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Abstract. We study the boundary Majorana modes for the single component
p-wave weak topological superconductors or superfluids, which form zero
energy flat bands protected by time-reversal symmetry in the orbital channel.
However, due to the divergence of density of states, the band flatness of the edge
Majorana modes is unstable under spontaneously generated spatial variations
of Cooper pairing phases. Staggered current loops appear near the boundary and
thus time-reversal symmetry is spontaneously broken in the orbital channel. This
effect can appear in both condensed matter and ultra-cold atom systems.
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1. Introduction

Recently, Majorana fermions in unconventional superconductors and pairing superfluids have
become a research focus in condensed matter physics [1–20]. They appear at boundaries and in
vortex cores exhibiting non-Abelian statistics which can potentially be used for topological
quantum computation [4, 5, 21–25]. Various theoretical schemes have been proposed for
the realization and detection of Majorana fermions [9, 14, 15, 26–29], such as the interface
between three-dimensional (3D) topological insulators and conventional superconductors [9],
the proximity effect of superconductivity in spin–orbit coupled quantum wires [14, 15], Cooper
pairing with ultra-cold fermions with synthetic spin–orbit coupling [29] and p-wave Feshbach
resonances of single-component ultra-cold fermions [28]. Majorana fermions are also proposed
in fractional quantum Hall states at the filling ν =

5
2 [30–32]. The signature of the zero energy

Majorana boundary mode in the transport spectra has been observed in the spin–orbit coupled
quantum wires [16–20].

The boundary Majorana zero modes also appear in unconventional superconductors in two-
dimensional (2D) and 3D on edges or surfaces with suitable orientations determined by Cooper
pairing symmetries. This is because along the directions of incident and reflected wavevectors
of the Bogoliubov quasi-particles, the pairing gap functions have opposite signs [33–35].
These unconventional superconductors can be viewed as weak topological states. They are
topologically non-trivial (or trivial) along the directions perpendicular to boundaries with
(or without) zero energy modes, respectively.

Interactions can significantly change topological properties of edge and surface in
topological insulators and superconductors. For non-chiral systems, these boundary modes are
low energy midgap states, thus they are more susceptible to interactions than the gapped bulk
states. In the helical edge Luttinger liquids of 2D topological insulators, the edge magnetic
fluctuations are much stronger than those in the bulk, which can lead to spontaneous time-
reversal symmetry breaking and destroy edge modes [36–38]. For the zero energy boundary
Majorana modes along the coupled chains of the px -topological superconductors, it has been
found that interactions can even generate gaps without breaking time-reversal symmetry in the
orbital channel [39]. Similar effects are also found for the helical edge Majorana modes of
time-reversal invariant topological pairing states [40, 41]. In both cases, the new topological
class under interactions is classified by a Z8 periodicity.

In this paper, we consider the most natural interaction effects in the boundary states in the
p-wave weak topological superconductors or paired superfluids: the coupling between Cooper
pairing phases and the zero energy Majorana modes. The degeneracy of these boundary modes
is protected by time-reversal symmetry, but is vulnerable under spontaneous time-reversal
symmetry breaking in the orbital channel. Spatial variations of phases of Cooper pairing order
parameters induce bonding among these boundary modes, and thus lower the energy. Staggered
current loops are generated near the boundary, which split the zero energy Majorana peaks.
Due to the divergence of the surface density of states, this time-reversal symmetry breaking
mechanism is robust.

The rest of this paper is organized as follows. In section 2, we explain the mechanism
of spontaneous time-reversal symmetry breaking in the orbital channel with coupled
superconducting quantum wires through weak links. In section 3, a 2D p-wave weak topological
superconductor is studied with the open boundary condition. The spontaneous staggered orbital
current loops appear on the topological non-trivial boundaries, and the consequential splitting

New Journal of Physics 15 (2013) 085002 (http://www.njp.org/)

http://www.njp.org/


3

of the Majorana zero bias peaks are calculated self-consistently. Experimental realizations of
the above effects are discussed in section 4. The summary is presented in section 5.

2. Bonding between boundary Majorana modes

We begin with a heuristic example of two parallel quantum wires along the x-direction. Each of
them is a one-dimensional (1D) topological superconductor of single component fermion with
px -pairing symmetry. As explained in [5], zero energy Majorana modes exist near the two ends
of each wire. For example, for the end at x = L of the i th wire (i = 1, 2), the operator for the
Majorana mode can be expressed as

γi =

∫
dx{u0(x)e

−i θi2 −i π4ψi(x)+ v0(x)e
i θi2 +i π4ψ

†
i (x)}, (1)

where θi is the Cooper pairing phase in the i th chain. We denote 1 the magnitude of the bulk
gap, Ef and kf are the Fermi energy and Fermi momentum, respectively. In the case of 1� Ef,
the zero mode wavefunction is approximated as

u0(x)= v0(x)≈ e−
L−x
ξx sin kfx, (2)

where ξx =
2
kf

Ef
1

is the coherence length along the x-direction. Now let us connect two right ends
with a weak link

HJ = −t⊥

∫ L

L−w

dx [ψ†
1 (x)ψ2(x)+ h.c.], (3)

where w is the width of the link. We assume w� ξx such that the uniform distribution
of the pairing phase within each wire is not affected by the link. By expressing ψi(x)=

u0(x)ei θi2 +i π4 γi + · · · where ‘. . . ’ represents for Bogoliubov eigenstates outside the gap 1, we
arrive at two different contributions for the Josephson couplings: the usual one through second-
order perturbation process, and the fractionalized one through the zero Majorana mode as

EJ = −J0 cos1θ − iJ1γ1γ2 sin
1θ

2
, (4)

where 1θ = θ1 − θ2, J ∝ t2
⊥
/1 and J1 = t⊥

∫ Lx

Lx−1L dxu0(x)u0(x +1y).
The fractionalized Josephson coupling of the weak link between two wires with the ‘head-

to-tail’ configuration [7, 42] gives rise to iγ1γ2 cos 1θ

2 , where γ1,2 are Majorana modes at two
sides of the link. In contrast, for two parallel wires, the corresponding J1 term in equation (4)
is proportional to sin 1θ

2 . This difference can be intuitively understood as illustrated in figure 1.
We rotate the second wire by 180◦, which corresponds to a phase shift of the second wire by
π due to the px symmetry, and thus 1θ is shifted to 1θ +π . This changes the dependence of
fractionalized Josephson coupling from cosine to sine in equation (4). As a result, the Majorana
fermion bonding strength vanishes at 1θ = 0 which reflects the fact that these Majorana zero
modes are protected by the time-reversal (TR) symmetry in the orbital channel. The bonding
strength varies linearly with the phase difference as 1θ → 0, thus equation (4) is minimized
at non-zero values of 1θ0 satisfying sin 1θ0

2 = ± min( J1
4J0
, 1). The energy is gained from the

bonding of Majorana fermions. For the general case that 1θ0 6= ±π , the orbital channel time-
reversal symmetry is spontaneously broken. However, in the case of J1

4J0
> 1, 1θ0 = ±π , the

Majorana fermion bonding strength is maximal. Because of the 2π periodicity of phase angles,
this case is also TR invariant.
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Figure 1. The fractionalized Josephson coupling between two parallel wires
through the Majorana zero modes depends on sin 1θ

2 instead of cos 1θ

2 . Please
note the different orientations of the x and y-directions between figure 2 and this
figure.

We can further extend equation (4) to a group of parallel wires whose ends at x = L are
weakly connected, which forms 1D or 2D lattices of Majorana modes coupled to the superfluid
phases. The effective Hamiltonian is

Hmj = −J0

∑
〈i i ′〉

cos(θi − θi ′)− iJ1

∑
〈i i ′〉

sin
θi − θi ′

2
γiγi ′, (5)

where 〈i i ′
〉 refers to the nearest neighbor bonds. The J0 term favors a global phase coherence

with a constant phase value in each wire. However, this results in a flat band of zero energy
Majorana fermions which is highly unstable.

In bipartite lattices, a staggered phase configuration θi = (−)iθ ′

0 can minimize the ground
state energy by generating a uniform bonding strength, where the value of θ ′

0 can be obtained
self-consistently. For a 2D lattice of surface Majorana fermions, if the superfluid phase
distribution of θi forms a vortex, the plaquette in which the vortex core is located exhibit a Z2

vortex for the Majorana fermion. The motion of the superfluid vortex introduces the dynamic
Z2 flux for the Majorana fermions.

3. Spontaneous staggered orbital currents near the boundary

Having presented the spontaneous orbital channel time-reversal symmetry breaking of Majorana
fermions with weak links, now let us consider a 2D superconductor of a single component
fermion with the px pairing. The bulk of the system with px -pairing maintains time-reversal
symmetry in the orbital channel unlike the px + ipy one in which time-reversal symmetry is
broken. We use the tight-binding model of the following mean-field Bogoliubov–de Gennes
(B–de G) Hamiltonian with the open boundary condition

Hmf = −

∑
i

{
(txc†

i ci+êx + tyc†
i ci+êy + h.c.)−µc†

i ci

}
− V

∑
i

{
1∗

i,i+êx
ci+êx ci + h.c.

}
+V

∑
i

1∗

i,i+êx
1i,i+êx , (6)

where 1i,i+êx = 〈ci+êx ci〉. In conventional superconductors, the open boundary only affects
the magnitude of the pairing order parameter not on the phase distribution. The px -type

New Journal of Physics 15 (2013) 085002 (http://www.njp.org/)

http://www.njp.org/


5

superconductors are weakly topological in 2D, and as is well known, if the phase distribution of
1i,i+êx is uniform such that time-reversal symmetry is maintained in the orbital channel, a flat
band of Majorana surface modes appear on the boundary along the y-direction.

However, this Majorana band flatness is unstable when the spatial variations of pairing
phases are considered. It spontaneously breaks time-reversal symmetry and generates finite
bonding strengths among the Majorana modes. Consequently, the macroscopic degeneracy of
the surface zero modes is removed and the total energy is lowered. To confirm this intuitive
picture, we perform the self-consistent solutions to the B–de G equation (6) at zero temperature.
The mean-field Hamiltonian is diagonalized to obtain the Bogoliubov eigenstates whose eigen-
operators are defined through ci =

∑
n un(i)γn + v∗

n(i)γ
†
n , where (un, vn)

T are the eigenvectors
with positive energy eigenvalues En > 0. The gap equations for 1i,i+êx read

1i,i+êx =
1

2

∑
n

tanh
βEn

2

[
un(i + x̂)v∗

n(i)− v
∗

n(i + x̂)un(i)
]
. (7)

The current along the bond between i and i + êa (a = x, y) is

ji,êa = −
ta

h̄

∑
n

Im {vn(i + êa)v
∗

n(i) f (En)+ un(i + êa)u
∗

n(i)[1 − f (En)]}, (8)

where f (E) is the Fermi distribution function.
The spontaneous time-reversal symmetry breaking effect in the orbital channel appears

near the boundary normal to the x-direction: circulation current loops as depicted in figure 2(a).
As presented in figure 2(b), this edge induces non-uniform phase distribution of the pairing order
parameter 1i,i+êx . However, it is non-singular which does not exhibit the vortex configuration
and thus cannot give rise to the current loops by itself. Loosely speaking there are two different
contributions to the current expression of equation (8): the Bogoliubov modes whose energies
outside the bulk gap, and the in-gap states of Majorana modes. The former contribution can
be captured by the Ginzburg–Landau formalism as spatial phase variations of 1i,i+êx , while the
latter arises from Majorana modes cannot. The circulation pattern of these induced edge currents
are staggered, which is natural, since in the background of superfluidity the overall vorticity
should be neutral in the absence of external magnetic fields. The size of current loops should be
at the order of coherence lengths which can be estimated as ξa/a0 ≈ 2ta/1 with a = x, y where
a0 is the lattice constant. Currents decay exponentially along the x-direction at the scale of ξx ,
and change directions along the y-direction at the scale of 2ξy .

Next we calculate the local density of states (LDOS) near the boundary as depicted in
figure 3. The expression for LDOS reads

L(i, ω)=

∑
n

|un(i)|
2δ(ω− En)+ |vn(i)|

2δ(ω + En). (9)

For comparison, we first present the result without self-consistency in figure 3(a) by fixing order
parameters 1i,i+êx uniform with the bulk value. The central peak at zero energy represents the
edge Majorana states. However, with self-consistency, spatial variations of 1i,i+êx couple to the
edge Majorana modes. The zero energy peaks are split as depicted in figures 3(b)–(d). Sites 2
and 3 (figures 3(b) and (c), respectively) are right on the boundary normal to x-direction, and
thus their coherence peaks are strongly suppressed. Site 4 (figure 3(d) is relatively inside, and
thus the midgap peaks are suppressed. Site 2 locates in the middle of current loops, and thus the
splitting of the zero bias peak is the largest.
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x

Figure 2. The current and phase distributions from the self-consistent solutions
to equation (6) with the open boundary condition. The system size is L x × L y

with L x = 20 and L y = 12, and parameter values tx = 1, ty = 1.2, V = 3 and
µ= 0. Only half of the system along the x-direction is depicted, and the
distributions in the rest half can be obtained by performing the reflection
operation. (a) The spontaneously generated edge current distributions; (b) the
lengths and directions of arrows represent magnitudes and phase angles θi,i+êx

for the pairing operators 1i,i+êx , respectively.

Due to the divergence of density of states at zero energy, the above time-reversal symmetry
breaking mechanism in the orbital channel is general. It also applies to the 3D case with the
pz-pairing. Then the xy-surface is non-trivial along which Majorana zero energy flat bands
appear with the assumption of time-reversal symmetry. Again due to the same reasoning, this
degeneracy will be lifted by spontaneous TR symmetry breaking. In this case, we expect that
the 2D vortex–anti-vortex pattern in figure 2 will change to that of 3D closed vortex rings,
which may further form a lattice structure parallel to the xy-surface. Further study of this lattice
structure will be deferred to a later publication. Moreover, the above physics also applies in the
continuum not just in the tight-binding model. Staggered vortices or closed vortex rings will
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Figure 3. The edge LDOS spectra for the system in figure 2 δ(ω± En) in
equation (9) are approximated by 1

π
η/[(ω± En)

2 + η2] with the broadening
parameter η = 0.04. Panels (a)–(d) are the LDOS spectra at points 1–4 marked in
figure 2(a), respectively. (a) LDOS without self-consistency by fixing1i,i+êx at a
uniform bulk value. Panels (b)–(d) are self-consistent results. The corresponding
parameter values are presented in the caption of figure 2.

appear near the edge or surfaces within the size of coherence lengths, which will also split the
zero energy peaks of Majorana fermions.

Next we briefly discuss the boundary Majorana flat bands for the TR invariant spinful
px -wave Cooper pairing. For example, let us consider the pairing order parameter in the bulk
as 1i,i+ex = i|1|σ2 Eσ · Ed. Without loss of generality, we can assume that the d-vector lies in
the xy-plane with the azimuthal angle φ, i.e. dx + idy = |d|eiφ . This corresponds to that spin-
up fermions are paired with spin-up, and spin-down ones are paired with spin-down, with the
relation 1↑↑ = |1|eiφ and 1↓↓ = |1|e−iφ . Then the boundary Majorana modes consist of two
branches γ↑ and γ↓ forming Kramer pairs. The bonding among Majorana modes can occur
within each branch of Kramer pair by developing currents as explained above. If a residue
magnetic interaction exists, another way to remove the degeneracy is to develop magnetism
with the order parameter iγ↑γ↓. The spin polarization for such an order is in the xy-plane. In
general, these two different bonding mechanisms can coexist.

4. Discussions

The above real p-wave Cooper pairing of single component fermion can be realized in ultra-cold
dipolar fermionic molecular systems. For example, the 40K–87Rb systems have been cooled
down below quantum degeneracy [43, 44]. Moreover, the chemically stable dipolar fermion
molecules of 23Na–40K have also been laser-cooled [45]. If the dipole moments are aligned
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along the z-axis by external electric fields, the interaction between two dipole moments exhibits
the dr2−3z2-type anisotropy. It means that the interaction is attractive if the displacement vector
between two dipoles is along the z-axis, and repulsive if it lies in the xy-plane. Naturally, this
leads to the pz-type Cooper pairing in the strong coupling limit. Even in the weak coupling
limit, partial wave analysis also shows that the dominant pairing symmetry is the pz-type. Due
to the anisotropy of the interaction, it slightly hybridizes with other odd partial wave channels
as predicted in previous works [46–48]. For the two-component dipolar fermions, the triplet pz

Cooper pairing has also been theoretically predicted [49, 50]. The above predicted spontaneous
time-reversal symmetry breaking effects in the orbital channel will appear on the surfaces
perpendicular to the z-axis.

In the condensed matter systems, the boundary Majorana fermion has been detected in the
1D quantum wire with spin–orbit coupling [16–20]. A magnetic field is also applied in parallel
to the wire to lift the degeneracy at zero momentum such that the system is effectively one
component if the Fermi energy lies inside the gap. In this case, the major effect of the magnetic
field is the Zeeman effect, and the time-reversal symmetry is not explicitly broken in the orbital
channel. The proximity effect from the superconducting electrodes induces superconductivity
in the 1D wire, which leads to the zero energy Majorana ending states. If we put an array of
these 1D wires together and their ends are weakly connected, these Majorana modes will also
spontaneously build up bonding strength by developing staggered orbital currents patterns, the
consequential splitting of the zero bias peaks will be exhibited in the tunneling spectroscopy.

5. Conclusion

In summary, we have found that the zero energy boundary Majorana flat bands of the p-wave
superconductors are unstable toward spontaneous time-reversal symmetry breaking in the
orbital channel, which results from the coupling between Majorana modes and the Cooper
pairing phases. The divergence of density of states at zero energy leads to spontaneous formation
of staggered current loops, which generates bondings among the Majorana modes and lifts
the degeneracy. This is a robust mechanism which appears even without introducing new
instabilities.
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