
            

PAPER • OPEN ACCESS

Topological phase transitions with and without
energy gap closing
To cite this article: Yunyou Yang et al 2013 New J. Phys. 15 083042

 

View the article online for updates and enhancements.

You may also like
Wetting transitions
Daniel Bonn and David Ross

-

Convergence of Transition Probability
Matrix in CLVMarkov Models
D Permana, U S Pasaribu, S W Indratno et
al.

-

(Invited) Thermochromic Phase
Transitions in VO2-Based Thin Films for
Energy-Saving Applications
S C Barron, J M Gorham and M. L. Green

-

This content was downloaded from IP address 3.22.181.81 on 08/05/2024 at 08:22

https://doi.org/10.1088/1367-2630/15/8/083042
https://iopscience.iop.org/article/10.1088/0034-4885/64/9/202
https://iopscience.iop.org/article/10.1088/1757-899X/335/1/012046
https://iopscience.iop.org/article/10.1088/1757-899X/335/1/012046
https://iopscience.iop.org/article/10.1149/MA2014-01/36/1387
https://iopscience.iop.org/article/10.1149/MA2014-01/36/1387
https://iopscience.iop.org/article/10.1149/MA2014-01/36/1387
https://iopscience.iop.org/article/10.1149/MA2014-01/36/1387


Topological phase transitions with and without
energy gap closing

Yunyou Yang1,2, Huichao Li1, L Sheng1,4, R Shen1, D N Sheng3

and D Y Xing1,4

1 National Laboratory of Solid State Microstructures and Department of
Physics, Nanjing University, Nanjing 210093, People’s Republic of China
2 College of Physics and Electronic Engineering, Sichuan Normal University,
Chengdu 610068, People’s Republic of China
3 Department of Physics and Astronomy, California State University,
Northridge, CA 91330, USA
E-mail: shengli@nju.edu.cn and dyxing@nju.edu.cn

New Journal of Physics 15 (2013) 083042 (10pp)
Received 7 April 2013
Published 22 August 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/8/083042

Abstract. Topological phase transitions in a three-dimensional (3D) topologi-
cal insulator (TI) with an exchange field of strength g are studied by calculating
spin Chern numbers C±(kz) with momentum kz as a parameter. When |g| ex-
ceeds a critical value gC, a transition of the 3D TI into a Weyl semimetal occurs,
where two Weyl points appear as critical points separating kz regions with differ-
ent first Chern numbers. For |g| < gC, C±(kz) undergo a transition from ±1 to
0 with increasing |kz| to a critical value kC

z . Correspondingly, surface states exist
for |kz| < kC

z , and vanish for |kz|> kC
z . The transition at |kz| = kC

z is accompanied
by closing of the bulk spin spectrum gap rather than the energy gap.

4 Authors to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 083042
1367-2630/13/083042+10$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:shengli@nju.edu.cn
mailto:dyxing@nju.edu.cn
http://www.njp.org/
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. The model and method 3
3. Phase diagram 4
4. The surface states 5
5. Conclusion 8
Acknowledgments 9
References 9

1. Introduction

The quantum Hall (QH) effect [1, 2] in a two-dimensional (2D) electron gas under a strong
magnetic field provided the first example of a topological state of matter in condensed matter
physics, which cannot be described by the Landau theory of symmetry breaking. Thouless,
Kohmoto, Nightingale and Nijs (TKNN) revealed that the essential character of a QH insulator,
different from an ordinary insulator, is a topological invariant of occupied electron states [3]
or many-body wavefunctions [4]. They related the Hall conductivity of the system to the first
Chern number (or TKNN number), which is quantized when the Fermi level lies in an energy
gap between Landau levels. In such systems, topological phase transitions can happen only
by closing the energy gap. Gapless edge states must appear on the boundary between a QH
insulator and an ordinary insulator, which is ensured by the topological invariant. Interestingly,
Haldane [5] proposed a spinless electron model on a 2D honeycomb lattice with staggered
magnetic fluxes to realize the topological QH effect without Landau levels.

The quantum spin Hall (QSH) effect was first theoretically predicted by Kane and Mele [6]
and by Bernevig and Zhang [7], and then experimentally observed in HgTe quantum wells
[8, 9]. Unlike the QH systems, where time reversal (TR) symmetry must be broken, the QSH
systems preserve the TR symmetry. The main ingredient is the existence of strong spin–orbital
coupling, which acts as spin-dependent magnetic fluxes coupled to the electron momentum.
The QSH state is characterized by a bulk band gap and gapless helical edge states on the
sample boundary [6–11]. The existence of the edge states is due to nontrivial topological
properties of bulk energy bands. However, the bulk band topology of the QSH systems cannot
be classified by the first Chern number, which always vanishes. Instead, it is classified by new
topological invariants, namely, the Z2 index [12] or the spin Chern numbers [13–15]. For TR-
invariant systems, both Z2 and spin Chern numbers were found to give an equivalent description
[14, 15]. The robustness of the Z2 index relies on the presence of the TR symmetry. In contrast,
the spin Chern numbers remain to be integer-quantized, independent of any symmetry, as long
as both the band gap and spin spectrum gap stay open [14]. They are also different from the
first Chern number for the QH state, which is protected by the bulk energy gap alone. The spin
Chern numbers have been employed to study the TR-symmetry-broken QSH effect [16].

The QSH system is an example of the 2D topological insulators (TIs). Its generalization
to higher dimension led to the birth of three-dimensional (3D) TIs [17–21]. A 3D TI has a
bulk band gap and surface states on the sample boundary. The metallic surface states provide a
unique platform for realizing some exotic physical phenomena, such as Majorana fermions [22]
and topological magnetoelectric effect [23, 24]. The 3D TIs have been experimentally observed
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in Bi1−xSbx , Bi2Te3 and Bi2Se3 materials [25–29], which greatly stimulates the research in this
field. The 3D TIs with TR symmetry are usually classified by four Z2 indices [17, 18, 30], and
are divided into two general classes: strong and weak TIs, depending on the sum of the four Z2

indices. In the presence of disorder, while the weak TIs are unstable, the strong TIs remain to be
robust. The Z2 indices are essentially defined only on the TR-symmetric planes in the Brillouin
zone [17, 18, 30], and do not provide information about the distribution of surface states in
the full momentum space. When the TR symmetry is broken, the Z2 indices become invalid.
Therefore, a more general characterization scheme for the bulk band topology, which does not
rely on any symmetry and can provide more information about the distribution of surface states,
is highly desirable.

In this work, for a 3D TI with an exchange field of strength g, we consider a momentum
component, e.g. kz as a parameter, and analytically calculate spin Chern numbers C±(kz) for
the effective 2D system. The phase diagram for C±(kz) obtained describes the systematic
evolution of the bulk band topology. For small g, an unconventional topological phase transition
is discovered, which controls the basic properties of surface states. C±(kz) undergo a transition
from ±1 to 0 with increasing |kz| to a critical value kC

z . Correspondingly, on a sample surface
parallel to the z-axis, helical surface states are found to exist in the region |kz| < kC

z , and
disappear for |kz|> kC

z . At |kz| = kC
z , the bulk spin spectrum gap closes, but the energy gap

remains open. When |g| is greater than a critical value gC, a transition of the 3D TI into a
Weyl semimetal occurs. Two Weyl points appear as critical points separating a QH phase of
the effective 2D system for |kz| < kW

z from an ordinary insulator for |kz| > kW
z , indicating that

their appearance is topological rather than accidental. Chiral surface states existing in the region
|kz| < kW

z give rise to the Fermi arcs.

2. The model and method

Let us start from the effective Hamiltonian proposed in [19]: H = A2τx(kxσx + kyσy) + M(k)τz +
A1kzτxσz + gσz, which was used to describe the strong TI of Bi2Se3. Here, σm and τm (m = x, y
or z) denote the Pauli matrices in spin and orbital spaces, and M(k) = M0 − B1k2

z − B2k2
⊥

with
k2

⊥
= k2

x + k2
y is the mass term expanded to the second order. In the last term, we include an

exchange field of strength g, in order to study the TR-symmetry-broken effect on topological
properties of the TI. For convenience, the momentum is set to be dimensionless, by properly
choosing the units of parameters in the model, namely, M0, A1, A2, B1 and B2.

Making a unitary transformation H= U † HU with U =
1
2(1 + τx) + 1

2(1 − τx)σz, we obtain

H= A2(kxσx + kyσy) + [M(k)τz + A1kzτx + g]σz. (1)

The eigenstates of Hamiltonian (1) can be easily solved by first diagonalizing the operator in
the square bracket. The four eigenenergies are obtained as

Ev(c)
± (k) = −(+)

√
A2

2k2
⊥

+ [g ± λ(k)]2, (2)

where λ(k) =

√
M2(k) + A2

1k2
z , and subscripts ± indicate two valence (conduction) bands with

superscript v (c). The electron wavefunctions in the valence bands are given by

ϕ±(k) = φ±(k) ⊗ χ±(k) . (3)
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Here, φ+(k) = [sgn(A1kz) cos αk , sin αk]T and φ−(k) = [sgn(A1kz)sin αk , −cos αk]T are
wavefunctions in the τz space, and χ± = (

kx−iky

k⊥

sin θ±

k , −cos θ±

k )T are wavefunctions in the σz

space, with 2αk = arcctg[M(k)/|A1kz|] and 2θ±

k = arcctg[(g ± λ(k))/|A2k⊥|].
The basic idea of our theoretical calculation is explained as follows. We consider one of

the momentum components, e.g. kz as a parameter. For a given kz, equation (1) is equivalent to
a 2D system, for which spin Chern numbers C±(kz) can be defined. For a semi-infinite sample
of the 3D TI with its surface parallel to the z-axis, kz remains to be a good quantum number.
Correspondingly, nonzero C±(kz) indicate that edge states with the given kz must appear on the
edge of the effective 2D system. The edge states at various kz essentially form surface states of
the 3D sample. Therefore, the characteristics of the surface states can be determined from the
calculation of the kz-dependent spin Chern numbers C±(kz).

3. Phase diagram

The spin Chern numbers for the effective 2D system are calculated in a standard way, which has
been described in detail in previous works [15, 16]. By studying a special case of kz = 0, we
find that the topological properties of equation (1) can be described by the spin Chern numbers
C±(kz) associated with τz. Here, τz corresponds to UτzU †

= τzσz in the original Hamiltonian
H , and so can be considered as a spin operator, measuring the difference of spin polarization
between the two orbitals. The eigenstates of projected spin operator Pτz P need to be calculated
first, where P is the projection operator into the valence bands. Since Pτz P commutes with
momentum operator, its eigenstates can be obtained at each momentum k separately. The
eigenvalues of Pτz P are given by

ξ±(k) = ±

√
cos2 2αk + cos2(θ+

k − θ−

k ) sin2 2αk. (4)

The corresponding eigenfunctions are denoted by 9±(k), whose expressions are lengthy and
will not be written out here. The spin Chern numbers are just the Chern numbers of the two spin
sectors formed by 9±(k), i.e. C±(kz) =

i
2π

∫
dkx dky êz ·

[
∇2 × 〈9±(k)|∇2|9

±(k〉
]
, where ∇2 is

the 2D gradient operator acting on (kx , ky). By some algebra, C±(kz) are derived to be

C±(kz) = ±
1

2
[sgn(B2) + sgn(Q(kz)sgn[P(kz)] ± g)] (5)

with P(kz) = M0 − B1k2
z and Q(kz) =

√
P2(kz) + A2

1k2
z .

Equations (2), (4) and (5) are the main analytical results of this work. For g = 0, the spin
Chern numbers at kz = 0 reduces to C±(0) = ±

1
2 [sgn(B2) + sgn(M0)]. C±(0) are nonzero when

B2 and M0 have the same sign, and vanish otherwise. C±(0) play a role similar to the Z2 index.
Nonzero C±(0) ensure that surface states exist in the vicinity of kz = 0 on a surface parallel
to the z-axis. Without loss of generality, we will focus on the parameter region of B2 > 0 and
M0 > 0, to which Bi2Se3 belongs. We wish to emphasize here that when kz is considered as a
parameter, the effective 2D Hamiltonian (1) breaks the TR symmetry for any kz 6= 0, even if
g = 0, as its TR counterpart is at −kz. Therefore, while the kz-dependent spin Chern numbers
given by equation (5) remain to be valid at any kz, a Z2 index cannot be defined for any kz 6= 0.
Equation (5) allows us to extract more information about the basic characteristics of the surface
states.
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Figure 1. Phase diagram determined from spin Chern numbers in the kz–g plane.
The parameters are chosen to be M0 = 0.1, A1 = 0.7, A2 = 1, B1 = 2.5 and
B2 = 14.

A typical phase diagram for the spin Chern numbers in the kz versus g plane, as determined
by equation (5), is plotted in figure 1. For simplicity, A2 is taken to be the unit of energy. For
small |g|, C±(kz) = ±1 at small |kz|, corresponding to a QSH phase of the effective 2D system,
and drop to 0 with increasing |kz| to a critical value kC

z ≡
√

M0/B1 = 0.2, as indicated by the
dotted lines. The system becomes an ordinary insulator for |kz| > kC

z . When |g| is greater than
a critical value gC, the effective 2D system enters a QH phase with a nonzero total (first) Chern
number C(kz) ≡ C+(kz) + C−(kz) = 1 if g > 0, and −1 if g < 0. The boundary enclosing this
phase, as indicated by the solid curves in figure 1, is determined by equation g = ±Q(kz), with
the analytical expression for Q(kz) being given below equation (5). The critical exchange field
is given by gC = min[Q(kz)], and gC ' 0.1 in figure 1.

It is interesting to see how the energy gap 1E(kz) = min[E c
±
(k) − Ev

±
(k)]|kz and the spin

spectrum gap 1τ (kz) = min[ξ+(k) − ξ−(k)]|kz behave on the boundary (solid and dashed lines)
between different phases. From equations (2) and (4), we find that on the dotted lines in figure 1,
the spin spectrum gap closes at kx = ky = 0, but the energy gap remains open. On the contrary,
on the solid boundary lines, the energy gap closes at kx = ky = 0, but the spin spectrum gap
remains open. 1E and 1τ as functions of kz for several values of g are plotted in figures 2(a)
and (b), respectively. We notice that at g = 0.14 and kz = kC

z = 0.2, the energy gap and spin
spectrum gap vanish simultaneously. This is because the dotted and solid boundary lines in
figure 1 intersect just at that point.

4. The surface states

To study the surface states directly, we construct a tight binding model on a cubic lattice with
two spins and two orbitals on each site, which recovers the Hamiltonian equation (1) in the
continuum limit. A semi-infinite sample with its surface parallel to the y–z plane is considered,
where ky and kz remain as good quantum numbers.
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Figure 2. Energy gap 1E (a) and spin spectrum gap 1τ (b) as functions of
momentum kz for different values of g. The other parameters are the same as
in figure 1.

Figure 3. Profiles of energy spectrum for a semi-finite sample of the 3D TI at
g = 0.05 for kz = 0, kC

z /3, 2kC
z /3 and kC

z . The other parameters are the same as
in figure 1.

The calculated energy spectrum for g = 0.05 is plotted as a function of ky for four different
values of kz in figure 3. Although g 6= 0 breaks the TR symmetry, the surface states remain
gapless at kz = 0, because τz in equation (1) is conserved at kz = 0. From figure 3, it is found that
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Figure 4. (a) Maximum level spacing δE between the edge states and bulk states
as a function of kz/kC

z . (b) A schematic view of the distribution of surface states
in 2D momentum space.

for kz = 0, kC
z /3 and 2kC

z /3, surface states always exist in the bulk energy gap, but no surface
states appear at kz = kC

z . To see the evolution of surface states with kz more clearly, we define a
maximum level spacing δE between the surface states and bulk states, as illustrated in figure 3.
In figure 4(a), δE is plotted as a function of kz. One can see that δE decreases with increasing
kz, and drops to nearly 0 at kz > kC

z . Therefore, we conclude that surface states exist only in
the region |kz| < kC

z , and vanish for |kz|> kC
z , which is well consistent with the phase diagram

of figure 1.
The critical momentum kC

z marks a topological phase transition, characterized by the
change in the spin Chern numbers, with disappearance of surface states as an observable
consequence. This topological phase transition is accompanied by closing the spin spectrum
gap rather than the energy gap. It is worth mentioning that topological phase transitions
without closing the single-particle energy gap have previously been observed in some interactive
electron systems. For example, in the Kane–Mele–Hubbard model, the spin excitation gap
closes across the transition from the TI to the anti-ferromagnetic Mott insulator [31]. Similarly,
in the Haldane–Fermi–Hubbard model, a generic excitation gap closes at the topological phase
transition, while the single-particle gap remains intact [32]. Our work demonstrates that such
unconventional topological phase transitions can happen in noninteracting electron systems as
well. While the closing of the spin spectrum gap may not be observed directly, we find that
the average of operator τz in H , namely,

∑
β=±

〈ϕβ(k)| U †τzU |ϕβ(k)〉 ∝ cos(2αk), changes its
sign at k = (0, 0, ±kC

z ), which indicates a reversal of the orbital polarization, leading to a bulk
physical observable at the transition. For the strong TI under consideration, the nontrivial bulk
band topology can be examined in any direction. For example, by considering ky as a parameter,
we can calculate the spin Chern numbers in the effective 2D space of (kx , kz), and obtain a
critical kC

y =
√

(M0 + |g|)/B2. Combining kC
y and kC

z together, we can depict the region in the
ky–kz plane, where topological surface states exist on a surface parallel to the y–z plane, as
shown in figure 4(b).

For |g| > gC, the 3D system enters another topological phase characterized by a nonzero
total Chern number C(kz) for small |kz|, which is essentially a Weyl semimetal phase [33–36].
The quantum phase transition from the 3D TI to the Weyl semimetal with tuning g can be
understood as a topological transition, at which the energy gap closing causes one of spin Chern
numbers C±(kz) to vanish, while the other remains to be quantized.
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Figure 5. Profiles of energy spectrum of a semi-finite sample at g = 0.2 for
kz = kW

z /3, 2kW
z /3, kW

z and 4kW
z /3. The other parameters are the same as in

figure 1.

At a given g, from equation g = ±Q(kz) for the solid boundary lines in figure 1, one can
obtain two critical values of kz, namely, ±kW

z , as indicated in figure 1. k = (0, 0, ±kW
z ) are a

pair of Weyl points, or 3D Dirac points, at which the conduction and valence bands touch. The
appearance of Weyl points is usually attributed to accidental degeneracy or symmetry [33–36].
The obtained phase diagram in figure 1 sheds more light on its topological origin. At a given
g, the Weyl points appear as two critical points separating a QH state of the effective 2D
system for |kz| < kW

z from an ordinary insulator state for |kz| > kW
z , at which the energy gap

must vanish. Changing parameters cannot open energy gaps at the two Weyl points, unless they
come together, so that the QH state in between is destroyed.

At g = 0.2, the calculated energy spectrum as a function of ky for four different kz is plotted
in figure 5, for a semi-infinite sample with its surface parallel to the y–z plane. It is found that
for kz < kW

z , chiral surface states appear in the energy gap; the conduction and valence bands
touch at kz = kW

z ; and for kz > kW
z , the energy gap reopens, but surface states no longer exist.

These results are in good agreement with the phase diagram in figure 1. The chiral surface states
appearing in the region of |kz| < kW

z give rise to the Fermi arcs [33–36].

5. Conclusion

We have studied topological phase transitions in a 3D TI with an exchange field of strength g
by calculating spin Chern numbers C±(kz) with a momentum kz considered as a parameter.
The phase diagram for C±(kz) obtained can describe the systematic evolution of the bulk band
topology, and provide more information about the surface states. We predicted that there exists
a critical value gc, for |g| < gc, C±(kz) undergo a transition from ±1 to 0 with increasing kz to a
critical value kC

z . Correspondingly, surface states are found to exist for |kz| < kC
z , and vanish for

|kz| < kC
z . The transition at |kz| < kC

z is accompanied by closing of spin spectrum gap without
energy gap closing, in contrast to a usual topological phase transition, where the energy gap
always collapses. It is also shown that when |g| exceeds the critical value gc, a transition of
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the 3D TI into a Weyl semimetal occurs, with surface states forming the Fermi arcs. Our work
suggests a possible way to realize this interesting topological state of matter via magnetic doping
in 3D TIs.
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