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38, D-01187 Dresden, Germany
2 Laser Physics Centre, Research School of Physics and Engineering, Australian
National University, Canberra, ACT 0200, Australia
3 Friedrich Schiller University, Institute of Condensed Matter Theory and
Optics, D-07743 Jena, Germany
E-mail: fabian@pks.mpg.de

New Journal of Physics 15 (2013) 083055 (18pp)
Received 13 March 2013
Published 28 August 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/8/083055

Abstract. Quasiperiodic oscillations and shape-transformations of higher-
order bright solitons in nonlinear nonlocal media have been frequently observed
numerically in recent years, however, the origin of these phenomena was never
completely elucidated. In this paper, we perform a linear stability analysis of
these higher-order solitons by solving the Bogoliubov–de Gennes equations.
This enables us to understand the emergence of a new oscillatory state as a
growing unstable mode of a higher-order soliton. Using dynamically important
states as a basis, we provide low-dimensional visualizations of the dynamics
and identify quasiperiodic and homoclinic orbits, linking the latter to shape-
transformations.
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1. Introduction

Bright solitons are particle-like nonlinear localized waves, that keep their form while evolving
due to a compensation of diffraction or dispersion by the nonlinear self-induced modification of
the medium [1]. Usually, solitons are studied in systems exhibiting local nonlinearities, where
the guiding properties of the medium at a particular point in space depend solely on the wave
intensity at that particular point [2]. Here, we consider nonlocal nonlinearities, i.e. situations
in which the nonlinear response of the medium at a point depends on the wave intensity in
a certain neighborhood of that point, where the extent of this neighborhood is referred to
as degree of nonlocality. Nonlocal nonlinearities are ubiquitous in nature, for example, when
the nonlinearity is associated with some sort of transport process, such as heat conduction in
media with thermal response [3–5], diffusion of charge carriers [6, 7] or atoms/molecules in
atomic vapors [8, 9]. Nonlinearities are also nonlocal in case of long-range interaction of atoms
in Bose–Einstein condensates (BEC), such as in case of dipolar BEC [10–13] or BEC with
Rydberg-mediated [14, 15] interactions. In addition, long-range interactions of molecules in
nematic liquid crystals also result in nonlocal nonlinearities [16–19].

The balance between diffraction and nonlinearity may lead to stable solitons withstanding
even strong perturbations. In particular, it has been shown, that nonlocal nonlinearities crucially
modify stability properties of localized waves. With respect to bright solitons, they lead to a
much more robust evolution as compared to their local counterparts [20, 21]. This is due to
the fact, that nonlocality acts like a filter by averaging or smoothing-out effect on perturbations
which would otherwise grow in case of local response of the medium [22]. For example, higher-
dimensional solitons would collapse for systems exhibiting local nonlinearities, whereas they
can be stabilized by nonlocality [23–25].

In this work, we investigate the linear stability and nonlinear dynamics of higher-order
solitons. In particular, we study the quadrupole soliton Q and the second-order radial soliton
R2 (a hump with a ring), as sketched in figure 1. For those solutions, a quasiperiodic
shape transformation between states of different symmetries has been observed numerically
in [26, 27]. However, a complete understanding of this spectacular phenomenon, which
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Figure 1. Two particular soliton solutions: (a) quadrupole soliton Q and (b)
second-order radial soliton R2. Both soliton profiles can be chosen real without
loss of generality. The lower plane shows the modulus square depicted in color
scale of the two solitons.

is beyond conventional instability of higher-order solitons in local nonlinear media due to
symmetry-breaking and modulational instability [28], is still missing. One difficulty in the
analysis of the shape transformations is that they cannot be described solely in terms of
linear perturbation analysis since perturbations are not small [27]. Nevertheless, here we show
that in spite of the fact that we are dealing with a highly nonlinear phenomenon, deeper
understanding can be gained from the analysis of the corresponding Bogoliubov–de Gennes
(BdG) equations. In other words, solutions of the linear stability analysis of the solitons are
used to describe wave dynamics in the neighborhood of a soliton solution. Moreover, in order
to fully understand nonlinear dynamics, we employ and further develop techniques recently
introduced in dynamical systems studies of dissipative partial differential equations (PDE)
[29, 30]. These methods project PDE solutions from a functional infinite space onto a finite
number of important physical states or dynamically relevant directions. Here, the relevant
directions are mainly the unstable and stable internal modes of the solitons. The introduction of
these low-dimensional projections will allow us to interpret the nonperiodic soliton oscillations
as indication of homoclinic connections. Moreover, we are able to understand how different
solutions, including quasiperiodic oscillations, are organized by this homoclinic connection.
The same analysis should also work for a larger variety of higher-order solitons of this nonlocal
system, such as those presented e.g. in [26, 27].

The paper is organized as follows. In section 2, we introduce the governing equations of
motion. In section 3, we solve the BdG equation to find the internal modes of the quadrupole
soliton Q as well as the second-order radial soliton R2. In section 4, we discuss nonlinear soliton
propagation, introduce low-dimensional projections and in section 5 we study homoclinic and
quasiperiodic trajectories in this representation. Finally, we will conclude in section 6.

2. Model equations

The underlying model equation for our subsequent considerations is the nonlocal nonlinear
Schrödinger equation

i∂tψ +1ψ + θψ = 0, (1)
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Figure 2. Solitonic family curves for the second-order radial soliton R2 (blue)
and the quadrupole soliton Q (red). Dashed lines indicate parameter domains
where the soliton is linearly unstable.

where 1= ∂xx + ∂yy denotes the transverse Laplacian. Depending on the actual context,
|ψ(r, t)|2 can be identified with either the intensity of an optical beam in scalar, paraxial
approximation or the density of a two-dimensional (2D) BEC within mean field approximation.
The nonlinearity θ is given by the convolution integral

θ =

∫
K (r − r′)|ψ(r′, t)|2 d2r′, (2)

where the kernel K is determined by the physical system under investigation, and r = (x, y).
If K (r)= K (|r|), then equation (1) is invariant under rotation and the angular momentum
is conserved. This is the case here, as we consider the Gaussian nonlocal model, for which
quasiperiodic oscillations have been originally observed [26, 27]:

K (r)= e−r2
. (3)

Even though there is no actual physical system associated with the Gaussian model, it is
commonly used in the literature as a toy model for nonlocal nonlinearities. Note that without
loss of generality the width of the kernel K has been set to unity, in order to have the same
scaling as used in [26, 27].

3. Linear stability analysis of higher-order solitons

Let 8 be a bright solitonic solution to our governing equation (1)

8(r, t)= ψS(r) eiλt , (4)

where λ is the propagation constant or chemical potential for the case of optical beams or BEC,
respectively, and ψS denotes the stationary profile of the soliton. Because we will not consider
solitons carrying angular momenta (e.g. vortices), we can choose ψS(r) to be real.

In order to find numerically exact stationary profiles ψS(r), we use variational solutions as
input to an iterative solver [31]. Typically, we use a grid of 400×400 points to determine ψS(r).
This transverse resolution is also employed for numerical integration of equation (1), i.e. for
beam propagation or time evolution of the 2D BEC. Figure 2 shows solitonic family curves of
the two higher order solitons we choose to study here, the second-order radial state R2 and the
quadrupole Q. Apart from the total angular momentum, there are other conserved functionals,
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namely the Hamiltonian H[ψ] associated with invariance with respect to time-translations and
the mass M[ψ] due to a global U (1) phase-invariance:

H[ψS] =

∫
|∇ψS|

2 d2r −
1

2

∫
|ψS(r)|2K (r − r′)|ψS(r′)|2 d2r′ d2r, (5)

M[ψS] =

∫
|ψS|

2 d2r. (6)

Obviously, the family curves for the R2 and Q solitons are quite close to each other. It
was already suggested in [26] that such ‘energy crossing’ is a necessary condition for shape
transformations to occur. However, energy crossing is not sufficient for the latter. Moreover,
we will see in the following analysis of projected propagation dynamics in section 4 that the
solitons do not fully convert into each other.

Let us first recall that the linear stability of solitonic solutions can be studied as an
eigenvalue problem as follows. We introduce a small perturbation δψ(r, t) to our solitonic
solution ψS(r) via

ψ(r, t)= [ψS(r)+ δψ(r, t)] eiλt . (7)

Plugging equation (7) into the governing equation (1) and retaining only first order terms in δψ ,
yields the following (linear) evolution equation for δψ :[

i∂t − λ+1+
∫

K (|r − r′
|)ψ2

S(r
′)dr′

]
δψ(r, t)

+ψS(r)
∫

K (|r − r′
|)ψS(r′)

[
δψ(r′, t)+ δψ∗(r′, t)

]
d2r′

= 0. (8)

With the ansatz

δψ(r, t)= δu(r)eiκt + δv∗(r) e−iκ∗t (9)

for the perturbation we can derive the eigenvalue problem (BdG equation)[
1− λ+

∫
K (|r − r′

|)ψ2
S(r

′) d2r′

]
δu(r)

+ψS(r)
∫

K (|r − r′
|)ψS(r′)

[
δu(r′)+ δv(r′)

]
d2r′

= κδu(r), (10a)

−

[
1− λ+

∫
K (|r − r′

|)ψ2
S(r

′) d2r′

]
δv(r)

−ψS(r)
∫

K (|r − r′
|)ψS(r′)

[
δv(r′)+ δu(r′)

]
d2r′

= κδv(r). (10b)

Real-valued eigenvalues κ of equation (10) are termed orbitally stable and the
corresponding eigenvector (δu, δv) can be chosen real-valued. On the other hand, complex
eigenvalues with negative imaginary part indicate exponentially growing instabilities. We note
that due to the special structure of equation (10) (which has its origins in the Hamiltonian
structure of equation (1)), if κ is an eigenvalue, then −κ as well as ±κ∗ are also eigenvalues.

Next, we solve equation (10) in order to obtain the internal modes of the second-order
radial soliton R2 and the quadrupole Q, respectively. A trivial solution to this problem is always
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Figure 3. Spectrum of the linear stability analysis (BdG equation) centered
around zero for (a) the second-order radial soliton R2, and (b) the quadrupole
Q. Both solitons have mass M = 200. The radial soliton R2 exhibits instabilities
and the unstable eigenmodes ê1(r), ê2(r) resemble quadrupoles (see two insets
in (a)); the quadrupole soliton Q is stable. For both solitons, the degeneracy of
the trivial modes is lifted, a numerical artifact due to the discretization of the
eigenvalue problem equation (10). For sake of readability, the insets in (a) show
the absolute square |ê(r)|2 = |δu(r)+ δv∗(r)|2 only.

given by (δu, δv)= ±(ψS,−ψS) with eigenvalue κ = 0. This so-called trivial phase mode is
linked to the phase invariance of solitons. Derivatives of this trivial phase mode with respect
to x or y are also trivial eigenvectors5 with eigenvalue κ = 0, and thus the eigenvalue κ = 0
is degenerate. Moreover, due to symmetry properties of the system trivial modes appear twice
in the spectrum, i.e. we expect sixfold degeneracy of the eigenvalue κ = 0. However, when
solving the discretized version of equation (10) numerically, this degeneracy may be lifted.
Thus, degenerate eigenvectors with zero eigenvalues may in fact become slightly complex
without actually indicating an instability. In other words, their nonzero imaginary part is a
numerical artifact of the discretization and occurs because the full eigenspace has to be spanned
by the eigenvectors. The actual computation of the linear eigenvalue problem equation (10)
is numerically expensive, since the matrix we have to diagonalize is full, i.e. all entries are
nonzero. In order to achieve reasonable computation times, we usually reduce the grid-size to
100×100 points only. Then, the matrix we have to diagonalize has 4×108 nonzero elements.

In figure 3, we show the spectrum of the linear stability analysis (BdG equation) for the
second-order radial soliton R2 (a) and the quadrupole soliton Q (b) for mass M = 200. Note
that for modes with purely imaginary eigenvalue κ = i Im κ , equation (9) reads δψ(r, t)=

[δu(r)+ δv∗(r)] e−Im (κ)t , and it makes sense to write these modes as

ê(r)= δu(r)+ δv∗(r). (11)

Only the second-order radial state R2 is unstable, and we name the two unstable internal modes
ê1, ê2. The unstable modes ê1, ê2 ought to be degenerate for symmetry reasons, the small splitting
of the eigenvalues (κ1 ≈ −2.7i, κ2 ≈ −2.5i) is again a numerical artifact due to the discretization
of the eigenvalue problem equation (10). Interestingly, the shapes of the unstable eigenmodes
ê1(r), ê2(r) resemble quadrupoles. In fact, for practical purposes (see next section) as well as to

5 The trivial modes (δu, δv)= ±(∂xψS,−∂xψS), respectively, (δu, δv)= ±(∂yψS,−∂yψS) are linked to the
translational invariance of the system.
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Figure 4. Spectrum of the linear stability analysis (BdG equation) centered
around zero for the quadrupole Q with mass M = 85. The unstable eigenmode
ê1(r) resembles the shape of R2 (see inset), but is of course not rotationally
symmetric. Again, the degeneracy of the trivial modes is lifted, a numerical
artifact due to the discretization of the eigenvalue problem equation (10). For
sake of readability, the inset shows the absolute square |ê(r)|2 = |δu(r)+ δv∗(r)|2

only.

verify these findings we furthermore solved the eigenvalue problem equation (10) for R2 on a
radial grid [32] with eightfold resolution. Then, instead of stable and unstable quadrupoles, one
finds stable and unstable vortices with topological charge m = ±2 and |κ| ≈ 2.74. The vortices
corresponding to m = 2 and −2 can be superposed to again yield the quadrupoles ê1, ê2 found
already with the full 2D solver, but with much higher precision. Because equation (10) is linear,
the amplitudes of the ê j are not fixed, and we normalize the latter according to∫

ê∗

j (r)ê j(r)d2r = 1, j = 1, 2. (12)

The quadrupole soliton Q in figure 3(b) is stable, because all complex eigenvalues
correspond to trivial modes and hence the complex form of these eigenvalues is a numerical
artifact as discussed above. However, the quadrupole becomes linearly unstable for M . 90,
as indicated in figure 2 by dashed lines. In figure 4, we show the results of our numerical
stability analysis for the quadrupole soliton Q with mass M = 85. The unstable mode ê1

with κ1 ≈ −1.2i resembles the second-order radial soliton R2, i.e. a hump with a (modulated,
i.e. not rotationally symmetric) ring. It is quite interesting to note that both solitons, R2

and Q, feature internal modes resembling each other. Moreover, in unstable configuration,
exactly those modes show the largest growth rate. In other words, R2 tends to decay in the
direction of Q, and Q, if unstable, tends to decay in the direction of R2. This strong link
between R2 and Q is also reflected by successful variational description in terms of generalized
Hermite–Laguerre–Gaussian (HLG) beams [33, 34]. In order to distinguish these variational
HLG solutions from our numerically exact solutions, we introduced the notation R2 and Q.
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Figure 5. (a) Evolution of the peak-intensity of the second-order radial soliton
R2 with mass M=200 (upper blue curve). As expected from the stability
analysis figure 3(b), the peak-intensity of the quadrupole soliton Q with same
mass (lower red curve) is constant during propagation. Figure (b) shows the
projected dynamics in the variables U (t), S(t) (see equation (17)) for initial
conditions R2 (blue curve, starting at (α)) and Q (red curve, starting at (γ )).
The shape of the former curve hints at a homoclinic connection, where the
homoclinic point corresponds to R2 (α). Figure (c) presents the same dynamics
as (b), with an additional dimension given by the variable w (see equation (18)).
In this three-dimensional (3D) projection, the distance between the quadrupole
Q (γ ) and the ‘turning point’ (β) becomes apparent. For reasons of clarity, the
3D-dynamics (blue) is additionally projected into (S, w)-plane (black), and the
orbit of the quadrupole is again shown in red. The three insets show snapshots of
the nonlinear dynamics.

4. Projected nonlinear dynamics

The typical dynamics for R2 (here for M = 200) as an initial condition is shown in figure 5(a).
To determine the shape of R2, we use the iterative solver mentioned above on a grid containing
400 × 400 points, and we use the same grid for the actual propagation. As we have seen in
section 3, the second-order radial soliton R2 is unstable over the whole range of mass M and
therefore any perturbation, that has a nonzero overlap with the unstable internal modes ê1, ê2 will
lead to an exponential growth of the latter. Practically, the residual in numerical determination
of R2 as well as the propagation algorithm based on the Fourier split-step method [1] lead
to inevitable numerical noise when propagating and therefore trigger the instability without
adding any additional perturbation. In our case, however, we added the eigenmode ê1 as
initial perturbation with tiny amplitude ∼10−4 to the soliton R2 to control the breakup in a
preferred direction. For small times the dynamics is governed by the exponential growth of
the unstable internal mode ê1, while for later times the evolution becomes highly nonlinear,
exhibiting oscillations between R2 (see inset (α) in figure 5(a)) and a state that resembles
the quadrupole soliton Q (see inset (β) in figure 5(a)) [26]. This state (β) we will call the
‘turning point’. In the following we will examine in detail the origin and properties of these
oscillations.
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Figure 6. Schematic sketch of the relation between ê j , ê∗

j , e j⊥, and (e j⊥)
∗.

By construction, e j⊥ is orthogonal to the stable eigenvector ê∗

j , and (e j⊥)
∗ is

orthogonal to the unstable eigenvector ê j . It is worth to notice that e j⊥ and (e j⊥)
∗

are not orthogonal to each other. Panels (b) and (c) show the modulus squared of
the internal mode ê1 and e1⊥, respectively.

4.1. Projection methods

Let us now introduce the projection method mentioned in the introduction [29, 30] and adopt
it to our problem. To this end, we recall the scalar product of two complex functions f and g,
defined as

〈 f, g〉 =

∫
f ∗(r)g(r) d2r. (13)

Obviously, the (unstable) internal modes ê j of R2 introduced before (see figure 3) are not
orthogonal to their complex conjugate (stable) ê∗

j ( j = 1, 2) counterparts with respect to
this inner product. In other words, stable and unstable eigenspaces E s and Eu spanned by
eigenfunctions {ê∗

1, ê∗

2} respectively {ê1, ê2} are not mutually orthogonal. Thus, straightforward
projections onto ê j and ê∗

j do not help to elucidate the propagation dynamics. To overcome this
difficulty we introduce a set of functions which is biorthogonal to ê j , ê∗

j using a Gram–Schmidt-
like technique as follows. Firstly, we define

e j⊥ = ê j − 〈ê∗

j , ê j〉ê
∗

j , (14)

which is simply the projection of the unstable eigenmode ê j onto the orthogonal complement
of the stable eigenmode ê∗

j . Secondly, we note that (e j⊥)
∗
= ê∗

j − 〈ê j , ê∗

j 〉ê j corresponds to
projection of the stable eigenmode ê∗

j onto the orthogonal complement of the unstable
eigenmode ê j . Then, it is easy to verify biorthogonality of e j⊥, (e j⊥)

∗ with respect to ê j , ê∗

j :

〈ê j , (e j⊥)
∗
〉 = 0, (15a)

〈ê∗

j , (e j⊥)
∗
〉 6= 0, (15b)

〈ê j , e j⊥〉 6= 0, (15c)

〈ê∗

j , e j⊥〉 = 0. (15d)

In figure 6(a) a schematic sketch of the relation between ê j , ê∗

j , e j⊥ and (e j⊥)
∗ is depicted,

and figures 6(b)–(c) show ê1 and e1⊥ explicitly. It is worth to notice that 〈e j⊥, (e j⊥)
∗
〉 6= 0, i.e.

e j⊥ and (e j⊥)
∗ are not orthogonal to each other.

In order to analyze the propagation dynamics of a solution ψ(x, t) of equation (1), we
introduce the quantities

U j = 〈e j⊥, ψ〉, S j = 〈(e j⊥)
∗, ψ〉. (16)
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By construction, U j is associated with the unstable eigenmode only (e j⊥ is orthogonal to the
stable one), while S j is associated with the stable eigenmode only. Finally, for R2, the two
unstable eigenvectors ê1, ê2 are degenerate (due to rotational symmetry about the origin),
therefore we introduce the rotationally invariant projected variables

U (t)=

√√√√ 2∑
j=1

|U j |
2 , S(t)=

√√√√ 2∑
j=1

|S j |
2. (17)

Then, any pair of wavefunctions ψ1(x, t) and ψ2(x, t) related through a rotation amounts to the
same value of U (t) and S(t). For a rigorous proof of this statement, see the appendix.

4.2. Indication of homoclinic connections

Figure 5(b) illustrates the dynamics shown in figure 5(a) in the variables S(t),U (t) introduced in
equation (17). We clearly see the second-order radial soliton R2 (α) decaying into a quadrupole-
like state (β), the ‘turning point’, and then coming back to R2. In the vicinity of R2, the decay
starts via the local unstable eigenspace Eu (i.e. U (t) > 0, S(t)≈ 0), and the revival of R2

happens via the local stable eigenspace E s (i.e. S(t) > 0, U (t)≈ 0). The fact that the system
repeatedly returns (close) to its initial state R2 and remains at this point some finite, non-constant
time with (nearly) zero velocity, hints at the existence of a homoclinic connection. A homoclinic
connection is a solution which is asymptotic to R2 both in the t → ∞ and t → −∞ limit.
The time-span, in which the solution remains close to its initial state R2, i.e. the homoclinic
point (α) in figure 5(b), with practically zero velocity, corresponds to intervals with maximum
(nearly) constant peak-intensities in figure 5(a). Because we added a small perturbation in the
direction of the eigenmode ê1 to the initial condition R2, and the presence of numerical noise
in general, we do not see the exact homoclinic connection in our numerical simulations; as
the trajectory comes back toward R2 along E s, there is always a small perturbation along the
unstable eigenspace Eu and the trajectory leaves the neighborhood of R2 to return to it later on.
We want to stress here that the existence of homoclinic connections is by no means anticipated
in general; our numerical results however indicate the existence of such homoclinic connections
and their persistence along a large range of the mass M .

To further illustrate that the ‘turning point’ (β) is indeed well-separated from the
quadrupole soliton Q (γ ), we introduce a third variable w by projecting the solitonic wave
function ψ onto the radial soliton R2,

w(t)=
|〈R2, ψ〉|

〈R2, R2〉
. (18)

Obviously, for ψ = R2 we find w = 1, while for ψ = Q for symmetry reasons we have w = 0.
Figure 5(c) shows the resulting projected dynamics on the variables U, S, w. We clearly
recognize similarities with figure 5(b), however, it becomes much more clear how the solution
evolves from its origin (α) and becomes much more ‘quadrupole-like’ in (β). In particular,
the important separation between the quadrupole-like ‘turning-point’ (β), which still maintains
a nonzero projection on R2 and the quadrupole soliton Q(γ ) becomes evident. Thus, the
homoclinic orbit does not connect the two stationary nonlinear solutions R2 and Q, as one
would expect from previous variational calculations involving approximate HLG beams [26].
Instead, trajectories starting from (α), respectively, (γ ) stay well separated (see red, respectively,
blue curve in figure 5(a)).
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5. Nonlinear dynamics beyond the homoclinic orbit

In the previous section, we argued that due to numerical limitations, we cannot actually track
the homoclinic orbit precisely, but what we find are trajectories that are very close to the
homoclinic connection. In the present section we will further probe the dynamical importance of
the homoclinic orbit by studying trajectories adjacent to it. In a sense, the ‘turning point’ (β) of
the homoclinic orbit is a state ‘in between’ R2 and Q. Here we will investigate the dynamics of
such ‘in between’ states obtained by perturbing the homoclinic orbit at the ‘turning point’ (β).
The perturbations we will consider are not necessarily small and, as we will see, they typically
lead to quasiperiodic oscillations.

5.1. Quasiperiodic motion

The homoclinic orbit is obtained by (slightly) perturbing the initial wavefunction of R2 in the
direction of one of the unstable modes (e.g. of ê1) and integrating equation (1) forward in
time. Choosing the direction of the initial perturbation fixes the ‘orientation’ of the subsequent
dynamics, and we can thus decompose the wavefunction at the turning point (point (β)
in figure 5) at time tt into a part parallel to the quadrupole soliton Q and a remainder L

ψ(r, tt)= cQ Q(r)+ L(r), (19)

where cQ = 〈Q, ψ(r, tt)〉/〈Q, Q〉 was introduced6. Perturbed wavefunctions ψ0(r) are then
constructed through

ψ ′

0(r)= cQ Q(r)+0L(r), (20a)

ψ0 =

√
〈ψ,ψ〉

〈ψ ′

0, ψ
′

0〉
ψ ′

0, (20b)

where 0 parameterizes mixed states between R2 and Q, and, in equation (20b), the wavefunction
was normalized. For 0 = 1, we obtain the ‘turning point’ (β), whereas of 0 = 0, the
quadrupole soliton is recovered. In the following the time evolution of the function ψ0 will be
studied.

Let us first consider the dynamics for 0 = 1.01 as shown in figure 7, which indicates
quasiperiodic behavior for small times (up to t ' 25). The time spend by this orbit close
to R2 is much smaller than for the homoclinic connection of the previous section. This
becomes apparent when comparing the peak-intensity evolution in figure 7(a) with the one
in figure 5(a). In the (U, S, w) projection, this fact results in a smoother curve close to the
origin (whereas for a homoclinic connection a kink appears when R2 is approached, while the
‘velocity’ approaches zero). On the other hand, in the intensity representation, figures 7(c)–(h),
the difference between homoclinic and quasiperiodic behavior is much harder to discern.
Propagation in figures 7(a) and (b) is shown until t = 35, when the dynamics already deviates
from the quasiperiodic orbit, indicating that the latter is unstable. This behavior hints to the
existence of some chaotic region in state-space, an issue that will be studied elsewhere.

6 More generally, if the direction of the breakup is arbitrary, one may generalize equation (19) by decomposing
ψ(tt) into two quadrupoles Q1, Q2, where Q1 is rotated by π/4 with respect to Q2, via ψ(r, tt)= cQ1 Q1(r)+
cQ2 Q2(r)+ L(r).

New Journal of Physics 15 (2013) 083055 (http://www.njp.org/)

http://www.njp.org/


12

Figure 7. Evolution of ψ0 for 0 = 1.01 defined in equation (20). Panel (a)
shows the peak-intensity, panel (b) the orbit in lower-dimensional S,U, w
representation, and panels (c)–(h) snapshots of the dynamics. The coloring is the
same as in figure 5, where the blue curve again represents the actual 3D dynamics
and the black curve its projection on the (s, w)-plane, and the red curve is the
orbit of the quadrupole.

Figure 8. Evolution of ψ0 for 0 = 0.99 defined in equation (20). Panel (a)
shows the peak-intensity, panel (b) the orbit in lower-dimensional S,U, w
representation and panels (c)–(h) snapshots of the dynamics. The coloring is the
same as in figure 5, where the blue curve again represents the actual 3D dynamics
and the black curve its projection on the (s, w)-plane, and the red curve is the
orbit of the quadrupole.

On the other hand, the dynamics for 0 = 0.99, shown in figure 8, appear again
quasiperiodic (see also the discussion of the Fourier spectra in section 5.2), but in this case
the orbit appears to be stable, as it persists at least up to t = 1500. The qualitatively different
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Figure 9. Evolution of ψ0 for 0 = 0.5 defined in equation (20). Panel (a)
shows the peak-intensity, panel (b) the orbit in lower-dimensional S,U, w
representation and panels (c)–(h) snapshots of the dynamics. The coloring is the
same as in figure 5, where the blue curve again represents the actual 3D dynamics
and the black curve its projection on the (s, w)-plane, and the red curve is the
orbit of the quadrupole.

behavior for 0 = 1.01 and 0.99 with respect to stability further corroborates the importance
of the homoclinic solution 0 = 1.00 (β). In a certain sense, the homoclinic orbit ‘organizes’
regions of stability in parameter space. However, the homoclinic orbit should not be seen as
a kind of ‘boundary’ between regions of different stability behaviors, because it is just a one-
dimensional line in the highly dimensional parameter space.

Let us finally consider the trajectory in figure 9 which is far away from both the
quadrupole soliton as well as from the ‘turning point’ (β) by letting 0 = 0.5. The dynamics
is still quasiperiodic and stable (at least up to t = 1500), but involves multiple frequencies.
Interestingly, the dominant frequency of oscillation with period T ≈ 2.6 can be related to a
stable eigenvalue of the quadrupole soliton Q for M = 200. In the (stable) eigenvalue spectrum
of Q shown in figure 3(b), the internal mode with κ ≈ 2.6 resembles a (modulated) ring with a
hump (not shown). The duration of one period T would then be given by T = 2π/κ ≈ 2.4,
which is what we find when we slightly perturb the quadrupole soliton Q by this mode.
Moreover, for 0 = 0.1 (not shown) we also find an oscillation with period T ≈ 2.4. In both
case, the propagation dynamics resemble the one shown in figure 9 for 0 = 0.5. Thus, even
though for 0 = 0.5 we are no longer in the region where linear perturbation analysis of the
quadrupole soliton Q holds, we still find qualitatively similar dynamics. We note that in the
same system equation (1), quasiperiodic nonlinear solutions (so-called azimuthons) linked to
stable internal modes of solitons were reported earlier [32, 35].

To sum up, we have identified a family of stable quasiperiodic solutions to equation (1),
starting from ψ0 given in equation (20) and 0< 0 < 1. The two limiting solutions are the stable
quadrupole solitons Q (0 = 0) and the homoclinic orbit linked to the unstable radial solitons
R2 (0 = 1). We want to emphasize here that for lower masses, where the quadrupole soliton Q
becomes unstable (e.g. M = 85), we were not able to find stable quasiperiodic solutions by the
same construction.

New Journal of Physics 15 (2013) 083055 (http://www.njp.org/)

http://www.njp.org/


14

Figure 10. (a) Spectrum f (ω)= |F[(ψ(r = 0, t)]|2 corresponding to the
homoclinic orbit 0 = 1.00 (red), and quasiperiodic orbits with 0 = 0.99 (black)
and 0 = 0.5 (blue) in logarithmic scale. (b) Same information in linear scale.
Panels (c)–(e) show magnifications of single peaks of (b).
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5.2. Fourier spectrum

Further insight can be gained by considering the Fourier spectrum of the above trajectories.
Given a trajectory ψ(r, t) we compute the modulus of the Fourier transform F of the
wavefunction at a fixed point in space (in our case the origin r = 0):

f (ω)= |F [ψ(r = 0, t)]|2 . (21)

For a bright soliton solution of the form equation (4), one would expect f (ω) to comprise of
a single sharp peak at ω = λ. On the other hand, in the case of quasiperiodic dynamics with
vibration frequency � and propagation constant λ, one would expect peaks at λ+ m�, where
m is integer. This is readily verified for the orbits with a = 0.99 and 0.5, as can be seen in
figure 10, where we see sharp peaks associated with these orbits. On the other hand, there is no
well defined periodicity associated with the homoclinic orbit, since the time spent in the vicinity
of R2 is in principle infinite. In practice, this time is greatly affected by numerical noise and the
spectrum appears continuous (see figure 10(a)). Even if it is possible to associate a dominant
frequency � with the homoclinic orbit, f (ω) around � is much broader than in the case of
quasiperiodic orbits for 0 = 0.99 and 0.5 (see figures 10(b) and (c))7.

Thus, the Fourier spectra yield an additional indication of the qualitatively different nature
of the dynamics of section 4.2 from the quasiperiodic motion of section 5.1, providing further
support for the conjectured existence of an underlying homoclinic connection in the former
case.

6. Conclusions

In previous works, an oscillatory shape-transformation of modes in nonlocal media has been
observed numerically [26, 27]. In this paper, we approached this phenomenon by means of
linear stability analysis and projection techniques borrowed from dynamical systems studies
of dissipative PDEs. By studying the linear stability of the quadrupole soliton Q and the
second-order radial soliton R2, we found that the former becomes linearly stable for mass
M & 90, whereas the latter remains linearly unstable for all masses. The initial stage of the
shape-transformations under consideration, i.e. the emergence of a new state on top of R2,
can be understood in terms of this linear instability, which is triggered by the unavoidable
numerical noise. However, the most striking feature of the dynamics, i.e. the return to the initial
state, is inherently nonlinear, as it occurs only after the linear instability saturates. To study
this phenomenon, we introduced a low-dimensional representation of the dynamics, through
a projection to dynamically important states, which were constructed from the radial soliton
R2 itself and its unstable/stable eigenmodes. Projecting the time evolution of the wavefunction
ψ(r, t) (obtained by integrating the nonlocal nonlinear Schrödinger equation) onto these states
allows a visualization of oscillatory shape-transformations in terms of trajectories, revealing
that shape-transformations can be interpreted as a homoclinic orbit leaving and re-approaching
R2. Moreover, in the neighborhood of this homoclinic orbit we found quasiperiodic solutions,
which for small enough perturbations resemble the homoclinic connection. This indicates that

7 A limitation on the spectral resolution for f (ω) for the homoclinic orbit appears due to the fact that the
dynamics becomes unstable around t = 520. Here, we used the interval t = [0 : 500] to compute the spectrum.
Thus, compared to the other two spectra shown in figure 10, where the propagation was performed until t = 1500,
the spectral resolution is coarser by a factor of three.
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the homoclinic connection provides a basic recurrence mechanism around which quasiperiodic
dynamics is organized, as is common in lower-dimensional dynamical systems [36]. We were
also able to construct and identify a whole family of stable quasiperiodic orbits when the
quadrupole soliton Q is stable.

The projection method introduced here allows a compact representation of the dynamics,
dual to the commonly used intensity plots. Moreover, in certain cases it helps to uncover features
of the dynamics that are not apparent in snapshots of the intensity evolution. We expect that
similar studies can be carried out for other states exhibiting similar dynamics [26] and that our
projection method (or similar extensions of the methods of [29, 30]) could be applied to a variety
of high- and infinite-dimensional conservative systems.

We would like to mention that during the review process, a very recent experimental
observation of self-induced nonlinear optical mode-conversion in a nematic liquid crystal cell
was brought to our attention [37].

Appendix. Rotational invariance of U(t) and S(t)

Here we prove that the quantities U (t), S(t) are rotationally invariant, i.e. they have the
same value if we substitute ψ(x, y, t) with R(θ)ψ(x, y, t)= ψ(x cos θ − y sin θ, x sin θ +
y cos θ, t), where R(θ) is an SO(2) rotation.

The eigenproblem equation (10) for the ring soliton R2 is rotationally symmetric and, as a
result, its internal modes ê1, ê2 transform according to

R(θ)êi =

2∑
j=1

D j i(θ) ê j , (A.1)

where D(θ) is a 2D matrix-representation of SO(2). The explicit representation D(θ) depends
on the basis ê j , but for our purposes it is sufficient to show that we have a real representation.
We begin by noting that the constraints of orthogonality, DT D = 1, and unit determinant,
det(D)= 1, lead to the following general form

D(θ)=

(
α(θ) β(θ)

−β∗(θ) α∗(θ)

)
, (A.2)

where the functions a(θ), β(θ) are related through

det (D(θ))= |α(θ)|2 + |β(θ)|2 = 1. (A.3)

On the other hand, using ê2 =R(θ0)ê1, where θ0 is the angle that rotates ê1 onto ê2, we can
express all matrix elements D j i = 〈ê j ,R(θ)êi〉 in terms of D11,

D(θ)=

(
α(θ) α(θ + θ0)

α(θ − θ0) α(θ)

)
. (A.4)

Comparing with equation (A.2) we conclude that α(θ)= α∗(θ) and thus our representation is
real, and that α(θ − θ0)= −α(θ + θ0).8

8 In our numerical results θ0 = π/4 and one can see that our representation is in fact equivalent to

D(θ)=

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
.
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Using equations (A.1)–(A.3) in definition equation (14), along with the relation 〈ê∗

1, ê1〉 =

〈ê∗

2, ê2〉, one can show that

R(θ)ei⊥ =

2∑
j=1

D j i(θ) e j⊥. (A.5)

Then, using equations (A.2)–(A.5), it is easy to show that

Ū 2(t)≡ |〈e1⊥,R(θ)ψ〉|
2 + |〈e2⊥,R(θ)ψ〉|

2
= |〈R(−θ)e1⊥, ψ〉|

2 + |〈R(−θ)e2⊥, ψ〉|
2

= |〈e1⊥, ψ〉|
2 + |〈e2⊥, ψ〉|

2
= U 2(t).

A similar proof holds for S(t).
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