a maximal relative error (8 − 8H)/8 of 5%,
an upper bound for κ is found numerically: κ 6 2.617.

Equation (4.13) defines the transition line in the (µm,µa)-parameter space. Interestingly,
only the integrated interaction strengths are important, the exact functional dependence on the
distance between two particles µm,a = µm,a(r j i) does not matter. Furthermore, collective motion
is possible in both situations, pure attraction to particles moving away (µm > 0, µa = 0) and pure
repulsion from approaching particles (µm = 0, µa < 0), respectively. Since the critical coupling
parameter κc = 2 is positive, polar order cannot be found in the anti-alignment regime.

4.3. Stability of the spatially homogeneous solutions

We proceed with the analysis of homogeneous solutions against spatial perturbations. At first,
let us consider the stability of the disordered, homogeneous solution with w0 = 0. In order to
investigate the stability of w0, the ansatz

ρ(r, t) = ρ0 + δρ(r, t), (4.16a)

w(r, t) = δw(r, t) (4.16b)

is inserted in (4.9) and the resulting equations are linearized in the perturbations which are
assumed to be small. The linearized equations read

∂δρ

∂t
= −∇ · δw, (4.17a)

∂δw

∂t
= λ1δw + λ2∇δρ + λ4 1δw + λ5∇(∇ · δw). (4.17b)
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Inserting the exponential ansatz

δρ(r, t) = ζρ exp (σ t + ik · r) , (4.18a)

δw(r, t) = ζw exp (σ t + ik · r) (4.18b)

yields the dispersion relation σ(k). Since w0 is isotropic, the eigenvalues σ are independent of
the direction of the wavevector:

σ1 = λ1 − λ4k2, (4.19a)

σ2,3 =
1

2

[
λ1 − (λ4 + λ5) k2

±

√[
λ1 − (λ4 + λ5) k2

]2
+ 4k2λ2

]
. (4.19b)

Provided all eigenvalues are less than zero, the disordered spatially homogeneous state is stable.
The first eigenvalue σ1 is equal to λ1 for k = 0, i.e. the stability of w0 is determined by the sign
of λ1. That is the destabilization of the homogeneous state as discussed before. For λ4 > 0, the
first eigenvalue σ1 is monotonically decreasing. However, the eigenvalue σ1 is monotonically
increasing for λ4 < 0. In this case, the hydrodynamic equations (4.9) lose their validity. This
unphysical behaviour is due to the restriction to second derivatives when the integral (3.7) was
calculated. Furthermore, it is problematic that the Taylor coefficients have alternating signs so
that Taylor polynomials converge slowly as argued at the end of section 3.2. To predict the
behaviour of the system in that case, one needs to consider higher order terms. Unfortunately,
the number of terms and Fourier coefficients that has to be considered to be consistent with the
scaling ansatz (4.5) grows rapidly.

Nevertheless, it is possible to predict the stability of w0 by analysing those eigenvalues,
which tend to zero for small wavenumbers (hydrodynamic modes [15]). For small
wavenumbers, the eigenvalue σ2 (σ2 > σ3) is expanded in a Taylor series:

σ2 ' −
λ2

λ1
k2 +

λ2
2 − λ1λ2 (λ4 + λ5)

λ3
1

k4 +O(k6). (4.20)

Close to the order–disorder transition line, λ1 is approximately zero. Therefore it is sufficient to
keep the leading order terms in 1/λ1 [19]:

σ2 ' −
λ2

λ1
k2 +

λ2
2

λ3
1

k4 +O(k6). (4.21)

Suppose w0 is stable against spatially homogeneous perturbations, i.e. λ1 < 0. In that case,
a long-wavelength instability emerges for positive λ2. Considering (4.9), this instability is
reasonable: for λ2 > 0, inhomogeneities in the particle density will lead to a flow in the direction
of the density gradients while for λ2 < 0 density inhomogeneities decay due to inverse flows.
The amplification of density gradients will lead to an agglomeration of particles (cf figure 3(E)).
This hypothesis is supported by numerical simulations of the microscopic model, as shown
in the next section and in [29]. A similar instability due to the gradient term in (4.9) is also
known from other active matter systems [23]. Whereas in [23] the instability is due to the
density-dependent motility of the particles, in our case the instability is referable to the selective
interaction. The critical line is given by λ2 = 0, i.e.∫ ls

lc

dr j i r 2
j i

(
µm(r j i) + µa(r j i)

)
=

9π

16s0ρ0

(
s2

0

2
+

ρ0π

2

∫ lc

0
dr j i r 2

j iµr(r j i)

)
. (4.22)
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The corresponding analysis of the stability of the spatially homogeneous ordered state for
|w1| > 0 using the full hydrodynamic equations is much more complicated. It is done in great
detail for the original Vicsek model in [19] for structurally identical hydrodynamic equations. In
the following, the key points of the analysis are summarized. Moreover, an additional instability
is found that is not present in the Vicsek model because in our model the transport coefficients
λ2, η2 and η3 may change their algebraic signs. Inserting the ansatz

ρ(r, t) = ρ0 + δρ(r, t), (4.23a)

w(r, t) = w1 + δw(r, t) (4.23b)

into (4.9) and linearization yields

∂δρ

∂t
= −∇ · δw, (4.24a)

∂δw

∂t
=

∂λ1

∂ρ

∣∣∣∣
ρ0

δρ w1 − 2η1 (w1 · δw) w1 + λ2∇δρ + λ41δw + λ5∇(∇ · δw) + η2 (w1 · ∇) δw

+η3 (∇ (w1 · δw) − w1 (∇ · δw)) . (4.24b)

Again, inserting (4.18) yields the growth rate σ dependent on the wavevector k. We restrict
ourselves to longitudinal perturbations, meaning that the wavevector k, the perturbation δw

and the direction of collective motion w1 are pointing in the same direction, because we are
interested in the emergence of collectively moving bands (cf figure 3). The growth rate reads

σ± =
1
2

[
−2λ1 − (λ4 + λ5) k2 + iη2 |w1| k ±

√
α1 + iα2

]
, (4.25)

where the coefficients

α1 =
[
(λ4 + λ5) k2 + 2λ1

]2
− k2

[
(η2 |w1|)

2
− 4λ2

]
, (4.26a)

α2 = −2 |w1| k

{
2

∂λ1

∂ρ

∣∣∣∣
ρ0

+ η2

[
(λ4 + λ5) k2 + 2λ1

]}
(4.26b)

were introduced. The real part of the largest eigenvalue reads as follows:

Re (σ+)(k
2) = −λ1 −

λ4 + λ5

2
k2 +

√
α1 +

√
α2

1 + α2
2

8
. (4.27)

Close to the order–disorder transition, λ1 is small, with the result that it is sufficient to keep the
lowest order in 1/λ1. The following expression is obtained for small wavenumbers [19]:

Re (σ+)(k
2) =

ξ 2
1

8η1λ
2
1

k2
−

5ξ 4
1

128η2
1λ

5
1

k4 +O(k6). (4.28)

That implies that for λ1 & 0, a long-wavelength instability emerges. By expanding (4.27) in a
Taylor series for small k (not assuming that λ1 ' 0), one obtains

Re (σ+)(k
2) =

(
1

η1

(
ξ1

λ1
+ η2

)2

−
η2

2

η1
+

4λ2

λ1

)
k2

8
+O(k4). (4.29)
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Figure 7. (A) Phase space as predicted by the hydrodynamic theory and (B)
phase space in comparison to the predictions of the kinetic approach (see
section 3.2). The arrows indicate long-wavelength instabilities in (B), black
crosses indicate stable solutions, red plus signs indicate instabilities (see also
figure 4) in figure (B). Below the critical blue (solid) line λ1 = 0 (equal to κ = 2
(4.13)), only the solution w0 = 0 (among the spatially homogeneous solutions)
exists. It is unstable above the critical (dotdashed) line λ2 = 0 (4.22). Above the
blue (solid) line, w0 is unstable. Besides, the solution w1 =

√
λ1/η1 e exists. It is

unstable beyond a hyperbola that is bounded by two asymptotes according to the
hydrodynamic theory: black (dashed) line (4.30a) and blue (solid) line (4.30b).
The subspace of the parameter space where the hydrodynamic theory is valid is
indicated by the grey-shaded region. Parameters: Dϕ = 0.5; ρ0 = 1.5; lc = 0.2;
ls = 1; s0 = 1; µr = 1; µa and µm piecewise constant.

In general, an instability appears if the first Taylor coefficient becomes positive, because
σ+(k → 0) → 0. Unfortunately, it is not illuminating to derive the critical line µm = f (µa),
where the relevant Taylor coefficient is zero, analytically, because the resulting expressions are
quite complicated. The numerical analysis reveals that the spatially homogeneous, ordered state
is unstable beyond a hyperbola which is bounded by the two asymptotes (see also figure 7)

µm + µa =
135π

64ρ0s0

(
l3
s − l3

c

) (s2
0

2
+

2πρ0l3
c µr

21

)
, (4.30a)

µm − µa =
8Dϕ

πρ0s2
0

(
l2
s − l2

c

) . (4.30b)

The instability of w1 for

µm + µa >
135π

64ρ0s0

(
l3
s − l3

c

) (s2
0

2
+

2πρ0l3
c µr

21

)
(4.31)

is due to the selective interaction, therefore it is not present in the original Vicsek model. The
two asymptotes (4.30) were derived using the approximation that the interaction strengths do
not depend on the distance. The second line (4.30b) is equal to the critical line λ1 = 0 (4.13).
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As already mentioned, negative values of λ4 and λ5 may lead to additional instabilities,
which go beyond the scope of this work, because the hydrodynamic equations are restricted to
second derivatives. However, neither (4.21), (4.28) nor (4.29) depend on λ4 and λ5. Hence, the
spatially homogeneous states and instabilities described above are always present in our model.

The predictions of the hydrodynamic theory, derived in this section, are compared with the
predictions of the stability analysis using the kinetic description in section 3.2 in figure 7(b).
The long-wavelength instability of w0, leading to clustering for λ2 > 0 as well as the long-
wavelength instability close to the critical point (κ = 2, λ1 = 0) are confirmed by the kinetic
approach.

Within the range of validity of the hydrodynamic theory, no contradictions are found with
the kinetic theory. However, figure 7(b) indicates that the range of validity of the hydrodynamic
theory does not cover all relevant parts of the parameter space. In particular, the destabilization
of the ordered state w1 is not sufficiently well described by the hydrodynamic equations. Please
note that the hydrodynamic theory is only valid for λ4 > 0 (guarantees the stability for large
wavenumbers) and 06 κ 6 2.617, where the lower bound is equivalent to λ5 > 0 and the upper
bound ensures small deviations 8 − 8H. Due to the last limitation, it is impossible to study the
dynamics of the system for high-order parameters, i.e. far away from the critical point.

However, one can show numerically that the dispersion relations of the hydrodynamic
theory (4.9) and the full system (3.18) coincide for small wavenumbers in the parameter
range, where the hydrodynamic equations are valid. The hydrodynamic theory yields only three
eigenvalues, which coincide with three eigenvalues given by the kinetic theory in the limit
k → 0. For large k, deviations occur due to the restriction to second derivatives (cf scaling
ansatz (4.5)).

Nevertheless, the hydrodynamic theory yields important insights on the macroscopic
behaviour of the system. The symmetry breaking, i.e. the existence of a collective motion
mode is predicted. Moreover, the stability of the homogeneous solutions to the hydrodynamic
equations can be analysed analytically and it allows us to obtain analytical results on the
order–disorder transition line as well as the occurrence of clustering. Thus, the structure of the
phase space is roughly estimated by the hydrodynamic theory. New instabilities are found due
to changes in the algebraic signs of the coefficients λ2 and η2. Furthermore, the structure of the
theory suggests that all predictions of the theory by Toner and Tu [15] are expected to arise in
our system, such as giant number fluctuations. Within the range of validity of the hydrodynamic
theory, the predictions of the kinetic theory, which is based on the mean-field assumption only
(see section 3 for details), are in agreement with the hydrodynamic theory, whose range of
validity is known quantitatively.

4.4. Large-system limit

The hydrodynamic theory is simplified further if the limit of large systems, i.e. large particle
densities (N → ∞) and small interaction regions (ls → 0) is considered, such that the number of
particles within the interaction area is kept fixed: ρ l2

s ≈ const. This approximation corresponds
to a zeroth-order Taylor expansion of the force (3.7): p(r + r j i , ϕ j , t) ≈ p(r, ϕ j , t). This
approximation of ‘ultra-local’ coupling is used in [19, 21] within a Boltzmann approach, where
the collision integral is an integral over the particles orientation but not over relative distances.
In that case, the hydrodynamic equations read

∂ρ

∂t
= −∇ · w, (4.32a)
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∂w

∂t
+

3s2
0 ξ1

8Dϕ

(w · ∇) w =

[(
ξ1ρ −

Dϕ

s2
0

)
−

ξ 2
1

2Dϕ

|w|
2

]
w −

s2
0

2
∇ρ +

s4
0

16Dϕ

1w

+
5s2

0 ξ1

8Dϕ

(
1

2
∇ |w|

2
− w (∇ ·w)

)
. (4.32b)

Since Dϕ is always positive, the dynamics is stable for all microscopic parameters. The
coefficient ξ1 in front of the hydrodynamic term (w · ∇) w, which corresponds to the convective
derivative in the equilibrium case, is positive for µm > µa and is negative for µm < µa. The
same holds true for the other ‘hydrodynamic terms’ ∇ |w|

2 and w (∇ ·w). Microscopically,
the transition from positive ξ1 to negative ξ1 means that the selective interaction turns from an
effective alignment to an effective anti-aligning interaction, meaning that a focal particle aligns
its velocity in an anti-parallel fashion with respect to the local mean-velocity (see figure 2).
Similar conclusions could possibly be drawn from [23, 38], if one allows the alignment strength
to be negative. In that part of the parameter space, the nematic structures emerge in our model
according to the individual-based simulations discussed in the next section.

5. Comparison with numerical simulations

In order to analyse the stability of the disordered, homogeneous state, we have performed
systematic numerical simulations of the individual-based model (2.1). The degree of collective
motion was measured using the time-averaged polar order parameter

〈8〉t =

〈∣∣∣∣∣ 1

Ns0

N∑
i=1

vi(t)

∣∣∣∣∣
〉

t

. (5.1)

Here 〈·〉t represents a temporal average. 〈8〉t = 1 corresponds to perfect orientational order with
all agents moving in the same direction, whereas a vanishing 〈8〉t corresponds to a completely
disordered system. Please note that 〈8〉t = 0 can only be observed in the thermodynamic limit
(N → ∞). In a finite, disordered system we will measure a small, but finite 〈8〉t ' 0 due to
finite-size fluctuations of the order 1/

√
N .

In order to measure the deviations from a spatially homogeneous state, we have subdivided
the simulation domain into square cells of size ls × ls set by the sensory range. We used this
spatial subdivision to calculate the spatial entropy function

S = −

∑
j,n j 6=0

p j log p j = −

∑
j,n j 6=0

n j

N
log

n j

N
, (5.2)

where the summation occurs over all occupied cells of the grid with n j > 1 (n j is the number of
particles in the j th cell). This allows us to define the following spatial order parameter:

〈9〉t =

〈
1 −

S

Smax

〉
t

(5.3)

with Smax being the maximal value of the spatial entropy corresponding to a homogeneous
distribution of particles. 〈9〉t = 0 corresponds to a perfectly disordered state, whereas 〈9〉t >0
indicates a spatially inhomogeneous distribution of particles (clusters, bands), where 〈9〉t = 1
corresponds to the extreme situation where all particles are located in a single cell.

In order to test the stability of the disordered state, we have averaged the two order
parameters over a time interval 1t = 1000 after an initial time tini = 1000. Please note that
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Figure 8. Comparison of numerical simulations of the individual-based model
with the predictions of the hydrodynamic theory on the stability of the disordered
solution in the (µm, µa)-plane for different densities: ρ0 = 10.0 (L = 20, top)
and ρ0 = 2.5 (L = 40, bottom). Left: average orientational order parameter 〈8〉t ;
right: average spatial inhomogeneity order parameter 〈9〉t . The solid blue (grey)
lines show the critical lines for the instability of the disordered solution. Line (1)
corresponds to the orientation instability (4.13), whereas line (2) corresponds
to the clustering instability (4.22). Other parameters: Dϕ = 0.06, N = 4000,
µr = 5, lc = 0.2, ls = 1, s0 = 0.25, dt = 0.01.

for certain parameter values it is possible that the system has not reached a stationary state after
t = 1000. However, this initial time is sufficient to account for deviations from the homogeneous
disordered state, which we are interested in. Accordingly, we are not interested in the actual
stationary values of 〈8〉t and 〈9〉t . Thus, we set the upper limit of the colour bar for both order
parameters in figures 8 and 9 to 0.2. In consequence, all regions of parameter space, where
〈8〉t > 0.2 or 〈9〉t > 0.2, will appear white in figures 8 and 9.

The stochastic differential equations of the microscopic model were integrated with
periodic boundary conditions using the stochastic version of the Euler algorithm with a
numerical time step dt = 0.01. This time steps is two orders of magnitude smaller than the
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Figure 9. Results of numerical simulations on the stability of the disordered
solution in the (µm, µa)-plane for vanishing short-ranged repulsion (lc = 0). The
spatial order parameter 〈9〉t shows emergence of structures below the critical
line (2). Other parameters: N = 4000, ls = 1, s0 = 0.25, Dϕ = 0.02, L = 40.

average time scale of turning of individuals due to binary interactions for the range of interaction
strengths in the simulations. Additional sample runs with smaller time steps did not show any
significant differences in the simulation results. The initial condition for all simulations was the
disordered, spatially homogeneous state.

For simplicity, we consider only constant interaction strengths (independent of the
distance): µm,a(r j i) = µm,a = const. Here, we focus on the analysis of the stability of the
disordered, homogeneous solution with respect to variations of the interaction parameters µa

and µm. The analytical predictions of the hydrodynamic theory for the onset of instability of
the disordered solution are represented by two intersecting critical lines in the (µa, µm)-plane
perpendicular to each other (figure 8). The first one (µa ∼ µm) corresponds to the orientational
instability and onset of collective motion, cf (4.13) and line (1) in figure 8, whereas the second
one (µa ∼ −µm) corresponds to the density instability associated with structure formation due
to effective attraction between particles, cf (4.22) and line (2) in figure 8. The homogeneous,
disordered solution is predicted to be linearly stable only ‘below’ both critical lines.

The emergence of collective motion as well as the destabilization of the homogeneous
density distribution is mostly confirmed by the numerical individual-based simulations. In
specific parameter regions, deviations from the hydrodynamic theory are observed.

In particular, we observe a high degree of collective motion in the effective-alignment
region and strong deviations from the homogeneous spatial distribution of particles in the
pure attraction regime as well as in the effective-alignment regime (in particular in the
regime (µm, µa) ∈ {(µm, µa) : |µm| > |µa|, µm > 0}). This also confirms our previous results
of comprehensive numerical investigations of related individual-based models [29, 33].

Disagreements between simulations and the theoretical prediction (non-vanishing
orientational order and/or clustering in simulations below the two critical lines) appear
predominantly close to the intersection of the two critical lines and are stronger at low
densities. They might be associated with the mean-field assumptions used in order to derive
the hydrodynamic theory. On the one hand, at low densities the assumption of a continuous
density of neighbours is strongly violated. On the other hand, correlations between particles
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Figure 10. A sequence of snapshots of one simulation for different times
visualizing the formation of nematic filaments for µa = 0.6, µm = −0.4. The
inset in (D) shows a close up of the spatial region indicated by the square in
the upper left corner. Other parameters: N = 4000, ls = 1, lc = 0, s0 = 0.25,
Dϕ = 0.02, L = 36.

may play an important role in the respective parameter range (likewise for high densities).
Thus, the factorization of the N-particle PDF into a product of one-particle PDFs (3.5) leads
to a questionable approximation in that case.

Another possible explanation for disagreement between theory and simulation is a
breakdown of the homogeneous, disordered solution due to finite amplitude instabilities at
parameters where this solution is still linearly stable.

For weak (or vanishing) short-ranged repulsion (ls � lc or µr � |µm,a|), we observe
inhomogeneous states without polar order far in the effective anti-alignment regime (µm < 0,
µa > 0), clearly below the critical line predicted by the hydrodynamic theory as shown in
figure 9. This instability was missed in the previous study of the model [29]. We were able
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to confirm it, using our kinetic approach (see section 3) by positive eigenvalues of the matrix
determining the stability of the disordered solution at the respective parameter values. A close
inspection of the dynamics of the individual-based model in this parameter region reveals the
emergence of dense nematic filaments with particles moving in an anti-parallel fashion within
the filament, whereby approximately half of the particles move in either direction along the
filament (see figure 10).

The hydrodynamic theory derived in section 4 is not able to account for this kind of
structure as it considers only the (polar) momentum field and not the nematic director field as a
coarse-grained variable. An extension of the hydrodynamic theory by including an equation for
the nematic director field may allow for identifying instabilities due to the onset of nematic
order, however it goes beyond the scope of this work. We refer the reader to some recent
theoretical works on active nematics [22, 34, 35, 39, 40].

6. Discussion

The self-propelled particle model with selective attraction–repulsion interaction shows a rich
dynamical behaviour. In the ‘effective alignment’ regime, characterized by repulsion from
approaching agents and attraction to moving away agents, the model behaviour is closely
related to the well-known Vicsek model, in particular for |µa| = |µm|, µa < 0, µm > 0. In
general, for repulsion from approaching particles equal to, or stronger than, the attraction to
particles moving away (|µa|> |µm|, µa < 0, µm > 0), we typically observe the homogeneous
flocking phase with giant number fluctuations predicted by Toner and Tu (see e.g. figure 3(B)).
However, in the opposite case, if the attraction to particles moving away starts to dominate,
we observe strong clustering and effective phase separation, which is not observed in minimal
models with constant speed and velocity-alignment. Furthermore, by continuously varying
model parameters, we can observe other phases such as unpolarized clusters for pure attraction
or dense filamentous nematic structures in the effective anti-alignment regime.

In order to obtain a fundamental understanding of the phase diagram of the model, we
derived first a kinetic description of the system based on the Fourier transform of the PDF. The
corresponding system of equations for the successive Fourier modes can be used for efficient
numerical analysis of the linear stability of solutions of the nonlinear FPE. We have analysed the
stability of the spatially homogeneous solutions. In addition, we have shown that the integration
over the social forces yields Bessel functions of the first kind, which enter the matrix elements
of the corresponding linearized system of differential equations in Fourier space. Due to the
alternating Taylor coefficients of the corresponding Bessel functions, a closure approximation,
corresponding to a finite order expansion, immediately leads to unphysical divergences at large
wavenumbers k.

Furthermore, we have derived a hydrodynamic theory by truncating the ‘small wavenumber
expansion’ at the second order. The resulting hydrodynamic equations are in agreement with
the generic Toner and Tu theory of active matter. Our work establishes a direct link between
the microscopic parameters of the individual-based model and the macroscopic parameters
governing the behaviour of the coarse-grained hydrodynamic variables (density and momentum
fields). Interestingly, the hydrodynamic parameters, as for example η3, which relates to a splay
elasticity in corresponding equilibrium systems, or λ4 and λ5 which govern the relaxation
of splay and bend fluctuations [43], may change their sign in dependence on microscopic
model parameters. Using the hydrodynamic theory, we can track down such sign changes to
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corresponding microscopic dynamics. Considering a limit of large system sizes, we reveal
the importance of the change of sign of ξ1, which indicates the transition from an overall
aligning effect of the social interaction to the opposite case where the interaction tends to
anti-align interacting particles. Finally, a comparison between the eigenvalues obtained from
hydrodynamic theory and the kinetic description, which takes higher orders into account, allows
us to assess the validity of the hydrodynamic theory.

We performed extensive simulations of the microscopic model based on stochastic
differential equations focusing on the (µm, µa)-plane in the parameter space. The critical lines
obtained from the hydrodynamic theory, where the disordered, spatially homogeneous solution
becomes unstable, show good agreement with the numerical results at sufficiently high densities.
However, at certain parameters clear deviations appear, such as for example in the vicinity of
the crossing of the two critical lines at low densities.

This leads us to the important question of the validity of the approximations made
during the coarse graining. One common assumption is that of molecular chaos, which allows
one to factorize the N-particle PDF into a product of N one-particle PDFs. In models with
collision-like interactions, the approximation is supposed to work best at low densities, where
the mean-free path of particles between interactions is large [18, 20]. However, in our case,
we observe large deviations at low densities. This contradicting effect may be due to an
approximation required to evaluate the integrals over the social forces. It relies on a Taylor
expansion of the one-particle density function around the position of a focal individual. However
at low densities, the interaction range ls is not the suitable coarse-graining scale as assumed
implicitly in the formulation of the one-particle FPE. Similar arguments have been put forward
also in [23]. The impact of individual (angular) noise on the mean-field assumption may
also be not straightforward. Intuitively, one would argue that uncorrelated individual noise
terms always decrease correlations between interacting particles. However, for self-propelled
particles, angular noise leads to a stronger localization of particles [41, 42], thus in principle also
to a prolonged interaction between neighbours, which may in principle enhance multi-particle
correlations.

Furthermore, the systematic comparison of the prediction of the kinetic theory with the
predictions of the hydrodynamic theory and numerical simulations revealed an unexpected
additional instability. It corresponds to the emergence of dense filamentous structures with
nematic order. Onset of nematic order is linked to the dynamics of the second Fourier amplitude,
which was adiabatically eliminated in order to derive the hydrodynamic theory. Thus, the
presented hydrodynamic theory cannot account for this instability, but it can be well traced
by numerical evaluation of the linearized kinetic equations derived in section 3.

So far, hydrodynamic equations of active matter were derived directly from minimal
microscopic models of self-propelled particles with velocity-alignment. Here, we show that it is
also possible to derive such equations for a more complex model of self-propelled particles with
selective attraction–repulsion interaction and establish a direct link between the microscopic and
macroscopic level of description. The model exhibits a large variety of different phases and we
believe it might be not only of interest from the biological point of view, as an alternative to
models including explicit alignment of individual agents, but that it also offers an interesting
playground for the study of self-organization, pattern formation and phase transitions at far-
from-equilibrium conditions.
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Appendix A. Calculation of K̃p,n (3.20)

In this section, it is sketched how the matrix elements K̃ p,n(k), defined by

K̂ p(k, t) =

∫
d2r

∫ 2π

0
dϕ F(r, ϕ, t)eik·r+ipϕ, (A.1a)

K̂ p(k, t) =

∞∑
r=−∞

K̃ p,r(k)ĝr(k, t) (A.1b)

and used for the stability analysis of the spatial homogeneous solutions (3.11) of the FPE (3.8)
in section 3.2, are calculated. K̃ p,n is obtained by inserting the inverse Fourier transform of the
one-particle PDF

p(r, ϕ, t) =
1

(2π)3

∞∑
n=−∞

∫
d2k ĝn(k, t)e−ik·r−inϕ (A.2)

into (3.7) and solving the remaining integral:

Fϕ(r, ϕ, t) =
1

(2π)3

∞∑
p=−∞

∫
d2k ĝp(k, t)e−i k·r

∫ ϕ+2π

ϕ

dϕ j e−ipϕ j

{
2s0 sin

(
ϕ − ϕ j

2

)

×

∫ ls

lc

dr j i r j i

[
µm(r j i)

∫ ϕ+ϕ j
2 +π

ϕ+ϕ j
2

dα e−ik·r j i sin(α − ϕ) sin
(ϕ + ϕ j

2
− α

)

−µa(r j i)

∫ ϕ+ϕ j
2 +2π

ϕ+ϕ j
2 +π

dα e−ik·r j i sin(α − ϕ) sin
(ϕ + ϕ j

2
− α

)]

−

∫ lc

0
dr j i r j i µr(r j i)

∫ 2π

0
dα sin(α − ϕ)e−ik·r j i

}
. (A.3)

In order to perform the integration over α and ϕ j , the following identity is used to express the
exponential function:

e−ik·r j i = J0(k r j i) + 2
∞∑

s=1

(−i)s Js(k r j i) cos (s (α − χ)) , (A.4)

where k = k (cos χ, sin χ) and r j i = r j i (cos α, sin α). The Bessel functions of the first kind are
denoted by Jν(x).

Performing the integration yields the force expanded into a Fourier series and as a linear
combination (A.1b) of the Fourier coefficients ĝr(k, t), where one can read off the elements of
the infinite-dimensional matrix K̃ p,n(k):

K̃ p,n(k) =
s0π

2

2i

{(
µ̃m,0(k) − µ̃a,0(k)

) (
δp,1δn,1 − δp,−1δn,−1

)
+
(
µ̃m,2(k) − µ̃a,2(k)

)
×
[
e−2iχ

(
δp,−1 δn,1 − δp,−2 δn,0

)
− e2iχ

(
δp,1 δn,−1 − δp,2 δn,0

)]}
+ 2π 2µ̃r(k) δn,0

(
eiχ δp,1 − e−iχ δp,−1

)
+ 2s0

∞∑
s=0

(−1)s
(
µ̃m,2s+1(k) + µ̃a,2s+1(k)

)
×
[
3p,s e−i(2s+1)χ δp+2s+1,n − 0p,s ei(2s+1)χ δp−(2s+1),n

]
. (A.5)
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The following coefficients were introduced:

µ̃m,ν(k) =

∫ ls

lc

dr j i r j i µm(r j i)Jν(k r j i), (A.6a)

µ̃a,ν(k) =

∫ ls

lc

dr j i r j i µa(r j i)Jν(k r j i), (A.6b)

µ̃r(k) =

∫ lc

0
dr j i r j i µr(r j i)J1(k r j i), (A.6c)

3p,s =
32p

(2s − 1)(1 + 2s)(3 + 2s)(−1 + 2p + 2s)(1 + 2p + 2s)(3 + 2p + 2s)
, (A.6d)

0p,s =
32p

(2s − 1)(1 + 2s)(3 + 2s)(−1 + 2p − 2s)(1 + 2p − 2s)(−3 + 2p − 2s)
. (A.6e)

The Bessel functions Jν(x) are oscillating functions with alternating Taylor coefficients.
A truncation of the Taylor series (as done in section 4) at a finite order may therefore lead
to unphysical behaviour for large wavenumbers k.

Appendix B. Algebraic sign of the transport coefficients

Besides the coefficient η1, which is always positive, all transport coefficients may be of either
sign, positive or negative. In the following, the sign of every coefficient is discussed in the
(µm, µa)-parameter plane. For simplicity, it is assumed that the interaction strengths µa and µm

are constant for lc < r j i < ls and zero otherwise.
λ1 is positive above a critical line (positive slope and ordinate-intercept γ1) which is

given by

µm − µa =
8Dϕ

πρ0s2
0(l

2
s − l2

c )
=: γ1 > 0, (B.1)

whereas λ2 is positive above a critical line (negative slope and positive ordinate-intercept γ2),
given by

µm + µa =
27π

16s0ρ0(l3
s − l3

c )

(
s2

0

2
+

πρ0µr l3
c

6

)
=: γ2 >

9π

32s0

l3
c

l3
s − l3

c

µr > 0. (B.2)

The analysis of the coefficient λ4 is somewhat more involved. λ4 is greater than zero inside a
parabola, which is oriented along the line

µm + µa =
405πs0

256ρ0

(
l3
s − l3

c

) =: γ3 > 0. (B.3)

The width of the parabola is proportional to the noise strength Dϕ and inverse proportional to
the density ρ0. The vertex of the parabola has the coordinates

µ(v)
a =

1

2

(
405πs0

256ρ0(l3
s − l3

c )
+

25s4
0

2πρ0(l4
s − l4

c )Dϕ

)
, (B.4a)

µ(v)
m =

1

2

(
405πs0

256ρ0(l3
s − l3

c )
−

25s4
0

2πρ0(l4
s − l4

c )Dϕ

)
. (B.4b)
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The parabola itself is given by6

µm − µa =
8s4

0

πρ0(l4
s − l4

c )Dϕ

[(
64ρ0(l3

s − l3
c )

135πs0

)2

(µm + µa)
2
−

32ρ0(l3
s − l3

c )

45πs0
(µm + µa) − 1

]
.

(B.5)

The coefficient λ5 is positive above the main diagonal, i.e. µm > µa. Transport coefficient η2 is
less than zero in between two hyperbolas, which are bounded by the asymptotes (B.1) and (B.3).
The hyperbolas are determined by

µm − µa = γ3
(µm + µa)

(µm + µa) − γ1
(B.6)

or rather

µm =
1

2

(
γ1 + γ3 ±

√
4µ2

a + 4µa(γ1 − γ3) + (γ1 + γ3)2

)
. (B.7)

The extrema of the hyperbolas are located at(
µ(ext)

a , µ(min)
m

)
=

(
γ3 − γ1

2
,

(√
γ1 −

√
γ3

)2

2

)
, (B.8a)

(
µ(ext)

a , µ(max)
m

)
=

(
γ3 − γ1

2
,

(√
γ1 +

√
γ3

)2

2

)
. (B.8b)

The critical line for η3 = 0 depends on the noise strength, whereby the critical noise strength
reads

D(c)
ϕ =

675π 2s3
0(l

2
s − l2

c )

2048(l3
s − l3

c )
. (B.9)

η3 is positive, if

µm


> µa

D(c)
ϕ + Dϕ

D(c)
ϕ − Dϕ

, Dϕ < D(c)
ϕ ,

< µa

D(c)
ϕ + Dϕ

D(c)
ϕ − Dϕ

, Dϕ > D(c)
ϕ .

(B.10)

Please note that the slope of the lines is bounded by one (Dϕ = 0) and minus one (Dϕ →

∞), respectively. Hence, η3 is always positive for {(µa, µm) : µa < 0, − |µa| < µm < |µa|} and
η3 always negative for {(µa, µm) : µa > 0, −µa < µm < µa}. All criteria discussed above are
summarized in figure B.1.

The stability of the hydrodynamic equations (4.9) requires that both λ4 and λ5 are greater
than zero. This is, in principle, true in the effective-alignment region (at least for sufficient high
noise and low densities), as well as parts of the pure attraction and pure repulsion region. In this
parameter region, the hydrodynamic equations describe collectively moving bands.

6 Equations (B.5) and (B.6) are much easier to visualize in new coordinates β1 = µm + µa and β2 = µm − µa. The
transformation basically corresponds to a rotation in the (µm, µa)-parameter plane.
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Figure B.1. The figure shows different regions in the (µm, µa)-parameter space,
where the transport coefficients have different algebraic signs. Critical lines,
where the transport coefficients vanish, are drawn in red. Black arrows indicate
the shift of characteristic points with increasing noise Dϕ and density ρ0,
respectively. See the main text for definitions.
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Appendix C. Temperature tensor

In [24, 26, 29], the symmetric temperature tensor

T̂ =

( 〈
cos ϕ2

〉
− 〈cos ϕ〉

2
〈sin ϕ cos ϕ〉 − 〈sin ϕ〉 〈cos ϕ〉

〈sin ϕ cos ϕ〉 − 〈sin ϕ〉 〈cos ϕ〉
〈
sin ϕ2

〉
− 〈sin ϕ〉

2

)
(C.1)

is defined. It is a measure for the width of the velocity distribution (fluctuations around the mean
velocity). The temperature is basically related to the second Fourier coefficients:

Txx =
1

2

(
1 +

f̂ 2(r, t) + f̂ −2(r, t)

2ρ(r, t)

)
−

(
f̂ 1(r, t) + f̂ −1(r, t)

2ρ(r, t)

)2

, (C.2a)

Txy =
f̂ 2(r, t) − f̂ −2(r, t)

4iρ(r, t)
−

(
f̂ 1(r, t)

)2
−

(
f̂ −1(r, t)

)2

4i (ρ(r, t))2 , (C.2b)

Tyy =
1

2

(
1 −

f̂ 2(r, t) + f̂ −2(r, t)

2ρ(r, t)

)
+

(
f̂ 1(r, t) − f̂ −1(r, t)

2ρ(r, t)

)2

. (C.2c)

The second Fourier coefficients are assumed to be fast variables in section 4.2, so that the
temperature is implicitly contained in the hydrodynamic description of the system, even though
the dynamics of the temperature tensor is not derived explicitly in this context.
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