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Abstract. This paper describes the theoretical foundation of and explicit
algorithms for a novel approach to morphology and anisotropy analysis of
complex spatial structure using tensor-valued Minkowski functionals, the so-
called Minkowski tensors. Minkowski tensors are generalizations of the well-
known scalar Minkowski functionals and are explicitly sensitive to anisotropic
aspects of morphology, relevant for example for elastic moduli or permeability
of microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply
to representations of any object that can be represented by a triangulation of
its bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The paper further
bridges the substantial notational and conceptual gap between the different
but equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
formalism more readily accessible for future application in the physical sciences.
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The morphology of complex spatial microstructures is often classified qualitatively into types
such as cellular, porous, network-like, fibrous, percolating, periodic, lamellar, hexagonal,
disordered, fractal, etc. Various quantitative measures of morphology have been defined, often
applicable to one specific type only, for example moments of the distributions of angles of
tangent vectors with a fixed specified direction as anisotropy characterization of a network
structure. Apart from the concept of correlation functions, few measures are defined sensibly
and robustly for all types. In this paper, we describe the class of Minkowski functionals, or
Minkowski tensors (MT) for short that apply generically to almost any type of structure that
contains two or more phases separated by a well-defined interface, for example, porous media,
foams, trabecular bone, granular material. The MT are defined as integrals of powers of normal
and position vectors and surface curvatures, or curvature measures. Because of their tensorial
nature they are explicitly sensitive to anisotropic and orientational aspects of spatial structure.
Figure 1 shows examples of systems where subtle anisotropy of the spatial structure influences
the physical properties and to which the analysis of this paper is applicable.

The scope of this paper is the thorough theoretical description of the MT approach to spatial
structure analysis and the derivation of a robust algorithm to compute MT of bi-phasic materials.
It will facilitate the use of Minkowski tensors as robust structure metrics for shape description
and for structure–property correlations in physics and materials science. It simultaneously
provides the theoretic and algorithmic basis of our previous applications of this method [1–7],
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(a) Copolymer Film (b) Metal Foam (c) Trabecular Bone (d) Granular Material

Figure 1. Examples of systems with anisotropic spatial structure. (a) A
microphase-separated copolymer film aligns under the influence of an external
electric field (image courtesy of Böker and Olszowka, see also [8, 9]). (b) Closed-
cell metal foam (image courtesy of Saadatfar [10]). (c) Structure of trabecular
bone (image courtesy of Alan Boyde (a.boyde@qmul.ac.uk.)). (d) Packing of
ellipsoids as a model system for anisotropic granular matter.

and broadens the scope of the MT concept. A secondary purpose is to bridge the gap between the
notation and concepts commonly used in the physics literature for scalar Minkowski functionals
(MF), based on surface and volume integrals, and the integral geometry literature, where both
scalar and tensorial MF are derived based on measure theory. (Unless specified, the abbreviation
MF is henceforth used for the scalar Minkowski functionals.)

MT are direct generalizations of scalar-valued MF. These latter are well established as
succinct descriptors of morphology and spatial structure for various physical processes [11].
These integral geometric measures have been applied to disordered porous materials [12]
and are relevant to flow phenomena therein [13, 14], to nano-scale microstructures in
copolymers [15], to the dewetting dynamics of thin films [16] and to Turing patterns [17].
They have also been shown to be the most pertinent morphological quantities on which the
thermodynamic properties of simple fluids near curved solid interfaces depend [18, 19]. The
mathematical theory of MF and their generalizations have been comprehensively developed in
the context of integral geometry [20–23], with several aspects shared also with the discipline of
mathematical morphology [24–26].

MF as scalar quantities are not sensitive to features of the morphology which relate to
orientation or directional anisotropy, since motion invariance is one of their defining properties.
Therefore, scalar MF do not provide quantification of anisotropy that is relevant to study
the direction dependence of physical processes, such as elastic properties or permeability
of anisotropic porous or microstructured materials or systems with external fields. This
motivates their generalization to tensorial quantities. MT have already been shown to be the
relevant morphological descriptors for a density functional theory of fluids of non-spherical
particles [27] and of DNA conformations [28], and of a simple model for transport with
molecular motors [29]. They have also been used, in two dimensional systems, as morphology
descriptors of arrangements of neuronal cells [30], galaxies [31] and Turing patterns [6].

The mathematical discipline of integral geometry has proven statements regarding
continuity and completeness similar to the Hadwiger theorem in the scalar case [32–35].
However, an algorithm for the computation of the MT applicable to experimental
three-dimensional (3D) data—a prerequisite for their use as shape indices for experimental
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data—has thus far been lacking. (Note that the work in [1–7] has employed the algorithms
described in this paper without thorough description.)

A primary application of rank-2 MT is the quantitative analysis of the degree of intrinsic
anisotropy of materials with complex spatial structure. Scalar measures of anisotropy are easily
derived as eigenvalue ratios of the MT. Evidently, alternative methods for the characterization
of anisotropy and alignment exist. Fourier transforms are a common way to characterize
anisotropy, and have been applied, e.g., for trabecular bone [36], for electrodeposited
patterns [37], for fibre systems [38] and for structured polyethylene mats [39]. Related methods
based on correlation functions are also known [40, 41]. Fourier methods that analyse the
amplitude of the Fourier transform of a grey-scale image in polar coordinates can also quantify
alignment, e.g. of copolymer films in electric fields [8]. Anisotropy indices derived from the
normal vector distribution of a given shape, similar to the MT, have been used to describe the
shape anisotropy of simulated 3D foam cells [42, 43] and liquid interfaces [3, 44]. An anisotropy
measure applicable to porous media is derived from the directional variations of average chord
lengths. For a binary composite, i.e. consisting of a solid and a void phase, a chord is a segment
of an infinite straight line that is fully contained in one of the two phases. Analyses of chord
lengths and the derived mean intercept length ellipsoid are used for the investigation of the
microstructure of bone [45–50], see also [51] for a comparison of anisotropy measures based
on mean-intercept length, star-volume and star-length distributions. Deformations of cellular or
granular material have recently been quantified using the so-called texture tensor C , defined
as the sum Ci j :=

∑
li l j over a subset of link vectors l in the structure [52, 53]. The texture

tensor can be used to characterize anisotropy, e.g. for Antarctic ice crystals [54] and liquid
foam cells [55]. Further anisotropy measures are based on the Steiner compact [56], wavelet
analysis [57], the orientation of volumes [58] or star volumes [59]. Two-dimensional equivalents
of the anisotropy measures discussed in this paper have previously been used for the analysis of
the shape of neuronal cells [30] and galaxies [31], and are discussed in detail in [6].

The paper is organized as follows. Section 1 provides an overview of the theory of MF
and MT, based on their definition by surface integrals which is widely used in the physical
sciences. To bridge the gap in notation between the physics and the mathematics literature
this section also includes a discussion of the alternative definition based on measure theory.
Section 2 derives algorithms to compute MT for bodies represented by triangulations of their
bounding surface; their implementation is provided as online supplementary data (available
from stacks.iop.org/NJP/15/083028/mmedia) to this paper. Section 3 describes anisotropy
measures derived from the MT and illustrates their application to two experimental data sets.
The appendix provides analytic expressions for the MT for some simple geometric shapes.

1. Definition and fundamental properties

Scalar MF and MT can be used as shape measures to quantify the shape or form of an object.
They can be defined in two largely equivalent ways. In the physical sciences, a definition based
on curvature-weighted integrals of position or surface normal vectors over the object’s bounding
surface has been popular for the scalar MF, and forms the basis of the numerical algorithms
derived in this paper. An alternative, more fundamental definition is provided by the measure
theoretic approach of integral geometry (see section 1.2).

The object, also referred to as body, whose shape can be characterized by MT or MF
is denoted by K . Assuming that K is a compact set with non-empty interior embedded in
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Euclidean space R3 and is bounded by a sufficiently smooth surface ∂K , we define MF of
K as

W0(K ) =

∫
K

dV and Wν(K ) =
1

3

∫
∂K

Gν dA (1)

in space dimension d = 3 and with ν = 1, 2, 3. The scalar functions Gν are G1 = 1, the mean
curvature G2 = (k1 + k2)/2 and the Gaussian curvature G3 = k1k2 of the bounding surface ∂K ;
the scalars k1, k2 are the principal curvatures on ∂K as defined in differential geometry, dV is the
infinitesimal volume and dA is the scalar infinitesimal area element. This definition naturally
applies to both convex and non-convex bodies of arbitrary topology with a sufficiently smooth
bounding surface. The prefactor is chosen such that for a sphere BR with radius R the scalar MF
are Wν(BR) = κ3 R3−ν where κ3 = 4π/3 is the volume of the 3D unit sphere4.

The MF W2 and W3 (in 3D space) are not properly defined by equation (1) for bodies with
sharp edges or corners, due to singularities of the mean and Gaussian curvatures G2 and G3.
However, for convex bodies, consideration of a parallel or dilated body in the limit of vanishing
thickness provides a robust definition, by use of the Steiner formula. The Steiner formula states
that, for a given convex body K , the MF of the parallel or dilated body (K ] Bε) are a polynomial
in ε > 0 with coefficients proportional to the MF of K ; for ε > 0, Kε := K ] Bε := {x1 + x2 :
x1 ∈ K , x2 ∈ Bε} is the parallel or dilated body of K (see figure 2). Specifically for the volume
one finds W0(K ] Bε) = W0(K ) + 3W1(K )ε + 3W2(K )ε2 + W3(K )ε3, and more generally

Wν(K ] Bε) =

3∑
µ=ν

(
3 − ν

µ − ν

)
Wµ(K )εµ−ν. (2)

Sharp edges and vertices of K correspond to cylindrical or spherical segments on the bounding
surface ∂(K ] Bε of the parallel or dilated body. The bounding surface is sufficiently smooth
for ε > 0 and Wν(K ] Bε) converges to Wν(K ) in the limit ε → 0. It is further necessary
to define MF and MT for certain non-convex bodies, with or without positive reach, see
e.g. [23, Note 1 to section 5.3 and references therein]; this is achieved below by exploiting
an additivity relationship. A further discussion for non-smooth bodies can be found in section 2.

MT are symmetric tensors (that is, invariant under index permutation), which are generated
by symmetric tensor products of position vectors x and normal vectors n of ∂K . The dyadic (or
tensor) product of two vectors a and b is (a ⊗ b)i j := ai b j . Let now a and b be symmetric
tensors of rank r and s, respectively. The symmetric tensor product is defined as

(a � b)i1...ir+s
:=

1

(r + s)!

∑
σ∈Sr+s

aiσ(1)
· · · aiσ(r)

biσ(r+1)
· · · biσ(r+s), (3)

where Sr+s is the permutation group of r + s elements. For two tensors a and b, we use the
shorter notation a2 := a � a = a ⊗ a and ab := a � b. For example, if a and b are both vectors,
the symmetric tensor product is the tensor ab of rank 2.

4 Other normalizations of the scalar MF are also common in the literature. The kinematic formulae [22, 23]
have particularly simple coefficients if the normalization Mν(K ) = κd−νWν(K )/(κνκd) is used, with the volume
of the n-dimensional unit ball κn := πn/2/0(n/2 + 1). In the mathematical literature, in d-dimensional Euclidean
space the normalization Vd−ν(K ) = [d!/(ν!(d − ν)!)]Wν(K )/κν is frequently used, and the Vd−ν are called the
intrinsic volumes of K . In three dimensions, the set of MF thus consists of the volume W0 = M0 = V3, the
surface area 3W1 = 8M1 = 2V2, the integrated mean curvature 3W2 = 2π2 M2 = πV1, and the Euler characteristic
χ =

3
4π

W3 =
4π
3 M3 = V0 with χ(BR) = 1.
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(a) (b) (c)

Figure 2. (a) A body K with bounding surface ∂K ; (b) a convex polytope P
and its parallel body (or dilation) P ] Bε; (c) a subset of a topologically more
complex body based on Craig Marlow’s painting ‘White Spirits’ [60]. The latter
demonstrates a common experimental situation, namely that the given body K
represents a finite subset of a larger body K +, here the body K is clipped to the
window of observation T , K = K +

∩ T . It is assumed that K is a representative
subset of the larger body, which allows for the estimation of intrinsic shape
features of K +. If only K , but not K +, is available for analysis, particular care
must be taken w.r.t. those bounding surface patches of K that result purely
from taking the subset, i.e. those that are on the boundaries of the window of
observation.

The MT of rank 2 are defined as

W 2,0
0 (K ) :=

∫
K

x2 dV, (4)

W r,s
ν (K ) :=

1

3

∫
∂K

Gν xr ns dA (5)

with ν = 1, 2, 3 and (r, s) = (2, 0), (1, 1) or (0, 2). For ease of notation, we set W r,s
0 := 0 for

s > 0 and W r,s
ν := 0 if ν < 0 or ν > 3. For a 3D body, this definition yields ten MT, not counting

the ones that vanish by definition for all bodies.
MT of rank one (called Minkowski vectors) are defined by W 1,0

0 :=
∫

K x dV and by
W 1,0

ν := 1
3

∫
∂K x dA for ν = 1, 2, 3. The prefactors are chosen such that, for a sphere centred

at C, the so-called curvature centroids W 1,0
ν /Wν are equal to C. Note specifically that W 1,0

1 /W0

is the centre of mass (assuming a solidly filled body of constant density). Formally, vectors W 0,1
ν

proportional to
∫

∂K n dA for ν = 1, 2, 3 are also defined, however they vanish for any body with
a closed bounding surface [34].

MT are isometry covariant, that is their behaviour under translations and rotations is
given by

W r,s
ν (K ] t) =

r∑
p=0

(
r

p

)
tp W r−p,s

ν (K ), (6)

W r,s
ν (U K ) = Ûr+s : W r,s

ν , (7)
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Table 1. Basic tensor valuations in 3D. The MF (scalars, rank 0) are motion
invariant and the Minkowski vectors (rank 1) are genuinely translation covariant.
For rank two, the space of MT decomposes into two complementary subspaces
according to translation behaviour (indicated by the last column): genuinely
translation covariant and translation invariant tensors. The latter include tensors
obtained by multiplying the scalar MF Wν with the unit tensor Q := e2

1 + e2
2 + e2

3
of rank 2, where e1, e2, e3 are vectors of an orthonormal basis of R3.

Homogeneity (unit) Rank 0 Rank 1 Rank 2 Translation behaviour

λ5 [m5] – – W 2,0
0 Genuinely translation covariant

λ4 [m4] – W 1,0
0 W 2,0

1 Genuinely translation covariant
λ3 [m3] – W 1,0

1 W 2,0
2 Genuinely translation covariant

W0 – W0 Q Translation invariant
λ2 [m2] – W 1,0

2 W 2,0
3 Genuinely translation covariant

– – W 0,2
1 Translation invariant

W1 – W1 Q Translation invariant
λ1 [m1] – W 1,0

3 – Genuinely translation covariant
– – W 0,2

2 Translation invariant
W2 – W2 Q Translation invariant

λ0 [1] W3 – W3 Q Translation invariant

where K ] t is the translation of K by the vector t, U K is a rotated copy of K and Ûr+s denotes
the corresponding rotation tensor for a rank-(r + s) tensor:(

Ûr+s : W r,s
ν

)
i1,...,ir+s

:=
∑

j1,..., jr+s

Ui1, j1 . . . Uir+s , jr+s

(
W r,s

ν

)
j1,..., jr+s

. (8)

In this expression, Ui j is the conventional orthogonal 3 × 3 transformation matrix associated
with the rotation U .

For r = 0, equation (6) gives W r,s
ν (K ) = W r,s

ν (K ] t). A tensor that fulfils this relation for
all K is called translation invariant. Genuinely translation covariant tensors fulfil equation (6)
but not the translation invariance condition. For the sake of brevity, we will use the term
translation covariant to denote specifically the genuinely translation covariant tensors. All W 0,s

ν

are translation invariant by their definition; in dimension d = 3, also the tensors W 1,1
1 , W 1,1

2

and W 1,1
3 are translation invariant due to the envelope theorems of Müller [34]. Translation

invariance is important whenever a natural choice for the origin is not available.
All MF and MT are homogeneous, i.e. they fulfil the homogeneity relation W r,s

ν (λK ) =

λ3+r−νW r,s
ν (K ). Table 1 specifies the translation and homogeneity behaviour of the MF and MT.

Thus far, MT have been defined for (a) convex or non-convex bodies with a smooth
bounding surface and (b) convex bodies that may have sharp corners and edges. The case of
non-convex bodies with concave sharp corners or edges cannot be treated by the parallel body
construction (‘dilation’) without further assumptions (technically, such bodies do not represent
sets of positive reach [23, 61]). An extension of the definition of MF and MT to finite unions of
convex bodies is achieved by exploiting a property called additivity

W r,s
ν (K ∪ K ′) = W r,s

ν (K ) + W r,s
ν (K ′) − W r,s

ν (K ∩ K ′), (9)

if K , K ′ are all convex. In general, the union (K ∪ K ′) of two arbitrary convex bodies K and K ′

is not convex while the intersection (K ∩ K ′) is convex. Since W r,s
ν are continuous functionals
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on convex bodies, equation (9) can be used (see Groemer’s extension theorem [23]) to define
the MF and MT for bodies that are unions of a finite number of convex bodies (such sets are
called polyconvex).

MT of rank (r + s) with r + s > 1 are not completely linearly independent, i.e. they do
not contain independent shape information [33, 62]. For rank-2 MT and d = 3 the linear
dependences

QWν(K ) = νW 0,2
ν (K ) + (3 − ν)W 1,1

ν+1(K ) (10)

are valid for any polyconvex body K in R3 and ν = 0, 1, 2, 3; Q is the unit tensor of rank 2. In
particular, it follows that QW3 = 3W 0,2

3 . Specifically, for ν = 0 one obtains a special case of the
Gauss theorem

QW0 = 3W 1,1
1 , (11)

and hence W0 = tr W 1,1
1 . These relations are special cases of [33, equation (1.1)] or [62,

equation (1.5)].
Alesker’s theorem [32] makes a strong statement about the completeness of the MT for the

purpose of shape description. For the special case of tensors of rank 2, it states that any isometry
covariant, additive, continuous functional ϕ on general convex bodies in R3, taking values in
the space of symmetric tensors of rank 2 over R3, is a linear combination of the basic tensor
valuations (an additive functional is called valuation) Q pW r,s

ν , that is

ϕ(K ) =

∑
ν,r,s,p

ϕr,s,p
ν Q pW r,s

ν (K ) (12)

with real coefficients ϕr,s,p
ν that do not depend on the convex body K [33, p 150]. The

coefficients ϕr,s,p
ν vanish unless r + s + 2p = 2. Starting from equation (12) and using the

linear dependences among the basic tensor valuations, ϕ can be expressed in terms of linearly
independent basic tensor valuations which form a basis of the corresponding vector space. The
vector space of continuous, isometry covariant tensor valuations of rank 2 in R3 has dimension
10. A particular basis of this vector space consists of the six tensor valuations W 2,0

0 , W 2,0
1 , W 2,0

2 ,
W 2,0

3 , W 0,2
1 and W 0,2

2 , which contain pertinent independent shape information, and of the four
tensor valuations QWν , ν = 0, . . . , 3. A summary is provided in table 1.

Since ϕ is continuous and additive on convex bodies, it can be extended as an additive
functional to finite unions of convex bodies. For this additive extension, equation (12) remains
valid since the right-hand side is a linear combination of additive functionals. It should be
emphasized, however, that although all of these functionals are continuous on the space of
convex bodies, they are not continuous on the space of finite unions of convex bodies, see the
example in [6, figure 3].

1.1. Minkowski tensors of convex polytopes

It is instructive to illustrate the MT for convex polytopes P and to point out similarities to the
tensor of inertia. We use here the letter P , rather than K , to denote a body whose bounding
surface is a triangulation consisting of planar polygonal facets. For a polytope, the tensors W 2,0

ν

characterize the distribution of mass if the cell is a solid cell (W 2,0
0 ), a hollow cell (W 2,0

1 ), a wire
frame (W 2,0

2 ) and a cell consisting of points at the vertices only (W 2,0
3 ); in the last two cases,

however, this distribution of mass is weighted with certain exterior angles (see figure 3).
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W 2,00 – moment tensor solid W 2,01 – moment tensor hollow W 2,02 – moment tensor wire-

frame

W 2,03 – moment tensor vertices W 0,21 – normal distribution W 0,22 – curvature distribution

Figure 3. Interpretations of the MT for a polytope P . (Top left) Assuming
homogeneous density, W 2,0

0 is the mass distribution tensor. (Top middle to
bottom left) contributions to surface-integrated moment tensors W 2,0

ν with ν =

1, . . . , 3 are concentrated on (3 − ν)-dimensional faces. (Bottom middle and
right) moments of the normal distribution on ∂ P . Contributions to normal
moment tensors W 0,2

ν with ν = 1, . . . , 2 are also concentrated on (3 − ν)-
dimensional surfaces (reproduced from [4], copyright © 2011 Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim).

The tensor of inertia IP , defined by IPi j =
∫

K

(
−xi x j + δi j |x|

2
)

dV , is a measure of the
mass distribution of a (homogeneous) body K , relevant for the relationship between a rotation
and the resulting moment. As IP is not translation-covariant, it is not a linear combination of the
MT. However the simple relationship IP(K ) = −W 2,0

0 (K ) + tr
(
W 2,0

0 (K )
)

Q holds for arbitrary
K ; as above Q is the unit tensor of rank 2 of R3, also called metric tensor. This illustrates that
W 2,0

0 (K ) is a measure of the distribution of mass if K is a homogeneously filled solid, somewhat
analogous to the tensor of inertia. Similarly, W 2,0

1 (K ) characterizes the mass distribution if K
is hollow and bounded by an infinitesimally thin surface sheet. This interpretation of W 2,0

0 and
W 2,0

1 is valid for bodies K bounded by arbitrary surfaces (not just polytopes).
For a polytope P , the tensor W 2,0

2 (P) reduces to a line integral over the edges of the
polytope (as the mean curvature vanishes on the flat facets, see also section 2) and is hence
related to a mass distribution if P is given by a wire frame with wires along the edges. However,
imposed by the requirement of additivity, the weight of the wire cannot be uniform but must be
proportional to the mean curvature along the edge (i.e. the dihedral angle). Similarly, the tensor
W 2,0

3 (P) reduces to a sum of point contributions, as the Gaussian curvature G3 of P vanishes
except at the vertices of the given polytope P . Again due to the additivity requirement, these
vertices need to be weighted with the Gaussian curvature G3.
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Figure 4. Construction of a local parallel set. (a) Definition of the normal field
over an arbitrary convex body K at its boundary ∂K . (b1)–(b2) Local parallel
setMε(P, η) (illustrated for a polytope P) where only points are considered for
which the normal direction is in a prescribed subset S of the unit sphere. (Here
η = Rd

× S.)

1.2. Definition based on fundamental measure theory

This section describes the alternative (and in some sense more fundamental) definition of MF
and MT based on integral geometry and fundamental measure theory. The purpose of this
section is to bridge the gap between the mathematics and physics literature on MF and MT.
However, its content is not required for the numerical approaches to MF and MT described in
section 2.

In integral geometry, the definition of MF and MT is based on so-called support measures
(sometimes called generalized curvature measures) that can be thought of as local versions of
the scalar MF [20, 22, 23, 63].

If support measures are available, then the MT for convex (or more general) bodies are
obtained by integrating tensor functions with respect to these measures. Here we describe the
approach for convex sets. The idea underlying the introduction of support measures for convex
sets is to generalize the notion of a parallel set (or ‘dilation’, see figure 4 for d = 2) of a convex
body K in d-dimensional Euclidean space Rd to a suitable local construction.

A definition of the local parallel set that also applies to convex bodies K without smooth
boundary is given in the following. We define pK (x) as the unique point in K which is
nearest to a given point x ∈ Rd . This defines a continuous map pK (·) : Rd

→ K , x 7→ pK (x).
Then dK (x) :=‖ x − pK (x) ‖ is the distance from x to K and nK (x) := (x − pK (x))/dK (x), for
x ∈ Rd

\ K , is an exterior unit normal of K at the boundary point pK (x) ∈ ∂K (see figure 4).
This construction achieves a definition of nearest points (reminiscent of the Euclidean distance
map [64]) and surface normals that is also well defined for points x whose nearest point on
K is a sharp corner (where the tangent plane is not well defined and hence the conventional
differential geometric definition of the surface normal does not apply).

Now we shall derive a local Steiner formula and support measures, following [23] to obtain
local support measures. The definition of MF and MT then follows directly as a special case
[33, 62]. The intuitive idea underlying the definition of a local parallel set is described in
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two steps. Firstly, we specify a region L ⊂ Rd and some ε > 0. Then we consider all points
x ∈ Rd

\ K which have distance dK (x) at most ε from K and for which pK (x) ∈ L . Secondly, if
K has points (such as at sharp corners or edges) where the exterior surface unit normal vector
is not unique, then it is natural to restrict the points in this local outer parallel set further by also
requiring nK (x) to lie in a prescribed set S ⊂ Sd−1 of the unit sphere in Rd . As an example,
consider the polytope P in figure 4(b1); for the definition of the local parallel set (shaded
dark) it is necessary to specify which angular fraction of the wedges should be part of the
local parallel set. This motivates the definition of the local parallel set by specification of the
spatial region L and by the subset S ⊂ Sd−1 of normal directions, conveniently combined to
η = L × S ⊂ Rd

× Sd−1. This two-step procedure can be merged and slightly extended to the
following general definition.

For given ε > 0 and η ⊂ Rd
× Sd−1, the local parallel set of K defined by

Mε(K , η) := {x ∈ Rd
\ K : dK (x)6 ε, (pK (x), nK (x)) ∈ η} (13)

contains all points x ∈ Rd with 0 < dK (x)6 ε such that the pair (pK (x), nK (x)) ∈ η. The first
condition restricts x to the global outer parallel set (K ] Bε) \ K (see figure 4(b1)). The second
condition restricts Mε(K , η) to those points x ∈ Rd of the global outer parallel set, where
(pK (x), nK (x)) ∈ η.

The volume of this local parallel set of a convex body K is Vd(Mε(K , η)), where Vd is
the d-dimensional Lebesgue-measure. A fundamental result in integral geometry, known as
the local Steiner formula [23, 63], states that the map ε 7→ Vd(Mε(K , η)) for all ε > 0 is a
polynomial of degree d, that is

Vd(Mε(K , η)) =

d−1∑
ν=0

εd−νκd−ν3ν(K , η), (14)

where κn := π n/2/0(n
2 + 1) is the volume of an n-dimensional unit ball and 3ν(K , η), ν =

0, . . . , d − 1, are certain real coefficients that depend on K and η, but not on ε.
For equation (14) to be true for all ε > 0, it is crucial that K is convex [65]. Equation (14)

is easily confirmed (and evaluated) for a convex polytope P . In this case, the set (K ] Bε)\P
can be decomposed in an elementary way into wedges over the faces F of P as indicated by
figure 4(b1). Let Fν(P) denote the ν-dimensional faces of the polytope P5

n(P, F) := {nP(x) ∈ Sd−1 : pP(x) ∈ relint F, x ∈ Rd
\P} (15)

the set of unit normal vectors assigned to F ∈ Fν(P) and relint F the relative interior of F
(i.e. the interior of F w.r.t. the lowest-dimensional embedding affine hull); see figure 5.

The contributions to Vd(Mε(K , η)) coming from each of these wedges

Mε(P, F) :=Mε(P, (relint F × Sd−1)) (16)

can be calculated by a simple integration known as Fubini’s theorem or Cavalieri’s principle
[66, 67]. This shows that for η = L × S equation (14) holds with

3ν(P, L × S) =
1

ωd−ν

∑
F∈Fν(P)

∫
F∩L

dHν

∫
n(P,F)∩S

dHd−ν−1, (17)

5 F1 is the set of edges. In section 2 we use this notion for oriented edges, that is (non-oriented) edges are split
into two oriented edges pointing in opposite directions. Here the set F1 contains non-oriented edges. Elsewhere it
is stated explicitly.
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Figure 5. (a) Illustration of the set of normal vectors on the surface of a polytope
P . (b) Normal vector assigned to a facet F ∈ F2(P). (c) Line segment of normal
vectors assigned to an edge F ∈ F1(P). (d) Spherical triangle/patch of normal
vectors assigned to a vertex F ∈ F0(P).

where ων = ν κν is the surface measure of the (ν − 1)-dimensional unit sphere and dHν is the
Hausdorff measure of dimension ν [68].

Since an arbitrary convex body K can be approximated by polytopes, equation (14) can be
derived by a continuity argument. In fact, 3ν(K , η) can be expressed as a linear combination
of Vd(Mεµ

(K , η)), for εµ > 0 pairwise different and µ = 1, . . . , d. One obtains an invertible
d × d-matrix equation (with the matrix entries εd−ν

µ κd−ν) with ν running from 0, . . . , d − 1.
Therefore, the properties of the local parallel volume Vd(Mε(K , η)) (in particular, additivity
and weak continuity) are also available for 3ν(K , η) [63, p 202]. In particular, K 7→ 3ν(K , η)

is an additive functional for fixed η. That is, for convex bodies K and K ′

3ν(K ∪ K ′, η) = 3ν(K , η) + 3ν(K ′, η)− 3ν(K ∩ K ′, η). (18)

Furthermore, η 7→ 3ν(K , η) is a non-negative measure for fixed K . The latter means that if
ηµ ⊂ Rd

× Sd−1, µ ∈ N, is a sequence of mutually disjoint (measurable) sets, then

3ν

K ,

∞⋃
µ=1

ηµ

 =

∞∑
µ=1

3ν(K , ηµ). (19)

This property is called σ -additivity of 3ν(K , ·). Weak continuity of 3ν means that for every
sequence of convex bodies Kµ (µ ∈ N), with Kµ → K and every continuous function f :
Rd

× Sd−1
→ [0, ∞) the equation

lim
µ→∞

∫
f (x, n) 3ν(Kµ, d(x, n)) =

∫
f (x, n) 3ν(K , d(x, n)) (20)

holds. Note that this does not imply 3ν(Kµ, η) → 3ν(K , η) as µ → ∞ for all measurable sets
η ⊂ Rd

× Sd−1

In particular, 3ν(K , ·) can be used to integrate functions over Rd
× Sd−1. It is plausible

that 3ν(K , ·) is concentrated on the normal bundle N (K ) := {(pK (x), nK (x)) ∈ ∂K × Sd−1 :
x ∈ Rd

\ K }. In other words, N (K ) consists of all (x, n) ∈ ∂K × Sd−1 such that n is an exterior
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unit normal vector of K at x. The measures 3ν(K , ·), ν = 0, . . . , d − 1, are called support
measures and are determined as coefficient measures of the Steiner formula, equation (14).
They are local versions of the classical MF Wν , since 3ν(K , Rd

× Sd−1) = Vν(K ) ∝ Wd−ν(K ).
If K is sufficiently smooth, then

3ν(K , η) =

(d−1
ν

)
ωd−ν

∫
∂K

1 {(x, nK (x)) ∈ η} Gd−ν(x) dA, (21)

where Gν(x) is the (ν − 1)th (normalized) elementary symmetric function of the principal
curvatures of ∂K at x. That is in three dimensions, these are 1, the mean curvature and Gaussian
curvature, respectively. 1{·} is the characteristic function, which evaluates to one if its argument
is true and 0 otherwise. For general dimensions and ν 6 d − 1, equation (21) holds for all
sufficiently smooth convex bodies K .

Having introduced the support measures as local versions of the scalar MF, it is easy to
define the MT for a convex body K by

8r,s
ν (K ) :=

1

r !s!

ωd−ν

ωd−ν+s

∫
Rd×Sd−1

xr ns 3ν (K , d(x, n)) , (22)

hence we obtain 8r,s
ν (K ) by integrating the tensorial function xr ns with respect to the measure

3ν(K , ·) over N (K ) ⊂ Rd
× Sd−1. If K is a polytope, for d = 3 this yields equation (A.3), up to

a different normalization. If K is smooth, we obtain equation (5), up to a different normalization
and indexing scheme, i.e.

8r,s
ν (K ) =

(d−1
ν

)
r !s!ωd−ν+s

∫
∂K

xr nsGd−ν(x) dA,

8
r,0
d (K ) =

1

r !

∫
K

xr dV . (23)

The notation 8µ,r,s or 8r,s
µ for the MT in equation (22) is preferred in some of the

mathematical literature and differs from the notation W r,s
ν in equations (4) and (5) only by a

different indexing scheme and a different normalization. In R3, i.e. for d = 3, the functionals
8r,s

µ and W r,s
ν are related by

W r,s
ν (K ) = C 8

r,s
d−ν(K ) with C :=

r !s!ων+s

d
(d−1
ν−1

) , (24)

for ν = 1, . . . , d, and

W r,0
0 (K ) = r ! 8

r,0
d (K ). (25)

The additivity and continuity properties of the support measures immediately yield the
corresponding properties of the MT. This approach also shows that if it is possible to define
support measures for a class of sets, then the corresponding tensor valuations can be defined by
equation (22).

Since the theory of support measures is well developed [23, 63], the measure theoretic
approach outlined above has some advantages over the differential geometric approach.
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As a simple illustration, let us explain why W 1,1
d−ν is translation invariant for ν = 0, . . . ,

d − 1. Observe that by translation covariance of the support measures∫
Rd×Sd−1

xn 3ν

(
K ] t, d(x, n)

)
=

∫
Rd×Sd−1

(x + t)n 3ν

(
K , d(x, n)

)

=

∫
Rd×Sd−1

xn 3ν

(
K , d(x, n)

)
+ t

∫
Rd×Sd−1

n 3ν

(
K , d(x, n)

)
. (26)

It is a basic property of the measures 3ν(K , ·) that they are centred at the origin in the
sense that

∫
n 3ν(K , d(x, n)) = 0 [34], which yields the assertion.

A natural and useful extension that is suggested by general measure theory is to introduce
local tensor valuations by restricting the integration on the right-hand side of equation (22) to
measurable subsets of Rd

× Sd−1.

2. Algorithms for bodies bounded by triangulated surfaces

We describe an exact algorithm for all independent scalar, vectorial and rank-2 MT of
bodies bounded by piece-wise linear (i.e. triangulated) surfaces. Henceforth such bodies,
convex or non-convex, are called polytopes P and their bounding surface is the triangulation
F. Triangulations are commonly used as discrete approximations of smooth surfaces.
The continuity of the MF and MT guarantees the convergence of the formula for the
triangulations to the MF and MT of the smooth body.

The formulae are derived for convex bodies with triangulated bounding surfaces by
considering parallel bodies Pε of convex polytopes P (i.e. Pε has a continuous normal field and
finite curvatures for ε > 0 and a well defined limit as ε → 0). By application of the additivity
relation these formulae are then shown to be valid also for bodies that are not convex. The key
results of this paper—explicit formulae for the computation of MT of convex and non-convex
polytopes—are summarized in table 2.

Consider a polytope P in R3 with piece-wise linear bounding surface ∂ P ≡ F. Without
loss of generality, the linear facets may be assumed to be triangles6 . The set of all triangular
patches of ∂ P is F2, the set of oriented edges is F1 and the set of vertices is F0. We assume
a doubly connected edge list (DCEL [69], also called half edge data structure7), that is, every
edge which is shared between two triangles T and T ′ is a double edge consisting of two oriented
edges e (being part of T ) and e′ (part of T ′), constituting an unambiguous assignment of each
edge to a triangle. Each oriented edge is assigned to its previous edge eprevious and its next edge
enext. The remaining ambiguity in the edge orientation is lifted by requiring the triangle normals
nT = (eprevious × e)/|eprevious × e| to point out of the body P . Thus, we can uniquely assign to
each oriented edge e a triangle T with vertices v1, v2 v3 (see figure 6) and its normal vector nT .

The parallel body construction is illustrated by figure 2(b). For an arbitrary body P the
parallel body Pε with thickness ε > 0 is defined as Pε := P ] Bε . For a convex polytope P
(whose bounding surface has a discontinuous normal field) the bounding surface ∂ Pε has a

6 It is an important consequence of the additivity relation that the MT (in contrast to, e.g., the texture tensor)
do not change if flat polygonal facets are broken up into triangles. This is evidently also true for the algorithmic
implementation described here.
7 Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
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Table 2. MF and MT in 3D of body K with smooth boundary ∂K and a body P
bounded by a triangulated surface ∂ P .

Scalar measures

W0
∫

K dV 1
3

∑
T ∈F2

〈CT , nT 〉|T |

W1
1
3

∫
∂K dA 1

3

∑
T ∈F2

|T |

W2
1
3

∫
∂K G2 dA 1

12

∑
e∈F1

|e| αe

W3
1
3

∫
∂K G3 dA 1

3

∑
v∈F0

(2π −
∑

T ∈F2(v)

φv
T )

Vectorial measures

(W 1,0
0 )i

∫
K xi dV

∑
T ∈F2

(IT )ik(nT )k , see section 2.4

(W 1,0
1 )i

1
3

∫
∂K xi dA 1

3

∑
T ∈F2

|T |(CT )i

(W 1,0
2 )i

1
3

∫
∂K G2 xi dA 1

12

∑
e∈F1

|e|αe(Ce)i

(W 1,0
3 )i

1
3

∫
∂K G3 xi dA 1

3

∑
v∈F0

(2π −
∑

T ∈F2(v)

φv
T )vi

Tensorial measures (rank two)

(W 2,0
0 )i j

∫
K xi x j dV

∑
T ∈F2

(JT )i jk(nT )k , see section 2.5

(W 2,0
1 )i j

1
3

∫
∂K xi x j dA 1

3

∑
T ∈F2

(IT )i j

(W 2,0
2 )i j

1
3

∫
∂K G2 xi x j dA 1

36

∑
e∈F1

αe|e| ·
(
v2

1 + v1v2 + v2
2

)
i j

(W 2,0
3 )i j

1
3

∫
∂K G3 xi x j dA 1

3

∑
v∈F0

(2π −
∑

T ∈F2(v)

φv
T )(v2)i j

(W 0,2
1 )i j

1
3

∫
∂K ni n j dA 1

3

∑
T ∈F2

|T | (n2
T )i j

(W 0,2
2 )i j

1
3

∫
∂K G2 ni n j dA 1

24

∑
e∈F1

|e|
(
(αe + sin αe)(n̈2

e)i j + (αe − sin αe)(ṅ2
e)i j

)
Second column. MF and MT for bodies with smooth boundary ∂K . The mean and Gaussian
curvatures on ∂K are G2 and G3, respectively. Third column. MF and MT for a triangulation.
The set of facets of the triangulation F is F2, the set of oriented edges is F1 (in DCEL
structure, see text) and the set of vertices F0. The subset of triangles that contain the vertex
v is denoted by F2(v). The nomenclature for triangulated surfaces is defined in figure 6.
The vertices of an edge e or a triangle T are denoted v1, v2 and v3, respectively. |T | is the
area of T ∈ F2, CT its centre point (v1 + v2 + v3)/3 and the tensors IT and JT are given in
equations (33) and (35) and table 3. Ce = (v1 + v2)/2 is the centre point of edge e and |e| its
length. The letters i, j, k denote tensor or vector indices, with i, j ∈ {x, y, z} and k according
to table 3. The symbol 〈·, ·〉 denotes the scalar product. αe is the dihedral angle across edge e,
see section 2.2. nT is the normal of triangle T , pointing out of the body, see figure 6. The jump
angles φv

T are defined in section 2.3 and figure 8, and the quantities n̈e and ṅe below equation (37).

New Journal of Physics 15 (2013) 083028 (http://www.njp.org/)

http://www.njp.org/


16

Figure 6. (a) Definition of geometric properties of a triangulated surface ∂ P
with DCEL. Each edge e is oriented and uniquely assigned to a triangle T . The
counter-oriented edge to e is denoted e′ and assigned to the adjacent triangle T ′.
An oriented edge e is unambiguously assigned to the previous edge eprevious and
the next edge enext. The normal vector nT is defined to point out of the body K ,
i.e. nT = (eprevious × e)/|eprevious × e|. The angle between two edges of triangle T
at vertex v is denoted φv

T . (b) Cross-sectional view along an oriented edge e. The
normal vectors nT and nT ′ of the triangle T (that contains e) and T ′ span the angle
αe ∈ (−π, π]. A concave edge has a negative angle αe. The figure also shows the
definition of the local coordinate system used for the computation of W 0,2

2 . The
basis vectors ṅe, n̈e and ê are defined as ê = e/|e|, n̈e = (nT + nT ′)/|nT + nT ′| and
ṅe = n̈e × ê. (c) Subdivision of a body P along a concave edge e to yield locally
convex bodies.

continuous normal field. The curvatures are patch-wise constant: G2 = G3 = 0 on the planar
patches, G2 = (2ε)−1 and G3 = 0 on the cylindrical patches corresponding to polygon edges,
and G2 = 1/ε and G3 = 1/ε2 on the spherical patches corresponding to polytope vertices. For
convex polytopes, the MT are defined as the surface integrals of equation (5) evaluated on ∂ Pε in
the limit ε → 0. The result thus obtained is equivalent to equation (22), see also equation (A.3).

2.1. Volume W0

The calculation of the volume of a polytope P can be transformed into a surface integral by the
Gauss theorem, see equation (11) and [70]. With div x = div(x, y, z)t

= 3 one obtains

W0(K ) =

∫
P

dV =
1

3

∫
P

div x dV =
1

3

∫
∂ P

〈x, dA〉 = tr
1

3

∫
∂ P

xn dA = tr W 1,1
1 , (27)

where dA = n dA denotes the oriented infinitesimal area element and 〈·, ·〉 the scalar product.

2.2. Surface area W1 and integral mean curvature W2

The surface integral is a sum over triangles and is easily evaluated yielding the formulae in
table 2. This result is independent whether P is convex or not. The surface area W1(P) of ∂ P is
simply the sum of triangle areas.

Expressing W2(P) as the limit of vanishing parallel distance ε of W2(Pε) of the parallel
body Pε , W2(P) = limε→0W2(Pε), the contributions of facets vanish because the mean curvature
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Figure 7. Subdivision of a non-convex body into convex sub-bodies, P =

P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5. Note that for the computation of MT the segments P2

and P4 need to be taken into account, although their volume measure is 0:
W0(P2) = W0(P4) = 0.

of a flat face is zero. The contribution of the spherical patches S corresponding to vertices
vanishes because the integral over a spherical patch S can be parametrized in spherical
coordinates by

∫ ∫
S

1
ε
ε2 sin θ dϕ dθ which vanish as ε → 0. The remaining contribution of the

edges is located at the cylindrical patches of ∂ Pε and is given in polar coordinates by

W2(P) =
1

3
lim
ε→0

∑
e∈F1

1

2

∫
|e|

0
dl

∫ αe/2

−αe/2

1

2ε
ε dϑ =

∑
e∈F1

|e|
αe

12
, (28)

where |e| is the length of edge e and αe the dihedral angle, i.e. the angle between the surface
normals of the two facets adjacent to e. For a convex body, all edges have a dihedral angle
06 αe 6 π ; see also figure 6. Note that F1 is the set of oriented edges, i.e. the edge shared by
two triangles is represented by two distinct oriented edges, which explains the factor 1/2 in
front of the integral.

Equation (28) remains valid even if P is not convex, as is shown by exploiting additivity: a
non-convex polytope P can be decomposed into a set of convex polytopes by cutting along the
symmetric bisector planes of all concave edges (i.e. −π < αe < 0), see figure 7. For a concave
edge e, the symmetric bisector plane is the plane that is spanned by e and the average of the
facet normals of the two facets adjacent to e. By adding the contributions of all resulting convex
bodies using the additivity relationship equation (9), as outlined in figure 6(c), one obtains the
validity of equation (28) for non-convex triangulated bodies. The sign of the dihedral angle
αe ∈ (−π, π] determines whether the edge is convex (αe > 0) or concave (αe < 0).

2.3. Integral Gaussian curvature W3 (Euler index χ )

As the point-wise Gaussian curvature G3 on cylinders and flat facets vanishes, only vertices
of the triangulation (and their corresponding spherical patches on the parallel body) contribute
to W3. For both a convex and a non-convex polytope P the point-wise Gaussian curvature G3

and the integrated Gaussian curvature W3 can be calculated by the well-known simple sum over
angle deficits at surface vertices in equation (30), derived below, and also given in [71, 72]. The
non-convex case is treated by exploiting additivity.
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Figure 8. Sketch of a vertex v with a spherical patch S of the parallel surface ∂ Pε .
The interior angle in the triangle T adjacent to v is denoted φv

T . S is a spherical
polygon. The jump angles coincide with the interior angles of the triangles.

The Gaussian curvature contribution of the vertices v ∈ F0 is derived by the Gauss–Bonnet
formula ∫

S
G3 dA = 2π −

∑
T ∈F2(v)

φv
T −

∫
∂S

kg ds, (29)

where F2(v) is the subset of triangles adjacent to vertex v and S denotes the spherical patch
on the parallel surface ∂ Pε . For all ε > 0 each spherical cap S ⊂ ∂ Pε can be uniquely assigned
to one vertex v; ∂S its oriented boundary curve and kg the geodesic curvature along ∂S. At
the corners of ∂S, the discontinuity of the tangent vectors is characterized by jump angles φv

T
(see figure 8) which for all ε > 0 coincide with the interior angles of the triangle T at v [73],
see figure 8. The geodesic curvature kg vanishes almost everywhere along ∂S, because ∂S are
great circle arcs on the spherical patch and the adjacent cylindrical patch and are thus geodesics;
hence the integral

∫
∂S kg ds vanishes.

As a consequence,
∫

S G3 dA is constant for all ε > 0. Equation (29) therefore yields a
definition and an explicit formula for W3(P) as a sum of the local contribution w3(P, v) at a
vertex v

W3(P) =
1

3

∑
v∈F0

w3(P, v) =
1

3

∑
v∈F0

2π −

∑
T ∈F2(v)

φv
T

 . (30)

At a concave vertex v, a polytope P can always be decomposed into three separate bodies (one
of vanishing volume) that have convex vertices in lieu of v. It is easy to validate equation (30)
at concave vertices by using the additivity relation in equation (9), see figure 9.

2.4. Centre of mass W 1,0
0 /W0 and curvature centroids W 1,0

ν /Wν

The Minkowski vector W 1,0
0 corresponds to the centre of mass of P multiplied with its volume

(assuming P is homogeneously filled with material of constant density). The components of
this vector may be computed by transforming the volume integral into a surface integral using
Gauss’ theorem(

W 1,0
0 (P)

)
i
=

∫
P

xi dV =

∫
∂ P

〈fi , dA〉 (31)
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Figure 9. The Gaussian curvature G3 at a saddle vertex is obtained by a virtual
decomposition of P at v into three polytopes with vertices vµ, µ = 1, 2, 3 using
the additivity property of MT.

Table 3. Auxiliary functions used to convert the volume integrals of W 1,0
0 and

W 2,0
0 into surface integrals.

W 1,0
0 W 2,0

0

i fi k i, j fi j k

x (0, xy, 0)t y x, x (0, 0, xxz)t z
y (0, 0, yz)t z y, y (0, 0, yyz)t z
z (xz, 0, 0)t x z, z (0, zzy, 0)t y

x, y (0, 0, xyz)t z
x, z (0, xyz, 0)t y
y, z (xyz, 0, 0)t x

with functions fi that satisfy div fi = xi . The vector-valued auxiliary function fi can be chosen
for each index i independently and the index i denotes the index of W 1,0

0 , which is evaluated.
For the particular choice of fi given in table 3, this can be explicitly written as

(W 1,0
0 (K ))i =

∑
T ∈F2

∫
T

xi xk(nT )k dA =

∑
T ∈F2

(IT )ik(nT )k (32)

with k as listed in table 3. (k is not a summation index.) |T | is the surface area of T . The IT in
equation (32) are tensorial integrals over the individually parametrized triangles with the three
vertices vµ, µ = 1, 2, 3

IT = 2|T |

∫ 1

0
da

∫ 1−a

0
db [v1 + a(v2 − v1) + b(v3 − v1)]

2 . (33)

The components of the auxiliary functions (fi)k are selected entries of the tensor IT or zero. IT

can be written in terms of the triangle vertices vµ and triangle centres CT of T as

IT = 2|T |

 9

24
C2

T +
1

24

3∑
µ=1

v2
µ

 . (34)
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The remaining integrals W 1,0
ν with ν = 1, 2, 3 are evaluated similarly to the integrals Wν

W 2,0
ν (see below). The integrals W 0,1

ν (ν = 1, 2, 3) involving surface normals vanish for arbitrary
bodies (with closed bounding surfaces).

2.5. Volume moment tensor W 2,0
0

The volume integral W 2,0
0 (P) can be computed in a similar way as W 1,0

0 (P). Using

JT = 2|T |

∫ 1

0
da

∫ 1−a

0
db [v1 + a(v2 − v1) + b(v3 − v1)]

3 , (35)

the components i j of the tensor may be expressed as(
W 2,0

0 (K )
)

i j
=

∑
T ∈F2

(JT )i jk(nT )k. (36)

Again, the index k is not a summation index but rather the index specified in table 3. This
derivation applies equally to convex and non-convex polytopes P .

2.6. Translation-invariant interface tensors W 0,2
1 and W 0,2

2

The computation of W 0,2
1 results in a simple sum of integrals over triangular facets, resulting in

the formulae in table 2, both for convex and non-convex bodies.
The tensor W 0,2

2 is calculated by a parallel body construction, first demonstrated for convex
bodies. Consider a convex polytope P , and the corresponding parallel body Pε . The integral over
the parallel surface is split up into integrals over flat facets, cylindrical patches and spherical
patches. Out of these only the cylindrical edge segments contribute, for the same reasons as for
the scalar measure W2. The remaining contribution is calculated for ε → 0 using the following
representation for the normal vectors on the cylindrical patches. Given an edge e with facet
normals nT and nT ′ of the adjacent triangles one obtains, also representing a special case of
equation (A.3),

W 0,2
2 (K ) =

1

12

∑
e∈F1

|e|
∫ αe/2

−αe/2
n2 dϑ. (37)

To compute the integral on the right-hand side we define the orthogonal unit
vectors ê = e/|e|, n̈ = (neT + neT ′ )/|neT + neT ′ | and ṅ = ê × n̈. For a given edge, n(υ)

can be written as n = cos ϑ n̈+sin ϑ ṅ. In this basis, the integral over n2 evaluates to
1
2

(
(αe +sin αe)n̈2 + (αe −sin αe)ṅ2

)
, see figure 6. This yields the formula in table 2. The validity

of this formula for non-convex bodies follows from the same additivity arguments as for W2.

2.7. Curvature-weighted surface moment tensors W 2,0
2 and W 2,0

3

The mean and Gaussian curvature weighted surface integrals W 2,0
2 and W 2,0

3 over position
vectors can be evaluated as the limit ε → 0 of the parallel body construction, for convex bodies.
The validity for non-convex shapes follows from the analogous construction for W2 and W3 (see
table 2).
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(a) (b)

Figure 10. (a) A compact (but not convex) body K that corresponds to
a translational unit cell of a periodic body and a triangulation of it. Its
bounding surface consists in the translational unit as well as the flat ‘end
caps’ that seal it. (b) A surface portion representing a translational unit and its
triangulation. The body K is the volume to one side of the surface and forms
a connected periodic body. The surface and its triangulation extend beyond
the translational unit cell indicating that the surface (and the triangulation) is
periodic.

2.8. Open bodies, labelled domains and Minkowski maps

The analysis presented so far has been derived for compact bodies in R3 with a closed
bounding surface—and inherits strong robustness from its integral nature. For some analyses,
the requirement of closed bodies is too stringent. For example, experimental data sets of
percolating or periodic structures, both of which extend infinitely through space, always
represent finite subsets of the structure with components that traverse the data set boundaries.
Similarly, an analysis of a periodic model may be restricted to a translational unit cell, see
figure 10. Furthermore, a local MT analysis, termed a Minkowski map [6, 15], can be useful to
quantify variations throughout the sample. For a Minkowski map, a grid is superposed on the
body K , and the MT are computed separately for each grid domain L . Such Minkowski maps
can be useful to analyse spatial heterogeneity of anisotropy or orientation at the length scale
given by the size of L . In these situations, the MT are computed for the subset L ∩ ∂K of the
whole bounding surface that is contained in a box L . In general, L ∩ ∂K is not a closed surface
even if ∂K is.

It is evidently possible to take the subset K ∩ L of K and consider ∂(K ∩ L) as the
bounding surface. However this introduces bounding surface patches (e.g. solid/void interfaces
if K is a porous medium) that are not part of the bounding surface ∂K of K . For physical
analyses one may want to avoid such boundary effects, i.e. not consider the contributions of
these additional bounding surface patches. This motivates the introduction of MF and MT for
open bodies, i.e. bodies without a closed bounding surface (see figure 10).

In lieu of an attempt to define MF and MT for open bodies, we define a domain-wise
analysis of MF and MT. Consider a decomposition of the surface ∂ P of a triangulated body P
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into m domains, or patches, Dσ (with σ = 1, . . . , m) such that

∂ P =

m⋃
σ=1

Dσ , (38)

and consider these domains labelled by labels σ = 1, . . . , m. Triangles are uniquely assigned to
a label, but edges and vertices of the triangulation can be shared between several domains.
Specifically, the domains Dσ could represent a decomposition of P into patches contained
within the grid domains of a 3D lattice (see figure 11).

Contributions of the facets can be uniquely assigned to Dσ , but the contribution of edges
and vertices on the boundaries of a patch Dσ needs to be divided between σ and the label of the
adjacent domain σ ′ (see figure 11).

For W r,s
2 , the contribution of the dihedral angle at an edge is equally divided between the

labels of the two adjacent triangles (note that this is naturally taken into account by the use of
oriented edges in the DCEL, discussed above). For W r,s

3 the division of the contribution of the
interior vertex angles to the integral Gaussian curvature measures W r,s

3 is less straightforward.
An intuitive way, that is also consistent with global integration over all labelled domains, is
provided by the use of label factors. The label factor fDσ

(v) of domain Dσ at vertex v is
defined as

fDσ
(v) :=

∑
T ∈F2(v)∩F2(Dσ ) φ

v
T∑

T ∈F2(v) φ
v
T

, (39)

where F2(Dσ ) is the set of all triangles labelled with label σ . Hence fDσ
(v) is the sum of angles

at v of those triangles adjacent to v and are labelled σ divided by the sum of these angles of all
adjacent triangles. It is easy to see that

w3(v) =

m∑
σ=0

fDσ
(v)w3(v) (40)

for a vertex with m adjacent labels and W3(P) =
∑

v∈F0
w3(v).

For the volume tensor W 2,0
0 a label-wise analysis is only well defined if the body K is

subdivided (and not only the bounding surface ∂K ).

2.9. Implementation details and ‘karambola’ software package

A fully functional implementation of the algorithms represented in sections 2.1–2.8 is provided
as online supplementary data (available from stacks.iop.org/NJP/15/083028/mmedia)
to this paper, and also made available through the internet at www.theorie1.physik.fau.de/
karambola, under a GNU General Public License.

The implementation is a straightforward realization of the formulae in the rightmost
column of table 2 into ANSI-C code. A simple data structure is used to store a triangulation
of a surface, as a set of points and a list of facets (specifically triangles); the data structure
allows us to iterate over all vertices, edges or facets by simple loops, for example over all edges
‘for e in F1’, and it allows the extraction of neighbours, for example of all (one or two) triangles
that are adjacent to a given edge e. With that data structure in place, the sums in table 2 simply
become for loops, that are all linear in the number of edges, facets or vertices.
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Figure 11. (a) A triangulated surface may be decomposed into several domains
by assigning a domain label to each triangle; also open boundaries are possible,
i.e. triangle edges without adjacent triangles (thick dashed line). (b) Label
factors at vertices which are adjacent to triangles of more than one domain. The
Gaussian curvature contribution is weighted with the interior angles belonging
to each domain.

3. Anisotropy measures and their application to spatial data

Based on MT, robust measures of anisotropy can be defined that are sufficiently sensitive to
capture subtle anisotropy effects and that are applicable to a wide range of microstructures.
The usefulness and versatility of this approach is demonstrated by two examples representing
different types of structures—a cellular partition and a network structure.

A rank-2 tensor is defined to be isotropic if and only if it is proportional to the unit tensor
Q, i.e. its eigenvalues are all equal. Deviations from isotropy are measured by the anisotropy
index βr,s

ν , which is the ratio of extremal eigenvalues of the tensor W r,s
ν . For example, let ξµ

(|ξ1|6 |ξ2|6 |ξ3|) be the eigenvalues of W 0,2
1 , then the anisotropy index is

β
0,2
1 :=

∣∣∣∣ξ1

ξ3

∣∣∣∣ ∈ [0, 1]. (41)

By definition, this quantity is dimensionless, continuous and rotation invariant. The value of 1
indicates perfect isotropy, and smaller values indicate anisotropy. For anisotropic bodies, it is
sometimes also useful to consider γ

0,2
1 = |ξ2/ξ3|.

These quantities can be easily interpreted for the translation invariant tensors W 0,2
1 and

W 0,2
2 . We can write W 0,2

1 equivalently to equation (22) as the second moment of the distribution
of normal vectors (with the density ρ1(n)) on the unit sphere S2 as

W 0,2
1 (K ) =

1

3

∫
S2

ρ1(n) n � n d�, (42)

where the ρ1(n′) =
∫

∂K δ(n − n′) dA. That is, ρ1 is area-weighted density of normal vectors. It
is easy to see that an uniform distribution on S2 is equivalent to an isotropic tensor.
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For example, if K is a sphere, then ρ1(n) is constant and β
0,2
1 = 1 as expected. For the

rectangular box [0, ax ] × [0, ay] × [0, az], the function ρ1(n) is concentrated at delta peaks

ρ1(n) = axayaz

∑
i=x,y,z

δ(ei − n) + δ(ei + n)

ai
. (43)

The resulting anisotropy measure is az/ax for ax > ay > az.
It is instructive to express the second translation-invariant MT W 0,2

2 by a distribution of
normals and curvatures. The density

ρ2(n′, G ′

2) =

∫
∂K

δ(n − n′)δ(G2 − G ′

2)dA (44)

gives the sum of the area of all surface patches that have normal direction n′ and mean
curvature G ′

2:

W 0,2
2 (K ) =

1

3

∫
∞

−∞

G2

∫
S2

ρ2(n, G2) n � n d� dG2. (45)

If the function ρ2 can be written as a product ρ2(n, G2) = ρ̃2(G2) ρ1(n), the anisotropy
characteristics β

0,2
1 and β

0,2
2 , defined as the ratio of the smallest to the largest eigenvalue of

W 0,2
2 , are identical. In this sense, β0,2

2 provides a higher order anisotropy measure that quantifies
anisotropy of the curvature distribution.

3.1. Alignment of actin biopolymer networks under shear

Biopolymer networks made of actin or collagen fibres are important structural elements in
biological tissue that act as a scaffolds and provide stiffness and mechanical stability [75–77].
Of current interest is the relationship between fibre arrangement and alignment on the one hand
side and elastic or visco-elastic properties on the other. This relationship can be probed by
shear experiments with confocal microscopy providing real-space structural data [74]. We now
demonstrate that the degree of alignment and of structural anisotropy of the fibre network is
well captured by a MT analysis.

The data sets analysed here represent actin fibre networks reconstituted from rabbit
actin biopolymer networks with actin concentration of 1.2 mg ml−1 cross-linked with filamin
A. These are imaged using confocal microscopy for different shear deformations, see the
explanation in figure 12. The data sets are the same as those analysed in [74]. The grey-scale
data set is converted into a binary data set with 1 corresponding to actin and 0 corresponding
to the surrounding fluid by standard threshold segmentation with threshold Ic.8 The medial axis
of the 1 phase is computed using distance-ordered homotopic thinning [78, 79] and is used as
the one-voxel thick line representation of the actin fibre network. Conversion to a triangulated
representation is obtained by using the Marching Cubes algorithm [80]. For more details of the
analysis of biopolymers see [81].

8 The threshold Ic is chosen such that only the brightest and hence thickest fibres are retained. For a given
segmentation threshold Ic the integrated intensity of all voxels of the fluid phase is 3 = (

∑
I (p))−1 ∑

∗ I (p)

where I (p) is the intensity of voxel p in the original intensity data set,
∑

the sum over all voxels of the data set
and

∑
∗ the sum over all voxels of the fluid phase, i.e. those voxels that are set to 0 by the segmentation process.

The values of Ic chosen here correspond to 0.95 < 3 < 0.99.
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Figure 12. Anisotropy measures 1/β
0,2
1 and 1/γ

0,2
1 of actin network as a function

of shear. The ratio of the largest to the smallest eigenvalue 1/β
0,2
1 grows with

increasing shear indicating that the fibres become increasingly aligned. The
ratio of the largest to the intermediate eigenvalue 1/γ

0,2
1 remains close to unity

as expected since the fibres are essentially one-dimensional lines, inflated to
approximately cylindrical tubes. The inset shows the alignment angle φ of
the eigenvector corresponding to the minimal eigenvalue ξ1 of W 0,2

1 and the
direction of applied shear; its decay to 0 indicates that the network aligns
with the shear direction when large shear is applied. The error bars in both
plots are the standard deviation of the distribution of the quantities when
analysed for different segmentation parameters between 0.95 < 3 < 0.99. The
illustrations above sketch the experimental setup with confocal microscopy
images corresponding to a fibre network at shear ε := 1l/h = 0 and ε = 2 (the
small confocal microscopy images are taken from [74]).

Typically only a subset, or observation window, of the structure is available for analysis.
Therefore, we assume that the network is homogeneous and a sufficiently large but finite
subset is accessible which is assumed to represent the entire sample. The derived measures
β

0,2
1 quantify the intrinsic anisotropy, i.e. their values do not depend on the size, aspect ratio or

position of the observation window (for sufficiently large windows).
Figure 12 shows 1/β

0,2
1 and 1/γ

0,2
1 evaluated on the whole network (that consists essentially

in a single component; only the outer boundary layers of the confocal data are clipped). It shows
that the distribution of normal directions of the fibre bounding surface becomes less isotropic
with increasing shear, indicating alignment of the fibres. The angle between the eigenvector to
the minimal eigenvalue ξ1 (corresponding approximately to the dominant tangent direction) and
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the direction of shear decreases to 0, indicating the alignment of the fibres with the direction of
shear. This is commensurate with the results published in [74], that extracted a distribution of
tangent directions and used these to quantify alignment.

The eigenvalue ratios of the translation-covariant tensors W 2,0
ν (and of the tensor of inertia)

capture different aspects of the anisotropy of a shape compared to the translation invariant
tensors W 0,2

ν , see also section 1.1. However, usefulness of the translation-covariant tensors
depends on whether or not a natural definition of the origin is available for the system. For
example, for the analysis of cellular shapes one may choose the centre of mass W 1,0

0 /W0 or the
corresponding curvature centroid W 1,0

ν /Wν as the origin. Especially for percolating or periodic
bodies, for which the analysis is always restricted to a finite window of observation, the choice
of origin is often not naturally determined. An additional problem for such structures is that
the measures β2,0

ν derived from translation covariant tensors W 2,0
ν , as opposed to the translation-

invariant measures β0,2
ν , crucially depend on the shape and size of the window of observation.

The analysis of alignment of biopolymer networks illustrates the potential of the MT
approach for structure characterization of cellular and porous materials, and demonstrates its
applicability to voxelized experimental data. The MT approach can shed light on systems with
a similar spatial structure that exhibits subtle anisotropy effects, such as fibrous biological
materials [82], porous materials [4] and metal foams [83].

3.2. Anisotropy of free-volume cells of random bead packs

Granular media represent a system where geometry plays an essential role in determining
its physical properties, such as flow or packing properties. The geometric structure to be
characterized is substantially different from the above example. It consists in an assembly of
(disjoint) grains that have, at most, mutual point contacts.

A commonly used way to associate each grain with its corresponding region of space is
the construction of a Voronoi diagram. The distributions of volumes of the Voronoi cells of
disordered jammed sphere packs with packing fractions from 0.55 (random loose packing)
to around 0.64 (random close packing) have attracted interest for the study of granular
systems [84], motivated by a possible statistical mechanics description of granular systems
[85, 86]. For instance, Aste et al [84] used the volume distribution of Voronoi cells to estimate
configurational entropy in static packings, and Zhao et al [87] to quantify spatial correlations in
disc packings.

Here we illustrate how MT can be used to characterize the shape, rather than simply the
volume, of the grains’ Voronoi cells, in the spirit of [1].

Figure 13 shows a subset of an experimental data set of static disordered monodisperse
jammed spheres with packing fraction 0.58 on the left panel (for details see [1]) The wire-
frame illustrates the Voronoi diagram of these spheres9. On the right hand side, spheres were
replaced by ellipsoids that have the same eigenvalue ratio of the Minkowski tensor W 2,0

0 as their
Voronoi cells, W 2,0

0 (ellipsoid) = W 2,0
0 (Voronoi cell), implying in particular the same value of

the anisotropy measure β
2,0
0 . Their half-axes are aligned with the eigendirections of the tensor

W 2,0
0 , evaluated for the corresponding Voronoi cell. (We have here chosen the origin to coincide

9 The Voronoi cells of the sphere centres are computed using the program qhull [88]. For a point p of a set P of
points, its Voronoi cell is the convex polytope that contains all points of R3 closer to p than to any other point in
P [89].
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(a) (b)

Figure 13. (a) Voronoi diagram of jammed monodisperse sphere pack. (b) The
same Voronoi diagram, but spheres are replaced by ellipsoids with half-axes
a1 = a2 < a3, aligned along the eigendirections of W 2,0

0 . Colours represent the
ratio of the shortest and longest axes of the ellipsoid. See also figure A.1 in
the appendix for the relation of the half axes ratios a1/a3 to the MT anisotropy
measure β

2,0
0 for ellipsoidal particles (figure reproduced from [1]).

with the center of mass W 1,0
0 /W0 of the Voronoi cell.) The use of MT, and their eigenvalues and

eigendirections, hence provides an efficient way of ‘fitting’ ellipsoids to given convex cells and
hence a means to quantify their anisotropy or elongation. This in turn provides sensitive tools to
quantify shape and structure of both amorphous and ordered particulate systems and packings.

Quantitative analyses of the Voronoi cell shapes of disordered sphere configurations, in
various phases, have been given in [1, 2, 7, 90], illustrating the breadth of the Minkowski tensor
approach and in particular its usefulness to capture the onset of crystallization. An application to
ordered sphere packings has been given in preliminary form in the conference proceeding [91].

The scope of MT for the analysis of granular material is, however, not restricted to
the detection of local crystalline domains. Rather, as the following analysis illustrates, these
shape measures also allow for a quantitative description of the local structure in amorphous
assemblies, discriminating sharply between different types of amorphous geometries.

Figure 14 shows a study where the simple anisotropy measure β
2,0
0 derived from the MT

reveals a distinct difference between the different phases that hard sphere systems can adopt:
the plot shows the typical shape, quantified by β

2,0
0 , of a Voronoi cell of a given volume,

expressed as the local packing fraction φl := W0(grain)/W0(Voronoi cell). The plot contains
data for equilibrium hard sphere systems in the fluid and in the ordered phase (the same data as
used in [2]) and of jammed static sphere packs (the same data sets mentioned above and used
in figure 6 of [1]). For each sphere configuration, the Voronoi cells of all particles are computed
and their local packing fractions φl. Then all cells are classified by their value of φl, and the
average cell shape 〈β

2,0
0 〉(φl) is determined by averaging β

2,0
0 over all cells of a data set that

have, up to a discretization interval 1φl, the same value of φl. The curves 〈β
2,0
0 〉(φl) describe

Voronoi cell anisotropy as a function of the local packing fraction φl.
Figure 14 elucidates how MT can help discern some of the morphological differences

between the different hard sphere phases. Firstly, this analysis of the average cell anisotropy
clearly discerns the distinct geometries between the static jammed packings and the (also
disordered) equilibrium fluid configurations and, more expectantly, the differences from the
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Figure 14. Voronoi cell anisotropies quantified by β
2,0
0 as a function of

local packing fraction φl, for equilibrium hard spheres in the fluid phase
and in the ordered phase and for jammed static disordered sphere packs.
The data representing static jammed spheres represent six distinct sphere
configurations (including tomographic images and simulations with and without
friction and gravity [92–94]) each with a different global packing fraction
0.5856 φg 6 0.64; these are the same used in figure 6 of [1]. The equilibrium
hard sphere data are obtained from Monte Carlo simulations, and comprise
4000–16 000 spheres, see [2] for details. ‘fcc’ marks the packing fraction of
the densest crystallographic sphere pack φg = φl = π/

√
18 ≈ 0.7404 and ‘icos’

the densest possible local configuration φicos = (25 + 11
√

5)3/2π/[15
√

10(15 +
7
√

5)] ≈ 0.7547. The straight lines represent guides-to-the-eye only for what
may be the common asymptotic behaviour of the sets of curves of each
phase. Note, in particular, that the data for static jammed spheres appear
to collapse to a single curve, independent of global packing fraction and
packing protocol, in contrast to the equilibrium systems. (A script to
generate this plot is added as online supplementary data (available from
stacks.iop.org/NJP/15/083028/mmedia), in the demo subfolder of the karambola
Minkowski tensor program.)

equilibrium ordered phase. Computing 〈β
2,0
0 (φl)〉 provides a signature of the origin of the data

sets, clearly discerning the structure of equilibrium hard spheres and of the static jammed
packings.

Secondly, the data for 〈β
2,0
0 〉(φl) for all six jammed static configurations collapse to a single

curve that is approximately linear. These data sets comprise different global packing fractions
and preparation protocols, including tomography data of dry acrylic beads [95] and glass beads
settled against a fluid current [95], as well as Lubachevsky–Stilinger simulations of frictionless
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particles without gravity [96] and discrete element method simulations of spheres with friction
and gravity [97]. This suggests a universality of the jammed static disordered spheres: the typical
shape (quantified by β

2,0
0 ) of a Voronoi cell of a given local packing fraction φl is the same for

all packings, regardless of protocol and of the global packing fraction φg. Note that this is in
stark contrast to the case of the equilibrium fluid or ordered phase, where particularly small
cells in a globally denser packing are more isotropic with larger β

2,0
0 than the same size cell

in a looser packing. This result suggests that the global packing fraction of a jammed static
disordered sphere packing is the result of combining typical ‘building blocks’ with a given local
φl in different proportions. This observation may go some way towards clarifying why random
close packing of spherical particles appears to be largely protocol-independent.

Figure 14 has provided a test case where MT concisely discern the differences between
two types of amorphous structures, in a quantitative fashion with an intuitive geometric real-
space interpretation. The characterization of amorphous cellular shapes is also relevant in
various other contexts, e.g. for the relationship between structure and dynamics in glass-
forming liquids [98] or for packing entropy of the hard micellar cores in supramolecular
micellar materials [99], and for the understanding of physical properties of foams, including
rheological [100] and static [101], properties, and the evolution under ageing or coarsening
[43, 102]. MT can be applied to these systems in an analogous fashion to the analysis of this
section.

4. Conclusion and outlook

This paper provides the theoretical description and explicit algorithms for the use of MT in
spatial structure and morphology characterization in the natural sciences. MT, defined on the
rigorous basis of integral geometry and endowed with strong statements about completeness,
additivity and continuity, are natural extensions of the scalar MF. Because of their tensorial
nature, MT allow for a quantitative evaluation of shape of anisotropic and orientation-dependent
morphologies, on all length scales.

While the most fundamental definition of both scalar and tensorial MF is based on measure
theoretic concepts from integral geometry [23], an alternative but equivalent definition based
on curvature-weighted surface integrals is more intuitive for the reader without a background
in measure theory. This approach also lends itself directly to numerical discretization,
resulting in the fast linear-time algorithms derived in this paper. These algorithms have been
comprehensively described and theoretically validated here for all relevant MT up to rank 2, but
can be generalized also for higher rank. An implementation of the algorithms described here is
available as supplementary data (available from stacks.iop.org/NJP/15/083028/mmedia).

MT are versatile tools to quantitatively characterize morphological aspects related to
orientation, anisotropy and elongation. Applications can be conceived in diverse fields,
from nanostructures in softmatter to large-scale structures, e.g. in background radiation sky
maps [103].

For particulate assemblies such as granular matter or structural glasses, our previous
analyses of random jammed sphere packing systems [1, 7] have contributed to clarifying the
onset of order near the random close packing transition for spherical particles. Beyond this
identification of order in these amorphous packings, MT lend themselves to the more complex
task of quantitatively evaluating the structural changes in evolving amorphous packings, that
never reach a state even with partial order, see also the discussion in section 3.2. In this
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context, the relationship between the MT and the bond orientational order parameters, defined
by Steinhardt et al [104] as the lowest-order rotation invariants of the moments of a multipole
expansion of the orientational distribution of nearest-neighbour bonds, leads to new insight into
this question. We have already demonstrated that a simple idea based on Minkowski tensor
analysis can remedy some of the drawbacks of the bond orientational order parameters, leading
to robust Minkowski structure metrics [90]. A formal correspondence has been shown between
the MT W 0,n

1 of rank n = 0, 1, 2, . . . and the set of bond orientational order parameters [105,
106]. This provides geometric interpretation for both methods, e.g. the fact that β

0,2
1 and q2

represent the same morphological information, see figure 5 in [90]. This motivates a more
general study also for the other MT such as the curvature-weighted tensors W 0,n

ν .
A second aspect that emphasizes the usefulness of MT for particulate matter concerns

the case of aspherical particles, such as tetrahedra and polyhedra, ellipsoids and super-
ellipsoids, etc, all of which have received attention in recent studies [107–111]. In contrast
to measures based on nearest-neighbour bonds, the Minkowski analysis naturally applies to
these aspherical and possibly polydisperse particles, provided the Voronoi diagram is suitably
defined. For example, with all tools in place for imaging experimental ellipsoid packings [112]
and determining their Voronoi diagrams [113], the Minkowski tensor analysis may shed light on
the more complicated, possibly less universal, mechanisms involved in jamming of ellipsoidal
particles.

These results and the Minkowski tensor analysis itself are likely to provide new insight also
for other problems in particulate systems where spatial structure largely determines physical
properties, such as static and rheological properties of glass-forming systems or liquids out of
equilibrium.

Importantly, however, Minkowski tensor analysis is not restricted to particulate systems.
To name one further example, MT can aid anisotropy or alignment studies of porous materials,
cellular structures and other structures that consist essentially in a single connected component
that percolates macroscopically, see also section 3.1. In addition to the use of MT as robust
tools to extract anisotropy and morphology measures from tomographic or confocal microscopic
images [4, 83], these measures may also be amenable to analytical treatment for some important
mathematical models of porous materials. In particular, for the case of the anisotropic Boolean
model, it is feasible to obtain analytic expressions for the mean values of the translation-
invariant MT W 0,2

1 and W 0,2
2 [114]. For ordered porous structures, analytic formulae for the MT

of triply periodic minimal surfaces have been derived from the Weierstrass parametrization [5].
The feasibility of at least some analytic treatment hints at the role that the MT can play for
improved understanding of the spatial structure of porous materials, and in particular their
formation by percolation processes.

The two-fold exploration of MT, on the one hand in terms of measure theory and on the
other in terms of surface integrals, is a genuine scientific achievement of this paper and of
significant potential for future research. The mathematical disciplines of integral geometry [23]
and stochastic geometry [115] are rich but (for non-experts) murky fishing grounds for research
in random disordered systems. Many of the theorems relating to MFT may well turn out to have
physical counterparts or applications, following the examples of Hadwiger’s theorem (that has
been explored to describe shape dependence of the thermodynamics of confined fluids [18])
and the kinematic formula (needed for the development of density functionals for structured
liquids [11]). There are several current trends in integral and stochastic geometry with potential
for physical applications. For example, the so-called mixed functionals are generalizations of
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the MF to functionals of two (or more) bodies, obtained by integration over two-body support
measures, see chapter 6.4 in [23]. The mixed measures are of likely benefit for the development
of density functionals for fluids of aspherical particles without adjustable parameters. Current
density functionals for non-spherical particles contain the ill-determined so-called ζ -factor,
which results from only retaining the first term of an expansion [116]. For aspherical particles,
this expansion is needed as it leads to a factorization into measures centred on a single body
of the double integration over the translational and orientational degrees of freedom of the
relative position of two fluid particles. Future work on advanced methods to evaluate mixed
measures may help avoid the need for this expansion, and lead to a deeper understanding of
the geometric principles that govern the thermodynamic properties of aspherical fluids. By
making the concise but, for many, unfamiliar notation of integral geometry accessible to the
reader, this paper may facilitate future applications of integral geometry in physics and material
science.

How do you measure the ‘shape’ of an amorphous structure? This question expresses the
need to identify a small number of morphological measures or structure metrics that, when
evaluated for a spatial structure, capture its essential features in a few numbers. Which features
are essential evidently depends on the physical property of interest, so a universal, generally
valid answer to this question of the best structure metrics cannot be given. Nevertheless,
some morphological properties recurrently appear as relevant to many physical processes.
Some of these, such as densities or occupied volumes, areas of interfacial surfaces or spatial
connectedness, turn out to be closely related to the scalar MF. The study of such quantities
within an encompassing mathematical framework (here the theory of valuations in integral
geometry) often gives new insight for the morphological analysis of the physical system;
for example, the discussion of the relationship between d-dimensional percolation and the
Euler index χ in the context of MF and integral geometry [117, 118] has contributed to the
increasingly widespread use of χ as a measure of spatial connectedness in the physical sciences.
Tensorial Minkowski functionals, at the heart of this paper, have several properties that make
them suitable generic shape measures to capture morphological aspects related to anisotropy,
elongation and orientation: they are a natural generalization of the concepts of volume and
surface area to tensor-valued quantities, benefit from a definition widely applicable to different
types of geometry and from significant mathematical theory, and are closely related to two
already widely used tensors, namely the tensor of inertia and the interface tensor. We anticipate
that these tensorial shape measures will be identified as the relevant morphological descriptors
in a growing variety of physical systems. The analytical and algorithmic methods derived in this
paper will provide the tools for wide-spread use of MT analyses in physics, materials science,
biological imaging and other disciplines.
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Appendix. Minkowski tensors of the sphere, the torus and the ellipsoid

For some simple shapes the rank-2 MT can be calculated analytically by using explicit surface
parametrization and expressions for surface normals and principal curvatures. Specifically, for
a sphere of radius R centred at the origin, one obtains

W0 =
4π

3
R3, W 2,0

0 =
4π

15
R5 Q (A.1)

and, for ν = 1, 2, 3 and r + s = 2,

Wν =
4π

3
R3−ν, W r,s

ν =
4π

9
R3−ν+r Q (A.2)

with the unit tensor Q.
For a convex polytope P , we write Fµ(P) for the set of µ-dimensional faces of P ,

µ = 0, 1, 2, that is, F0(P) is the set of vertices, F1(P) is the set of (non-oriented) edges and
F2(P) is the set of faces. If F ∈ Fµ(P), then we denote by n(P, F) the set of exterior unit
normal vectors of P at F , which is a (2 − µ)-dimensional subset of the unit sphere S2. Then we
obtain, as a special case of general formulae in section 1.2,

W r,s
ν (P) =

1

3

∑
F∈F3−ν(P)

∫
F

xrH3−ν( dx)

∫
n(P,F)

nsHν−1( dn) (A.3)

with ν = 1, 2, 3. For the notation, see the main text at equation (17).
For a cuboidal box of dimensions ax × ay × az aligned with the coordinate axes and centred

at the origin equation (A.3) yields W0 = axayaz, W1 =
2
3(axay + ayaz + azax), W2 =

π

3 (ax + ay +
az), W3 =

4π

3 , W 1,0
ν = 0 and all MT of rank 2 are diagonal matrices with the following entries:

(W 2,0
0 )i i =

1

12
a3

i a jak, (A.4)

(W 2,0
3 )i i =

π

3
a2

i , (A.5)

(W 2,0
1 )i i =

a3
i (a j + ak)

18
+

a2
i a jak

6
, (A.6)

(W 0,2
1 )i i =

2a jak

3
, (A.7)

(W 2,0
2 )i i =

π

36

(
a3

i + 3a2
i (a j + ak)

)
, (W 0,2

2 )i i =
π

6
(a j + ak), (A.8)

where {i, j, k} = {x, y, z} and permutations thereof.
A torus centred at the origin with major radius R1 and minor radius R2 6 R1 can be

parametrized by x(u, v) = {cos(u) (R1 + R2 cos(v)) , sin(u) (R1 + R2 cos(v)) , R2 sin(v)} with
α, β ∈ [0, 2π). The scalar functionals are explicitly given by W0 = 2π2 R1 R2

2 , W1 =
4π

3 R1 R2,
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Figure A.1. Eigenvalue ratio of the smallest and largest eigenvalues ξmin and
ξmax of the MT W r,s

ν of an ellipsoid with radii lx = 1 and lx = 1> ly > lz as
a function of r = lz/ lx . Each symbol in the main plot represents data (hardly
distinguishable) for three different intermediate radii ly = 0.1, 0.5 and 0.9
indicating that for these four tensors the minimal to maximal eigenvalue ratio
is approximately the same for all values of the intermediate radius. The solid
curves are fits to the data giving β

2,0
3 ≈ 1.210r 3

− 0.235r 2 + 0.024, β
2,0
0 = r 2,

β
2,0
1 ≈ β

0,2
1 ≈ −0.366r 3 + 1.222r 2 + 0.139r . The inset shows the eigenvalue ratio

of the tensor W 0,2
2 as a function of lz/ lx . In contrast to the above four tensors, this

ratio depends strongly on the value of the intermediate radius ly . In particular,
for lz = 0 the eigenvalue ratio only becomes zero if the intermediate radius is
also ly = 0. For the maximal ly = 1 the eigenvalue ratio converges to 0.5 for
lz/ lx → 0.

W2 =
2π2

3 R1 and W3 = 0 and the vectorial measures are W 1,0
ν = 0. The tensors of rank 2 are

diagonal with degenerate eigenvalues (W r,s
ν )xx = (W r,s

ν )yy; the entries are given by

(W 2,0
0 )xx =

π2

4 R1 R2
2(4R2

1 + 3R2
2), (W 2,0

0 )zz =
π2

2 R1 R4
2,

(W 2,0
1 )xx =

π 2

3
R1 R2(2R2

1 + 3R2
2) (W 2,0

1 )zz =
2π 2

3
R1 R3

2,

(W 2,0
2 )xx =

π 2

6
R1(2R2

1 + 5R2
2), (W 2,0

2 )zz =
π2

3
R1 R2

2,

(W 2,0
3 )xx =

2π 2

3
R1 R2, (W 2,0

3 )zz = 0,

(W 0,2
1 )xx =

π 2

3
R1 R2 (W 0,2

1 )zz =
2π 2

3
R1 R2,

(W 0,2
2 )xx =

π 2

6
R1, (W 0,2

2 )zz =
π2

3
R1.
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For an ellipsoid given by (x/ lx)
2 + (y/ ly)

2 + (z/ lz)
2
= 1 the surface integrals all result

in elliptic integrals and cannot be expressed in closed form. However, the scalar MF W0 is
W0 =

4π

3 lxlylz. The MT W 2,0
0 is diagonal with

(W 2,0
0 )i i =

4π

15
l3
i l j lk, (A.9)

where {i, j, k} is {x, y, z} and permutations thereof. The integration of all other
tensors is easily numerically obtained by use of the ellipsoid parametrization x(u, v) =

{lxcos(u)sin(v), lysin(u)sin(v), lzcos(v)} which yields explicit expressions for the metric tensor
of the ellipsoidal surface, the normal vector and the mean and Gaussian curvatures. These are
readily integrated numerically. Figure A.1 shows the minimal to maximal eigenvalue ratio of
the MT of rank 2 of ellipsoids with lx = 1 and 1> ly > lz.
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