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Abstract. Semiconductor–superconductor hybrid systems are promising
candidates for the realization of Majorana fermions and topological order, i.e.
topologically protected degeneracies, in solid state devices. We show that the
topological order is mirrored in the excitation spectra and can be observed
in nonlinear Coulomb blockade transport through a ring-shaped nanowire.
Especially, the excitation spectrum is almost independent of magnetic flux in
the topologically trivial phase but acquires a characteristic h/e magnetic flux
periodicity in the non-trivial phase. The transition between the trivial and non-
trivial phase is reflected in the closing and reopening of an excitation gap. We
show that the signatures of topological order are robust against details of the
geometry, electrostatic disorder and the existence of additional subbands and
only rely on the topology of the nanowire and the existence of a superconducting
gap. Finally, we show that the coherence length in the non-trivial phase is much
longer than in the trivial phase. This opens the possibility to coat the nanowire
with superconducting nanograins and thereby significantly reduce the current
due to cotunnelling of Cooper pairs and to enhance the Coulomb charging energy
without destroying the superconducting gap.
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1. Introduction

Topological phases are quantum phases which cannot be described by a local order parameter.
Instead, the defining characteristic of topological phases is a pattern of long-range quantum
entanglement which is called topological order [1–3]. One characteristic property of topological
order is the dependence of the ground-state degeneracy on the topology of the manifold on
which the system is defined [1, 4, 5]. This degeneracy on manifolds might also serve as a
starting point for a general classification of topological phases of strongly correlated quantum
matter, complementary to the topological band theory which is based on single-particle states
and cannot be easily generalized to correlated systems [6, 7]. Recently, there is much interest in
topological phases [8, 9] due to their possible application in topological quantum computation.
However, these phases are also of fundamental scientific interest for their ability to support
exotic quasiparticle (QP) excitations with abelian and even non-abelian quantum statistics.

One particularly interesting class of topological phases are topological superconductors
(SCs), which have been predicted to host Majorana bound states [4, 10–20]. The px + ipy SC
for spinless fermions is a prototype system for topological SCs. Depending on the chemical
potential, the ground state of the px + ipy SC is realized by the weak or the strong pairing phase,
which can be distinguished topologically. In particular, the grand canonical ground state of the
weak pairing phase on the torus depends on boundary conditions (BCs) for each of the two
primitive directions [4, 5]. Here, the ground state with only periodic BCs is special and shows
an odd parity, while the three ground states with at least one antiperiodic BC are characterized
by an even parity. In contrast, the strong pairing phase and also the ordinary s-wave SC on the
torus possess a four-fold degenerate even parity ground state [5].

In this paper, we consider a quasi-one-dimensional ring shaped SC nanowire and
demonstrate that essential aspects of the above described topological degeneracy on the torus
carry over to this simpler geometry. We focus on a regime in which the QP gap 1 is larger
than the single-particle level spacing d . In the Coulomb blockade regime, the total particle
number and hence the parity of the SC nanowire are fixed by the charging energy Ec > 1

and the degeneracy of grand canonical ground states is reflected in the excitation energies,
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which can be observed in nonlinear Coulomb blockade transport [21, 22]. The lowest excited
state above the ground state of a trivial SC with even parity involves two Bogoliubov QPs
and thus breaks a Cooper pair, incurring an excitation energy δE ≈ 21, which is essentially
independent of magnetic flux [23]. In contrast, the ground state for odd parity always has one
Bogoliubov QP, and hence the lowest excited state involves both annihilating and creating a
Bogoliubov QP which costs the excitation energy δE ≈ d2/1 � 21. For non-trivial topological
SCs the situation is very different. Here, ground states without unpaired particles at the Fermi
energy have odd parity for periodic BC, and even parity for anti-periodic BC. Therefore,
the excitation energy δE oscillates between d2/1 and 21 as function of magnetic flux with
period h/e which is doubled as compared to the case of a trivial SC [23]. This connection
between the ground-state degeneracy on manifolds with non-zero genus and the h/e flux
periodicity of ring structures demonstrates that these properties are a general consequence of
topological order and that nonlinear Coulomb blockade transport is a suitable tool to investigate
topological order.

Recent experiments show evidence for Majorana fermions and topological superconduc-
tivity [24–28] in semiconductor (SM) nanowires with strong Rashba spin–orbit coupling in a
magnetic field and proximity coupled to an s-wave SC [29–32]. Despite the effort which has
been invested, clear experimental signatures of the unconventional nature of the superconduct-
ing state are still missing. Therefore, additional detection schemes have been suggested such as
the periodicity of the Josephson effect [10, 33–35], tunnelling spectroscopy [36–40], interfer-
ometry [41, 42], transport experiments [43–45] and coincidence measurements [46]. We here
propose another experiment which directly investigates consequences of topological order on a
non-trivial manifold. For this purpose, we use the Coulomb energy as an instrument to prescribe
the parity of the hybrid system and thus to observe the above discussed ground-state degener-
acy. Our analysis is based on the identification of the pfaffian Z2 invariant Q for Hamiltonians
in class D [33] with the parity of the grand canonical ground state. Thus, we use this key piece
of information about the grand canonical ground state to construct two classes of states with
parity Q and −Q, where the class of states with parity Q (−Q) contains all eigenstates with
an even (odd) number of QP excitations. We find two types of excitation spectra which display
trivial or non-trivial superconductivity depending on parameter values. The transition between
the different topological phases is characterized by the closing and reopening of an excitation
gap. As these findings only rely on the existence of a superconducting gap 1 > d and the S1

topology of the system, the excitation spectra are robust against disorder, spatial variations of the
superconducting pairing potential, geometry details and the existence of additional transverse
subbands.

This paper is organized as follows. In section 2, we introduce the model system and the
proposed experimental setup. We continue in section 3 with a brief review of the results in [23]
for single-band SM nanowires and study the robustness of these results against details of the
geometry, electrostatic disorder and local variations of the superconducting order parameter. In
section 4 we make a departure from the case of strictly one-dimensional nanowires and consider
the experimentally realistic case of quasi one-dimensional nanowires. In section 5, we compare
the current for the single-electron tunnelling with the current due to cotunnelling of Cooper pairs
which is the most relevant transport channel competing with sequential tunnelling of electrons.
We summarize our results in section 6.
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2. Model system

We consider a quasi one-dimensional SM nanowire with strong spin–orbit coupling which is
proximity coupled to an s-wave SC. The nanowire forms an annulus in the x–y-plane with
radius R and radial extension L⊥ � R. We assume a strong confinement in z-direction, i.e. the
extension perpendicular to the plane of the annulus L z � L⊥, such that only the lowest subband
with momentum in z-direction is occupied. This hybrid system is separated from a back-gate by
a thin insulating layer and weakly tunnel-coupled to source and drain electrodes with potentials
±eV/2. Assuming a strong capacitive coupling between the nanowire and the SC, the total
number of electrons in this system is determined by the Coulomb Hamiltonian

HC = Ec(N + NSC)2
− eV G(N + NSC), (1)

where Ec denotes the charging energy and N (NSC) the number of excess electrons in the
SM (SC) attracted by the back-gate. Varying the gate potential eVG allows to change the total
electron number N + NSC in discrete units. A current through this island involves changing the
electron number from N + NSC to N + NSC ± 1 and creating or annihilating a QP excitation.
Thus, resonances in the differential conductivity appear when the condition

eV /2 = EN+NSC±1 − Egs
N+NSC

(2)

is satisfied, where EN+NSC is the total energy of a state with N + NSC electrons and Egs
N+NSC

the
respective ground-state energy. The spacing between the resonance peaks is independent of the
charging energy Ec and displays the excitation spectrum for fixed particle number

δEN+NSC = EN+NSC − Egs
N+NSC

. (3)

In our analysis, we assume that both the charging energy Ec and the QP gap 1SC in the SC
are larger than the effective gap 1eff in the SM. Hence, for small voltages eV . Ec, 1SC all
electrons in the SC are paired and unpaired electrons as well as breaking of Cooper pairs
can only show up in the SM. As a consequence, the parity in the SC is always even and the
parity in the SM nanowire is determined by the total parity of the hybrid system. The Coulomb
Hamiltonian equation (1) fixes the total particle number while the particle number in the SM
nanowire fluctuates because of the strong coupling between the SM nanowire and the SC. In
the following, we assume that the average particle number in the SM nanowire is fixed and
whenever we refer to the particle number in the SM nanowire, we refer to its average.

We describe the low-energy physics of the nanowire by the lattice Hamiltonian H =

HSM + HSC [29–32] with

HSM =

∑
r,r′,σ

{
− trr′ + δr,r′

(
EZσ̂

z
σσ − µ + Vr

) }
c†

rσ cr′σ +
iα

2a

∑
r,σ

(
c†

rσ σ̂
y
σ σ̄ cr+δx σ̄ − c†

rσ σ̂
y
σ σ̄ cr−δx σ̄

)
−

iα

2a

∑
r,σ

(
c†

rσ σ̂ x
σ σ̄ cr+δy σ̄ − c†

rσ σ̂ x
σ σ̄ cr−δy σ̄

)
, (4)

where the operator c†
rσ (crσ ) creates (annihilates) an electron at site r with spin σ and mass

m. The first term describes hopping on a simple square lattice with lattice parameter a,
tr,r+δ = t0 ≡ h̄2/2m2a2 for the nearest-neighbour lattice vectors δ, and tr,r = −2t0. The second
term in equation (4) contains the chemical potential µ, the electrostatic disorder potential Vr

and the Zeeman energy splitting EZ = gµB B/2 due to the magnetic field in z-direction. The last
terms in equation (4) represent the Rashba spin–orbit coupling with spin–orbit velocity α, and
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σ̂ s are the Pauli spin matrices with s = x, y, z. By coupling electrons with opposite spins, the
spin–orbit coupling creates two helical bands with spin rotating in the x–y-plane. The magnetic
field tilts the spin direction out of the x–y-plane and removes a level crossing at zero momentum
by opening a spin gap.

The proximity coupling between the s-wave SC and the nanowire is described by the
effective s-wave pairing Hamiltonian

HSC =

∑
r

(
1rc

†
r↑c†

r↓ + 1∗

rcr↓cr↑

)
(5)

with pairing potential 1r. The pairing potential modifies the dispersion relation in a crucial way
by inducing two excitation energies. It opens an effective pairing gap at the Fermi surface, and
reduces the spin gap at zero momentum. Depending on EZ, µ and 1, the SM nanowire shows
two topologically distinct superconducting phases which are separated from each other by a
topological phase transition [29–31]. For one partially occupied subband and E2

Z < 12 + µ2,
the nanowire is in the topologically trivial phase. By tuning the chemical potential via the gate
voltage or the Zeeman energy via the magnetic field, the nanowire can be tuned across the
phase transition, which shows up as the closing and reopening of the QP excitation gap. In the
topologically non-trivial phase, which is reached for E2

Z > 12 + µ2, such a nanowire supports a
pair of zero-energy Majorana bound states located at the ends of the wire.

We here consider a closed nanowire without end points and thus without Majorana bound
states. However, the unconventional nature of the topologically non-trivial superconducting
phase shows up in the doubling of the magnetic flux period of the excitation spectrum from h/2e
to 80 = h/e [23]. In our analysis, we incorporate the magnetic flux 8 through the azimuthal
vector potential A = 8êϕ/2π R and the Peierls substitution with

tr,r+δ → tr,r+δ e−
ie
h̄

∫ r+δ

r A(r′)dr′

, (6a)

α → α e−
ie
h̄

∫ r+δ

r A(r′) dr′

, (6b)

1 → 1 eiq·r, (6c)

where q is the Cooper pair wavenumber. We determine the Cooper pair wavenumber by
minimizing the ground-state energy of the nanowire with respect to arbitrary vectors q. This
is equivalent to determining q by minimizing the Ginzburg–Landau free energy for the s-wave
SC coupled to the nanowire [23]. For the strictly one-dimensional ring-shaped nanowire with
azimuthal q = qêϕ this demands that q is the integer nearest to −28/80.

We diagonalize the Hamiltonian by defining the Bogoliubov QP operators αl =∑
r,σ (urσ lcrσ + vrσ lc†

rσ ), where {l} is a complete set of QP quantum numbers. This yields

H =

∑
l

Elα
†
l αl + EGC (7)

with El > 0 and the ground-state energy

EGC = −
1

2

∑
l

El +
1

2

∑
r,σ

(2t0 − µ + Vr). (8)

The corresponding ground-state electron number is given by the expectation value of the particle
number operator N̂ =

∑
rσ c†

rσ crσ in the state where all QP levels are empty. Rewriting the
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particle number operator in terms of QP operators and taking the expectation value with respect
to the ground state, we find

NGC =

∑
rσ

∑
l

|vrσ l |
2. (9)

The parity of the grand canonical ground state is determined by the pfaffian Z2 topological
number

Q=
Pf (Hiτ x)

√
|det (Hiτ x) |

, (10)

where H denotes the Bogoliubov–de Gennes Hamilton matrix in the basis (c†
r↑, c†

r↓, cr↑, cr↓)

and τ x denotes the Pauli matrix acting on the particle–hole space [33, 47]. Here, the topological
number Q= +1(−1) corresponds to the even (odd) parity of the grand canonical ground state.
From the grand canonical ground state with parity Q we construct two classes of states with
parity P by creating Nqp QP excitations. The parity P of these states is determined by

P =Q (−1)Nqp, (11)

i.e. depending on whether Nqp is even (odd), P =Q ( P = −Q).
Since the large Coulomb energy enforces a well-defined parity and mean particle number

in the nanowire, we Legendre transform both classes of states into a pseudo-canonical ensemble
with Nqp QPs, mean particle number N and parity P . This ensemble contains states with energy

E[{li}, N , P] = EGC +
Nqp∑
j=1

El j + µN , (12)

where the chemical potential µ is determined by the constraint

N = NGC(µ) +
Nqp∑
j=1

∑
rσ

(|urσ l j (µ)|2 − |vrσ l j (µ)|2). (13)

Here, {li :i = 1, . . . , Nqp} denotes the set of QP excitations. For non-interacting systems, this
method is fully equivalent to the wave function based technique used in [23]. There, the authors
defined two classes of grand canonical ansatz wave functions with even and odd parity as tensor
products of generalized Bardeen–Cooper–Schrieffer (BCS) wave functions [22]. The ground
state was then determined by the unbiased minimization of the energy expectation value and the
lowest excited states where given by pairwise creation of Bogoliubov QPs. However, while the
wave function method is defined on the many-body Hilbert space, the technique used here only
relies on the pfaffian Z2 invariant, the QP energies, and the corresponding QP wave functions
and is thus more suitable for large systems without additional symmetries.

In recent experiments, it has been shown that both InSb and InAs are suitable SM materials
due to a large g-factor and strong spin–orbit coupling [24–28]. In the experimental situation,
the confinement energy in transverse direction is the largest energy scale so that only a few
subbands are partially occupied. It is useful to express the kinetic energy and the spin–orbit
coupling in terms of a characteristic energy εso = mα2/h̄2 and a spin–orbit length lso = h̄2/mα.
Typical values for these materials are εso = 0.1 meV, lso = 100 nm and gµB/2 = 1 meV T−1.
Thus, we find with R = 0.5 µm, 1 = 0.5 meV and EZ = 1 meV, an effective pairing gap of
1eff ≈ 0.2 meV and the level spacing at the Fermi energy of d = 0.08 meV. To ensure sequential
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single-electron tunnelling through the hybrid system, we consider the case Ec � 1eff. Here, a
relative charging energy between the SM and the SC of the order of 1 meV together with a
pairing gap 1SC = 2 meV in the SC [24] would reduce 1eff by 20% [48] and is thus neglected.
In the following, we vary the magnetic field B in discrete steps with the magnetic flux always
being fixed modulo 80, such that the only effect of B is a change of the Zeeman energy EZ.

3. Single-band Hamiltonian

We begin our analysis with a perfectly one-dimensional nanowire of width L⊥ → 0 which has
been studied recently in [23]. There, the authors considered the rotational symmetric continuum
version of the model introduced above, i.e. spatially constant superconducting pairing 1r = 1

and vanishing electrostatic disorder Vr = 0. Before discussing the relevance of geometry details,
electrostatic disorder and spatial dependence of the pairing potential, we recapitulate the main
results of [23]. To illustrate the main results in that paper, we will here focus on the non-
disordered case (black line labelled by ‘γ = 0’) in figures 2 and 3. The disordered case will
be treated in section 3.2. The plot shows the lowest excitation energy EN − Egs

N as a function
of Zeeman energy with N chosen such that µ ≈ 0. As discussed above, at E2

Z = 12 + µ2 the
Zeeman energy drives the nanowire through a topological phase transition with the trivial phase
for EZ .1 and the non-trivial phase for EZ &1 [16].

Our findings for EZ .1 are characteristic for s-wave superconductivity in metallic
nanograins [21, 22]. For even parity, the excitation spectrum shows a superconducting gap 21eff

since all excited states contain two Bogoliubov QPs which corresponds to breaking one Cooper
pair. In contrast, the ground state for odd parity always has one Bogoliubov QP and therefore
the spectrum is qualitatively independent of magnetic flux and determined by the single-particle
level spacing as

δE = E(n = 1) − E(n = 0) ≈
d2

21eff
(14)

for QP energies E(n) =

√
n2d2 + 12

eff where n counts the energy levels relative to the Fermi

energy. Similarly, a variation of magnetic flux by 80/2 changes E(n) on the order of d2/1eff.
In the topologically non-trivial phase for EZ &1, the parity effect is very different. Here,

the excitation energies depend on both electron parity and magnetic flux. In figures 3(a) and (d)
we find a QP excitation gap 21eff since two Bogoliubov QP excitations are required and thus a
Cooper pair needs to be broken. In contrast, the excitation energies in figures 3(b) and (c) reflect
the single-particle level spacing as d2/21eff since always one unpaired particle is located near
the Fermi surface. As shown in figure 3(d), the characteristic signature of the topological phase
transition at EZ ∼ 1 is the closing and reopening of the QP excitation gap.

These different parity effects become even more impressive when fixing the Zeeman energy
and varying the magnetic flux. In the trivial phase, the excitation energies for even parity are
of order 21eff with small oscillations of period 80/2 and amplitude d2/1eff. For odd parity,
the QP gap is absent and the excitation energies reflect the single-particle level spacing. In
contrast, as shown in figure 1(b) we find large 80 periodic oscillations of amplitude 21eff in
the non-trivial phase. Here, the excitation energies for 8/80 ∈ (−1/4, 1/4) are determined
by the superconducting gap 21eff due to the pairwise creation of Bogoliubov QPs i.e. the
breaking of Cooper pairs, while they display the single-particle level spacing d2/1eff for
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Figure 1. (a) Sketch of three different realizations of the S1 topology of the circle:
a ring, a square and a wire with periodic boundary condition indicated by dots.
(b) Lowest excitation energies for EZ = 21 as function of magnetic flux, and
(c) lowest excitation energies for 8 = 0 (mod 80) as function of magnetic field.
The parameters used in the calculation are: even parity, N = 44, L = 2π R =

3 µm and a = 2 nm. In (c), the magnetic flux for the system with periodic BC is
8 = −80/2 (mod 2). The lines for panel (b) are defined in panel (c).

8/80 ∈ (1/4, 3/4). The excitation spectrum for odd parity is equivalent to that for even parity
but shifted by 80/2, as follows from the discussion above.

This characteristic 80 flux periodicity of the excitation spectrum in the non-trivial
superconducting phase is directly related to the 4π periodicity of the Josephson current between
two topological SCs [10, 33, 35] which has been recently discovered in InSb/Nb nanowire
junctions [26]. In first order in the tunnelling matrix element t , the Josephson Hamiltonian
between two one-dimensional topological SCs is given by

HJ(1φ) = P t cos
(1φ

2

)
, (15)

where P , which has eigenvalues ±1, describes the parity operator of the neutral fermion state
shared between the two topological SCs and 1φ the superconducting phase difference. For a
fixed parity of the neutral fermion, the Josephson energy is 4π periodic in the phase difference.
If the Josephson junction is inserted into a ring structure, the magnetic flux threading the ring
yields a superconducting phase difference 1φ = 4π8/80, and the 4π phase periodicity is
equivalent to a 80 flux periodicity. If the nanowire is coupled to a reservoir, varying 1φ by
2π ∼ 80/2 will change the occupancy (P + 1)/2 of the neutral fermion state and hence the
parity of the ground state. This is in agreement with our result that the parity of the ground-state
wave function changes when varying the flux through the ring by 80/2.

3.1. Dependence on details of the geometry

In this section, we study how details of the geometric realization of the ring topology affect
the excitation spectrum. For this purpose, we compare the spectra for a ring, a square, and
for a model with periodic BC as sketched in figure 1(a). In [23], the authors showed that the
low-energy physics of the ring-shaped nanowire is equivalent to that of a strip of width L⊥

and length L = 2π R � L⊥ with periodic BC along the x-direction and with vector potential
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A = (8 − 80/2)x̂/L in the Landau gauge. Here, the first term in the bracket describes the
magnetic flux penetrating the ring. The second term originates from the conservation of the total
angular momentum of the electrons in the ring-structure. More specifically, this conservation
yields a spin–orbit coupling between states with equal total angular momentum (pR, ↑) and
(pR + h̄, ↓) and thus effectively shifts orbital angular momenta pR by ±h̄/2 [49]. This shift
can be understood by identifying it with a 2π spin rotation of an electron encircling the ring
which is equivalent to a Berry phase factor −1 and an effective shift of the magnetic flux by
−80/2.

Experimentally, the fabrication of ring structures with radii of several hundred nanometers
is challenging and the approximation of the ring by a triangle or a rectangle is likely. For this
purpose, we consider a square-like structure made out of four nanowires, however, our results
are qualitatively also valid for a triangular structure which consists of three wires.

In figures 1(b) and (c), we compare the fixed particle number excitation spectrum for the
three different realizations of the lattice on which the Hamiltonian is defined; the ring of radius
R, a quadratic approximation of the ring with edge lengths π R/2 and a straight nanowire of
length L = 2π R with periodic BC. In our numerics, we model the ring-shaped nanowire by a
one-dimensional tight-binding Hamiltonian equation (4) with spin–orbit coupling perpendicular
to the nanowire, and thus rotating in the x–y-plane. As function of the discretized azimuthal
angle ϕi = 2π i/n with n lattice sites, the spin–orbit direction is then given by

σSO,ring(i) = sin(ϕi)σ
x + cos(ϕi)σ

y. (16)

Similarly, we model the square by abrupt changes in the spin–orbit direction at the position of
the corners

σSO,square(i) =



σ x , for 0 < i 6
n

4
,

σ y, for
n

4
< i 6

n

2
,

−σ x , for
n

2
< i 6

3n

4
,

−σ y, for
3n

4
< i 6 n

(17)

and the straight nanowire with periodic BC by a constant spin–orbit direction

σSO,periodic(i) = σ y. (18)

The spectra for these three models are qualitatively very similar and show a 80 flux period.
As expected, we find that the model with periodic BC yields the same spectrum as the ring
model but with vector potential shifted by −80 x̂/2L due to the Berry phase factor −1 which is
exact up to corrections of the order of d/

√
E2

Z + α2k2 � 1. This phase shift originates from the
2π spin rotation, and therefore also exists for the square model where the spin rotation happens
in discrete jumps rather than continuously. Without superconductivity 1 = 0, the spectra for the
ring and the square are identical since both Hamiltonians can be transformed into each other
by a local gauge transformation with different gauge fields for spin up and spin down electrons.
However, for 1 6= 0 this transformation is not possible since the spin singlet pairing Hamiltonian
breaks the local gauge symmetry. As a consequence, the spectrum for the square geometry
shows small deviations from that for the ring geometry because of the existence of corners
where the spin–orbit direction jumps by π/2. In particular, we find that the excitation spectrum
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Figure 2. Lowest excitation energy for a ring-shaped nanowire with N = 44,
L = 3 µm and a = 5 nm as function of magnetic flux and for different variances
γ of the electrostatic disorder potential. The curves represent the average over
50 random disorder configurations. The lines are defined in panel (a).

for the square is slightly shifted towards smaller values of the magnetic flux as compared to
the ring geometry, with the shift being of the order of 1eff/αk. In addition to the non-universal
phase shift, we find that QP states with reduced excitation energy exist, which are predominately
localized near the corners of the square.

We see that our main results are robust against the details of the geometric realization
and rely on the existence of a void such that the topology of the nanowire is homotopically
equivalent to an annulus. All these results underline the general arguments in the introduction,
connecting ground-state degeneracies on the torus to parity and flux periodicities of excitations.

3.2. Electrostatic disorder

On one hand, disorder is known to often have drastic influence on the electronic properties
of low-dimensional systems. On the other hand, superconducting pairing correlations in
s-wave SCs are protected against time-reversal invariant impurity scattering by Anderson’s
theorem [50]. This motivates us to address the question of how robust the ground-state
degeneracies in the torus topology are against potential electrostatic disorder. In the following,
we discuss the effect of disorder on the excitation energies in the regime where the effective gap
is larger than the single-particle level spacing, i.e. for

1eff ≡
1εsolso N

2REZ
>d. (19)

We model electrostatic disorder by a locally varying impurity potential Vr with vanishing mean
value and Gaussian white noise correlator 〈VrVr′〉 = γ δr,r′/a. We here consider the regime of
disorder strengths γ . γm with γm = 1εsolso, since strong disorder γ � γm breaks the nanowire
into topological and non-topological domain walls and thereby destroys the excitation gap [37].

In figure 2 we compare the excitation spectra for the topologically non-trivial and trivial
phase as a function of magnetic flux and in figure 3 we display the excitation spectrum as a
function of Zeeman energy for different combinations of parity and magnetic flux. We find
that the effect of electrostatic disorder is very different in the topologically trivial and the non-
trivial phase. In the trivial phase, the QP excitation gap is remarkably robust against disorder
which is characteristic for s-wave superconductivity [50]. In contrast, we find a significant
reduction of the excitation gap due to disorder in the non-trivial phase. While the 80 flux
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Figure 3. Lowest excitation energy for a ring-shaped nanowire with N = 44,
L = 3 µm and a = 5 nm as function of Zeeman energy and for different variances
γ of the electrostatic disorder potential. The curves represent the average over
50 random disorder configurations. The lines are defined in panel (c).

periodicity is not directly affected by disorder as shown in figure 2(b), there is a maximum
level of electrostatic disorder γm = 1εsolso such that only for γ . γm the excitation gap ≈ 21eff

is larger than the single-particle level spacing d and the 80 periodicity is observable. Since the
topological phase for large Zeeman energies EZ � 1, µ can be mapped onto a spinless p-wave
SC [30], this reduction is in full agreement with the effect of disorder on the excitation gap in
spinless p-wave SCs [51, 52]. Furthermore, we find that the reduction is very efficient near the
topological phase transition since there already weak disorder breaks the nanowire into domains
of different chemical potential and thereby shifts parts of the wire through the topological phase
transition which reduces the excitation gap locally. Away from the topological phase transition,
the reduction of the excitation gap is weaker because the existence of partially trivial domains
due to disorder becomes unlikely. Furthermore, we find that disorder shifts the topological phase
transition towards larger values of the Zeeman energy [52, 53]. As before, we argue that this
shift originates from local topological phase transitions at E2

Z = 12 + (µ + Vr)
2 which are shifted

towards larger Zeeman energies due to disorder.
Since the parity and flux dependence of excitation energies reflect the presence or absence

of non-trivial topological order, our findings for the nonlinear Coulomb blockade transport are
robust against electrostatic disorder and other perturbations as long as the topological order is
not destroyed by the formation of domain walls. In particular, we find a maximum variance
γm of electrostatic disorder below which the condition 1eff > d is clearly satisfied, and the 80

periodicity is observable.

3.3. Non-superconducting segments

In this section, we consider the situation that the proximity induced superconducting order
parameter is spatially dependent. Experimentally this might appear due to the roughness of
the nanowire/SC interface or if the nanowire is not completely covered with the s-wave SC.
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Figure 4. Sketch of the nanowire with (a) one and (b) ten non-superconducting
segments of length λ, i.e. segments which are not covered with superconducting
material. (c), (d) Lowest excitation energy for a ring-shaped nanowire of length
L = 3 µm with even parity, N = 44 and 8 = 0 for the case with (c) one and (d)
ten non-superconducting segments.

As sketched in figure 4(a), we describe this spatial dependence of the superconducting pairing
amplitude by a step function such that 1r = 0 for 0 < x < λ � L and 1r = 1 elsewhere. In
figure 4(c), we display the excitation energies for different lengths λ of the non-superconducting
segment. We find a significant reduction of the excitation gap in the trivial phase while the
excitation energies in the non-trivial phase are only weakly reduced even for λ ∼ lso. We argue
that the origin of the robustness of the excitation gap in the topological phase is the small
effective gap 1eff < 1 and the enhanced Fermi velocity vF(EZ > 1) ∼ 2vF(EZ = 0) due to the
occupation of a single spinless band. Hence, the superconducting coherence length ξ = vF/1eff

in the topologically non-trivial phase is significantly enhanced as compared to the trivial phase.
Thus, in the non-trivial phase superconducting pairing correlations are more efficiently induced
in the non-superconducting part of the wire which here shows up as the robustness of the
superconducting gap against the existence of a quite long normal segment.

From the robustness of the excitation gap, we conclude that it is not necessary for our
proposed setup that the nanowire is completely covered with the s-wave SC. In particular,
we propose that it is sufficient to place superconducting grains on the nanowire in order to
significantly increase the charging energy and to reduce Cooper pair cotunnelling through
the SC (see section 5). We now assume that the nanowire contains ten non-superconducting
segments of length λ uniformly distributed over the nanowire as sketched in figure 4(b). In
figure 4(d), we study the excitation spectrum for different characteristic lengths λ. While the
excitation gap for λ = 3lso/2 ∼ 150 nm in the trivial phase is completely absent, we find that
the excitation energies in the non-trivial phase are only reduced by 30% as compared to the
situation where 1 6= 0 everywhere.

There is a renormalization of 1eff in the case of covering the SM nanowire with
superconducting grains. Such a situation was discussed by van Heck et al in [35], and the
mechanism for the renormalization of 1eff are phase fluctuations in the regions between

New Journal of Physics 15 (2013) 085003 (http://www.njp.org/)

http://www.njp.org/


13

E
qp

 /Δ

E
Z
/Δ

μ/
Δ

 

 

0 1 2 3 4

0

5

10

15

20

25

0

1

2

Q

E
Z
/Δ

N

 

 

0 1 2 3 4
0

400

800

1200

1

−1

(a) (b)

Figure 5. (a) Lowest energy of the Bogoliubov QP spectrum Eqp = min{El}

as function of Zeeman energy and chemical potential, and (b) phase diagram
inferred from the topological number Q as function of Zeeman energy and mean
electron number. The green dashed lines in (a) represent the topological phase
transition for the various subbands in the limit of uncoupled subbands α → 0,
whereas the colour scale encodes the excitation energy for coupled subbands.
The parameters used in the calculation are: L = 3 µm, L⊥ = 100 nm, a = 5 nm
and 8 = −80/2.

two grains, which are enhanced by the existence of a relative charging energy between
the superconducting grains. The dimensionless parameter controlling the strength of phase
fluctuations is δ/1eff, where δ denotes the energy for charging one grain relative to the other.
For a covering with distance between the grains much smaller than the coherence length ξ , it is
reasonable to assume that δ � Ec such that a regime with δ < 1eff can be reached, where the
renormalization of 1eff is unimportant.

4. Multi-band Hamiltonian

In this section we make a departure from the case of strictly one-dimensional nanowires and
consider the experimentally realistic situation of quasi one-dimensional nanowires of finite
thickness with a � L⊥ < ξ . In our numerical analysis, we model the ring-shaped nanowire
by a strip with periodic BCs along the x-direction and with hard wall BCs along the y-direction.
The magnetic flux 8 is incorporated through the modified vector potential A = (8 − 80/2)x̂/L
as discussed above in section 3.1.

To ensure that the induced superconducting phase remains quasi one-dimensional and
the nanowire exhibits a substantial gap, we demand that the width does not exceed the
superconducting coherence length ξ = vF/1eff [53–58]. The spatial extension in the y-direction
gives rise to the existence of additional transverse modes and thus subbands which might
be partially occupied depending on the chemical potential. In figure 5(a), we display the
Bogoliubov QP spectrum for 8 = −80/2 as function of Zeeman energy and chemical potential.
For µ. (π h̄)2/2mL2

⊥
only one subband is partially occupied and the excitation spectrum is

equivalent to the one discussed in section 3. With increasing chemical potential higher subbands
are filled up consecutively and similarly to the single-band case, the higher subbands can be
either topologically trivial or non-trivial depending on the chemical potential and the Zeeman
energy.
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In figure 5(a), the topologically non-trivial phase shows up as islands which are enclosed
by lines of vanishing excitation energies, i.e. by topological phase transitions. Assuming that
the subbands are uncoupled, we find the topological phase whenever the chemical potential lies
well within one of the spin gaps at zero momentum and when the Zeeman energy satisfies the
relation

E2
Z > 12 + (µ − εn)

2, (20)

where εn = (h̄nπ)2/2mL2
⊥

denotes the kinetic energy of subband n. However, the transverse
spin–orbit term αc†

r,σσ x
σσ ′cr+δy ,σ ′ couples the subbands and thereby modifies the lines where

the topological phase transitions occur. These modifications are similar to avoided crossings
with energy splitting δµ ≈ 2αkF,y between the lines of topological phase transitions and thus
reduce the size of the topologically non-trivial islands. With increasing chemical potential, the
spin–orbit energy in the transverse direction increases and thus the energy splitting due to the
avoided crossing increases δµ ∼ α

√
εn.

In figure 5(b), we display the topological number Q as function of Zeeman splitting and
mean electron number N . As before, the topological number is +1 in the trivial and −1 in the
non-trivial phase and thus we conclude that the parity of the grand canonical ground states in
both phases is different with even parity in the trivial and odd parity in the non-trivial phase.
Similarly to figure 5(a), we find islands of topologically non-trivial phase which are enclosed
by the trivial phase. We propose that the fixed mean particle number excitation energies can
be used as a tool to investigate the topological phase diagram. In the appendix we show that
our results for the single-band nanowire can directly be applied to the multi-subband nanowire.
Thus, the topologically trivial phase is characterized by an excitation spectrum with gap 21eff

for even parity while the excitations are determined by the single-particle level spacing for odd
parity. When varying the magnetic flux, the spectra for both even and odd parity show small
80/2 periodic oscillations as expected for trivial SCs. In contrast, the situation is different in
the topologically non-trivial phase where the excitation spectrum qualitatively depends on both
magnetic flux and electron parity. We here find a characteristic 80 flux period similar to the
situation for the single-band model in section 3. We conclude that the excitation spectrum for
fixed mean particle number, which can be observed in nonlinear Coulomb blockade transport,
is an unbiased tool to map out the topological phase diagram shown in figure 5(b).

Due to the finite width L⊥ of the nanowire, the area of the nanowire itself is penetrated by
magnetic flux and thus the magnetic flux through the ring-shaped nanowire is not well defined.
However, the magnetic flux can be decomposed into a mean value for the middle of the wire
and deviations due to the finite thickness

δ8(y) = BLy for −
L⊥

2
< y <

L⊥

2
. (21)

For nanowires with radius R = L/2π ∼ 0.5 µm and magnetic field strengths B . 1 T, we find
δ8(L⊥/2) > 80. In figure 6, we display the fixed electron number excitation spectrum as
function of mean magnetic flux 8 (mod 80) and additional flux δ8(L⊥/2). We find that the
flux periodicity of the excitation spectrum is not changed, however, the excitation spectrum
itself is shifted due to δ8. We can therefore conclude that additional magnetic flux due to the
finite width of ring-shaped nanowires with large radii is unproblematic for the study of the flux
periodicity of the excitation energies.
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5. Sequential and cotunnelling of Cooper pairs

In general, there are competing transport channels through the hybrid ring-shaped nanowire. Our
focus is on nonlinear Coulomb blockade transport due to sequential single-electron tunnelling
through the SM. The most important competing channels are sequential and cotunnelling of
Cooper pairs. For that purpose, we estimate the magnitude of the current due to Cooper pair
processes for a general superconducting island weakly tunnel-coupled to two leads and study
under which parameter conditions they become important. We assume that the SC has a large
number of transverse channels N⊥ and charging energy Ec. The tunnelling between lead i and
the SC is described by

HT,i =

∑
kqσ

{
tk,qa†

ikσ (uqσγqσ + vqσγ †
−q−σ ) + h.c.

}
, (22)

where tk,q are the tunnel matrix elements, aikσ are the fermion operators in lead i with energy

εik, and γqσ are QP operators for the SC with energy Eq =

√
ξ 2

q + 12
SC. The uqσ and vqσ are the

BCS coherence factors with magnitudes
√

(1 ± ξq/Eq)/2.
Tunnelling of Cooper pairs between lead i and the SC is described by an effective

Hamiltonian which can be derived in second order perturbation theory in HT,i . In the first
step, one electron with momentum k1 and spin σ is transferred from an initial state into an
intermediate excited state with momentum q of the superconducting island. In the second step,
another electron with momentum k2 and spin −σ tunnels into the partner state of the first
electron −q such that both electrons form a Cooper pair. Hence, the final state contains an
extra Cooper pair in the SC and two QP excitations in the lead. Similarly, we find the reverse
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process by splitting a Cooper pair followed by two consecutive electron tunnelling events [59].
This yields the effective tunnelling Hamiltonian

HCP,i =

〈
BCS

∣∣∣∣HT,i
1

iη − H0
HT,i

∣∣∣∣ BCS

〉
, (23)

where we traced out the QP operators via the BCS ground state |BCS〉. We find

HCP,i =

∑
k1k2

{
Aik1,k2aik1↑aik2↓ + A∗

ik1,k2
a†

ik2↓
a†

ik1↑

}
(24)

with the effective tunnelling matrix elements

Aik1,k2 =

∑
q

t∗

k1,qtk2,−quq↓v−q↑

{
1

Ec + Eq − εik1 − µi
+

1

Ec + Eq − εik2 − µi

}
. (25)

In the following, we consider the Andreev current through a normal-superconducting-
normal structure with symmetric barriers and bias voltage 0 < V < 1SC/e. Assuming that the
voltage between the left (right) lead and the SC is ±V/2, we calculate the rate for the Andreev
reflection process using Fermi’s golden rule. The current for the scattering of two electrons from
the left metallic lead into the SC reads

IA(ω) = 2e
2π

h̄

∑
k1k2

|ALk1,k2|
2 f (εLk1) f (εLk2)δ(εLk1 + εLk2 + ω) (26)

with ω = eV − 4Ec and Fermi functions f . In [59] it has been shown that the Andreev
conductance GA = IA/V for sequential Cooper pair tunnelling can be written as GA(ω) =

(e2/h)G2(ω)/N⊥, where G is the dimensionless normal state conductance and N⊥ the number
of transverse channels through the superconducting region in its normal state. Due to the charge
2e of Cooper pairs, sequential tunnelling of Cooper pairs is not resonant for eV/2 < Ec − 1eff

and can be neglected. In the expression for the current, this suppression shows up as a shifted
chemical potential ω = eV − 4Ec.

Similarly, we calculate the current for Cooper pair cotunnelling from the left lead to the
right lead via the superconducting island by calculating the scattering rate in second order
perturbation theory [60] in HCP,i . We find

IA,cot(V ) = 2e
8π

h̄

∑
k1k2k3k4

|ALk1,k2|
2
|ARk3,k4|

2

(εLk1 + εLk2 + eV − 4Ec)2
f (εLk1) f (εLk2) f (−εRk3) f (−εRk4)

×δ(εLk1 + εLk2 − εRk3 − εRk4 + 2 eV ). (27)

Building on the result for the sequential Cooper pair tunnelling and assuming eV . Ec, we find
that the Andreev cotunnelling current can be expressed as

IA,cot(V ) ≈ h
G2

A(eV )V 3

E2
c

. (28)

In the expression for equation (28), the Andreev conductance GA(eV ) is not suppressed by the
Coulomb energy since the charge on the superconducting island after the tunnelling events is
the same as the initial charge.

In contrast, we find for sequential electron tunnelling a current Iseq = (e/h)0 where 0 is
the tunnelling rate between the lead and the SM. For characteristic bias voltages smaller or
equal to Ec/e, we compare the currents due to the sequential tunnelling of electrons and the
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Andreev cotunnelling of Cooper pairs. With equation (28) and the expression for the Andreev
conductance, we find

Iseq

IA,cot
≈

N 2
⊥
0

EcG4
. (29)

We now make the conservative assumption 0 ≈ d/10 and d ≈ Ec/10, where d is the mean level
spacing in the SM, and demand that single-particle sequential tunnelling be larger than Cooper
pair cotunnelling. In this way, we obtain the condition that G<

√
N⊥/3, i.e. the dimensionless

conductance of the junction between lead and the SC in its normal state has to be smaller than
one third of the square root of the number of transverse channels. For a metal of diameter
10 nm and with Fermi wavelength 0.3 nm, the number of transverse channels is approximately
(diameter/wavelength)2

= 1000, and thus the dimensionless normal state conductance needs to
satisfy G < 10, which is realistic for metallic quantum dots with current state technology.

One way to realize the condition G<
√

N⊥/3 experimentally is to not cover the nanowire
with superconducting material in the vicinity of the electrodes. This significantly reduces the
conductance between the SC and the electrodes. One can even imagine that an extreme limit
could be realized, in which all electrons entering the hybrid system have to do so via the SM in
the vicinity of the electrodes. One might argue that as a consequence of removing the SC near
the electrodes, the proximity induced pairing amplitude in this region will be reduced as well.
However, when the region not covered with superconducting material is considerably smaller
than the coherence length in the SM (of the order of 100 nm as shown in section 3.3), this
effect will be small. In principle, one could go even further and only deposit superconducting
nanograins on top of the nanowire instead of adding a fully connected SC, and in this way
eliminate the influence of Andreev cotunnelling almost completely.

In order to fully suppress cotunnelling of Cooper pairs through the SC, we propose to use
ferromagnetic leads with the polarization in magnetic field direction. While ferromagnetic leads
fully suppress Andreev processes and thus cotunnelling of Cooper pairs in conventional s-wave
SCs, they do not significantly affect the current due to sequential tunnelling of electrons.

6. Summary

In conclusion, we have proposed a Coulomb blockade transport experiment to investigate the
topological order of SM–SC hybrid nanorings, and have shown that characteristic parity and flux
periodicity effects in the excitation spectrum reflect the distinct ground-state degeneracies of
trivial and non-trivial superconducting phases on manifolds with non-zero genus. In particular,
the excitation spectrum for fixed mean particle number provides clear signatures of the h/e flux
periodicity in the non-trivial phase and the topological phase transition. All these findings are
robust against geometry details of the realization of the ring structure and rely on the existence
of a hole such that the system is homotopically equivalent to a circle.

We have shown that the spectroscopic gap in the non-trivial phase is robust against
moderate electrostatic disorder. Furthermore, the non-trivial phase is characterized by a large
superconducting coherence length which allows to deposit superconducting nanograins on top
of the nanowire instead of adding a fully connected SC, and in this way reduces the Andreev
cotunnelling and enhance the charging energy. Using a T -matrix formalism, we have estimated
the magnitude of Andreev cotunnelling and have derived a criterion for the maximum number
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Figure A.1. Lowest excitation energy in the fermionic excitation spectrum with
fixed mean electron number as function of magnetic field and mean electron
number for several combinations of magnetic flux and electron parity; L = 3 µm,
L⊥ = 100 nm and a = 5 nm. Note the different colour scale in (c) where all
excitation energies are determined by the single-particle level spacing d .

of parallel conduction channels through the proximity coupled s-wave SC which ensures that
single-particle transport dominates over cotunnelling of Cooper pairs.

Finally, we studied multi-subband nanowires and we have shown that nonlinear Coulomb
blockade transport can be used as a tool to map out the topological phase diagram.
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Appendix. Multi-band phase diagram

In this appendix, we present the lowest excitation energy EN − Egs
N for the multi-band SM

hybrid nanowire for several combinations of magnetic flux and parity as function of Zeeman
energy and mean electron number. As shown in figure A.1 and explained in section 4, both
the chemical potential µ and the Zeeman energy can be used to tune the nanowire through the
topological phase transitions.

Our findings for the trivial phase (i.e. the dark region in figure A.1(a)) are characteristic
for s-wave superconductivity in superconducting grains without excitation gap for odd parity
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(figures A.1(a) and (c)) and with energy gap 21eff for even parity (figures A.1(b) and (d)). These
excitation energies do not change qualitatively when changing the magnetic flux and show small
80/2 periodic oscillations of order d2/1eff � 1eff.

In the topologically non-trivial phase (i.e. the bright region in figure A.1(a)) the parity effect
is very different. Here, the excitation energies depend on both electron parity and magnetic flux.
In figures A.1(a) and (d) we find an excitation gap 21eff since two Bogoliubov QP excitations
are required and thus a Cooper pair needs to be broken. In contrast, the excitation energies
in figures A.1(b) and (c) are determined by the single-particle level spacing since always one
unpaired particle is located near the Fermi surface. As shown in figure A.1(d), the characteristic
signature of the topological phase transition is the closing and reopening of the excitation gap.
When studying the flux dependence of the excitation energies in the non-trivial phase, we find
large oscillations with period 80 and amplitude 21eff. For even parity, the excitation energies
for 8/80 ∈ (−1/4, 1/4) are determined by the effective gap 21eff while they are determined by
the single-particle level spacing d2/1eff for 8/80 ∈ (1/4, 3/4). For odd parity, we qualitatively
find the same spectrum but shifted by 80/2, as follows from the earlier discussion.

Thus, the excitation spectrum for fixed electron number directly reflect the topological
phase diagram shown in figure 5(b). The proposed nonlinear Coulomb blockade transport
experiment can therefore be used as a tool to clearly determine the topological order of the
hybrid system by measuring the fermionic excitation spectrum.
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