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Abstract. Realizing controlled quantum dynamics via the magnetic interac-
tions between colour centres in diamond remains a challenge despite recent
demonstrations for nanometre separated pairs. Here we propose to use the in-
trinsic acoustical phonons in diamond as a data bus for accomplishing this task.
We show that for nanodiamonds the electron–phonon coupling can take signifi-
cant values that together with mode frequencies in the THz range can serve as a
resource for conditional gate operations. Based on these results, we analyse how
to use this phonon-induced interaction for constructing quantum gates among
the electron-spin triplet ground states, introducing the phonon dependence via
Raman transitions. Combined with decoupling pulses this offers the possibility
for creating entangled states within nanodiamonds on the scale of several tens of
nanometres, a promising prerequisite for quantum sensing applications.
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1. Introduction

Tremendous progress in understanding and manipulating the nitrogen vacancy (NV) centre in
diamond throughout the last decade revealed its promising capabilities for quantum information
and sensing applications. The basic foundations of coherent manipulation, high fidelity
polarization and optical readout [1] paved the way for using the NV centre as a fully controllable
quantum bit capable of operating at room temperature with extraordinary long coherence times
that may reach the millisecond range [2]. Whereas the coherent coupling and entanglement
to nuclear spins of nitrogen [3, 4] and carbon-13 [5, 6] has been demonstrated in numerous
experiments, bringing different NV centres to interaction remains challenging and has been
demonstrated only recently [7, 8]. One approach for coupling distinct NV centres makes use of
their dipolar interactions [7, 9, 10], which is limited by the strong distance dependence of the
coupling and therefore has been demonstrated only for very closely separated pairs. Another
method consists of interconnecting the NV-centre solid-state spin qubits with photons [8],
that has lead to extensive research in the design of cavities and photon couplings [11–14].
In contrast to that, the coupling to phonons is much less studied. Whereas this mechanism
serves as the prominent data bus for conditional quantum operations in the trapped-ion approach
to quantum computing [15] and has been proposed to allow even for a strong coupling
regime in phonon cavity structures in silicon [16], intrinsic phonon coupling is assumed to
be inaccessible in macroscopic diamonds at room temperature. However, the coupling to
magnetized nanomechanical oscillators as atomic force microscopy cantilevers was successfully
performed, allowing for the sensing of the vibrational mode [17, 18] and even for the coherent
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Figure 1. Energy level structure and phonon coupling (a) NV-centre energy
levels and composition out of dangling bond orbitals. (i) NV centre and dangling
bond orbitals with symmetry C3v. (ii) Symmetric linear combinations of the
dangling bond orbitals (LCAO) lead to the electronic states |a1〉, |a2〉, |ex〉, |ey〉,
occupied with the six electrons (or equivalently two holes) of the NV centre.
(iii) Combining the electronic and spin wavefunction leads to the NV-centre
energy-level structure with spin singlets and triplets. Ground states correspond
to two holes in the |ex/y〉 state as illustrated in (ii) and excited states to one
hole in |a2〉 and |ex/y〉. Strain and therefore phonons cause displacements of
the dangling orbitals (i), and consequently modify the energy levels in (ii) and
(iii). The influence of the strain δx = −ζ εxx on the excited-state fine structure is
illustrated in the inset. (b) Phonon coupling coefficient η (6) and frequency ν of
the lowest acoustical mode versus size (diameter) of a spherical nanodiamond.

manipulation of the NV-centre electron-spin state [19], that might provide the basic ingredient
for future phonon-mediated quantum networks [20]. Here we will show that a significant
intrinsic phonon coupling can be expected in nanodiamonds at low temperatures. Those can be
fabricated down to 4 nm in size, additionally being capable of hosting NV centres [21]. We study
the coupling strength to long-wavelength (low-frequency) acoustical modes and analyse the
possibility for exploiting these global modes for entanglement operations by creating a Raman-
induced phonon coupling within the ground-state electron triplet states of the NV centre.

2. Coupling of the nitrogen vacancy centre to phonons

The localization of the NV-centre electronic states to the vacancy defect itself permits their
description as superpositions of molecular orbitals, each associated with a dangling bond orbital
of the atoms involved in the defect centre [22, 23]. That is, according to the C3v symmetry of the
defect centre, four electronic states Mel = {|a1〉, |a2〉, |ex〉, |ey〉} can be constructed out of the
dangling bond orbitalsMdb = {|σ 1

C〉, |σ 2
C〉, |σ 3

C〉, |σN〉} by linear combinations, with the index C
referring to carbon and N to the nitrogen related bonds (see figure 1(a)).

In this framework the well-known ground- and excited-state energy-level structure of the
NV− centre follows by associating the six electrons involved with the available electronic states
Mel, taking the additional spin properties into account. Equivalently, and more simply, this

New Journal of Physics 15 (2013) 083014 (http://www.njp.org/)

http://www.njp.org/


4

can be described by two holes relative to a complete filling [22]. Calculating the coupling
to phonons can be decomposed into two steps by noting that the long-wavelength acoustical
phonons considered here will introduce a periodic strain to the NV centre. Thus in a first
step, we will discuss the effect of strain to the energy-level structure and in a second step
link the vibrational phonon mode to the strain property. For the former case, we will follow
the discussion presented in [22] (see also a similar discussion in [23]). The electron–nuclei
Coulomb coupling can be described by an interaction of the form

V =

∑
i

gi |σi〉〈σi | +
∑
i> j

hi j(|Eri j |) |σi〉〈σ j | + h.c. (1)

with i and j describing a summation over all possibleMdb configurations and Eri j = Eri − Er j with
Eri/j the corresponding atom position vectors. Noting that the coupling coefficient depends on
the relative distance of the atoms involved, it is obvious that stress related displacements Eui will
influence the energy-level structure and for small displacements, as expected by phonon effects,
the strain perturbation on the level of dangling bonds can be described by

δV =

∑
i> j

δhi j(|Eri j |) |σi〉〈σ j | + h.c. (2)

with δhi j = ∇Er hi j δEu = ∇Er hi j eEr the first-order correction following from an expansion of hi j .
Herein the tensor eµν = ∂uµ/(∂rν) is related to the strain tensor ε by εµν = 1/2(eµν + eνµ).
Considering a specific ground-state to excited-state triplet transition, this results in the following
Hamiltonian for the NV-centre energy levels:

Hel–phon ' 2 δ1 |g〉〈g| + |e〉〈e|(δ1 + δ4 + ξ), (3)

wherein δ1 = −ζ(εxx + εyy) and δ4 = ζ8β2 ezz with [22] ζ ' 610 THz and β accounting for
the difference of the nitrogen coupling compared to the carbon related ones. |g〉 can be any
of the triplet ground states, that exhibit an equal shift under the influence of strain, whereas

for the excited states |e〉 we find ξ = ±ζ
√

4 ε2
xy + [εxx − εyy]2 for the states |Ex〉 and |Ey〉,

respectively, and ξ = 0 otherwise. For more details on the derivation of (3) we refer to
appendix A.

Vibrational modes will introduce a time-dependent periodic strain to the system, that
exhibits a simple description for long-wavelength acoustical modes with wavevectors near the
Brillouin zone. In that case, and assuming periodic boundary conditions, the discrete Bloch-type
wavefunction, describing the displacement of the crystal lattice positions, can be described by
a continuous displacement field in space Eu(Er) [24] replacing the discrete lattice positions n by
Ern → r and the displacement for a specific mode α is thus obtained by [25]

ei j =

√
h̄

2M ν(k)
k j e(α)i (−i) (a†

α − aα) (4)

with Ek the wavevector, Ee (α) the mode eigenvector, ν(k) the angular frequency and aα, a†
α the

phonon creators and annihilators of the mode, respectively, and M the mass of the nanodiamond.
For the linear acoustical modes near the zone centre ν(k)= ck with c = 1.2 × 104 m s−1 the
speed of sound in diamond and k = 2π/ l out of applying periodic boundary conditions, with
l the diamond length in the corresponding mode direction. Combining equations (3) and (4)
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allows for the calculation of the energy shift associated with the phonon coupling and exhibits
the typical form of a deformation potential coupling describing local lattice compression and
dilation as expected for the long-wavelength acoustical phonon case. As an illustration let us
explicitly give the electron–phonon coupling energy shift Hamiltonian for the specific case of
a mode α with Ee (α) ‖ Ek pointing in x-direction and choosing |e〉 = |A2〉 as the excited state,
favourable in the sense that it is not coupled to the singlet state via spin–orbit coupling [22, 26].
In that case the electron–phonon coupling takes the simple form

Hel–phon = −η ν (−i) (a†
− a) |e〉〈e| (5)

with the coupling coefficient

η = ζ
k

ν

√
h̄

2 M ν
(6)

that takes the role of the well-known Lamb–Dicke parameter.
Note that the periodic boundary condition treatment is strictly valid only for the case of an

infinite crystal; for a finite nanodiamond crystal, shape-dependent confinement effects alter the
boundary conditions, therefore leading to a modification of the specific phonon mode spectrum.
We will discuss the NV-centre phonon coupling in that case for the example of a free elastic
sphere in appendix B. Although a change in the exact microscopic behaviour is observed in that
case, the coupling properties of the long-wavelength radial breathing mode agree fairly well
with the periodic boundary treatment. Moreover the scaling properties remain unchanged for
both descriptions.

Adding a laser coupling with Rabi frequency � and frequency ωL to couple one of the
ground states to the excited state |e〉 and applying the canonical Schrieffer–Wolff transformation
U = exp(iη (a† + a)|e〉〈e|) beside restricting the discussion to a single mode, leads to the
following Hamiltonian in the rotating wave approximation [27, 28] (a discussion on how to
include the mode relaxation and the finite excited-state lifetime can be found in appendix F):

H =
ω̃0

2
σz + νa†a +

[
�

2
|e〉〈g| e−iωLt ei η(a†+a) + h.c.

]
. (7)

Herein σz refers to the Pauli operator of the corresponding transition and ω̃0 = ω0 + η2 ν with ω0

the transition frequency and the second part following from the Schrieffer–Wolff transformation.
Note also that the phonon coupling mechanism is assumed to be completely originated from
the electron–phonon coupling Hamiltonian of the corresponding transition, whereas the photon
recoil-based coupling mechanism has been neglected as it is orders of magnitude lower in
macroscopic systems [27]. The coupling parameter η (6) for different nanodiamond sizes is
shown in figure 1(b) taking typical values of the order of 10−2–10−3 and decreasing with the
nanodiamond radius ∝ R−1 for a spherical diamond of radius R. For general diamond shapes
η ∝

√
l/V with l the length in the mode direction and V the diamond volume, leading e.g.

to a η ∝ 1/
√

R scaling for a two-dimensional structure of area ∝ R2. The mode frequencies ν
for the lowest energy mode, for a spherical diamond also representing the frequency difference
among neighbouring modes, are shown in figure 1(b) taking typical values in the THz range.
These high mode frequencies are advantageous in the sense that neighbouring modes are well
separated and additionally thermal occupation probabilities are low. The decreasing magnitude
of both the coupling strength and the mode frequency limits the diamond size to several tens
of nanometres. Hamiltonian (7) can be expanded in orders of the small coupling parameter
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η with the zeroth phonon-independent order providing the carrier and the first order the blue
(∝ a†

|e〉〈g|) and red sideband (∝ a|e〉〈g|) transitions.
These phonon sidebands should be experimentally observable in low-temperature emission

spectra [29]; however, no such experimental investigations with nanodiamonds <5 nm have
been performed to date.

3. Phonon-mediated gate interaction

The phonon-dependent sideband transitions offer the possibility of correlating the NV-centre
state with the global vibrational one. This can be used as a source for gate operations [30–32]
between different NV centres within the same nanodiamond. In one of its simplest versions
a Mølmer–Sørensen-type gate [30, 33] can be directly implemented on the ground–excited-
state transition, that has the advantage of being insensitive to the actual phonon state, therefore
allowing gate operations even for thermal initial phonon states and circumventing the need for
vibrational mode cooling. However, such a concept suffers from the relatively short lifetime
of the excited state limited by both optical decay to the ground state as well as non-radiative
spin–orbit relaxations to singlet states. Moreover, in order to avoid off-resonant excitations to
several excited states, the driving field strength has to be limited to values smaller than the
typical energy gaps ∼4 GHz, therefore limiting the maximal gate speed.

Here we provide an alternative concept that allows us to perform the gate within the
triplet ground-state manifold. A Raman transition via the excited state provides the required
phonon coupling, that otherwise would not exist according to the absence of a difference in
the electron–phonon coupling among the ground-state triplet states in (3). For this setup to
work, a 3-transition between ground and excited states is required, that for the NV centre
exists between the |g+1〉, |g−1〉 electron-spin triplet ground states and either of the excited
states |A1〉, |A2〉, |E1〉, |E2〉, the latter forming equal superpositions of the ms = ±1 electron-
spin projections [22]. These 3-transitions have already been successfully implemented and
analysed in experiments [26, 34], being accessible in the low temperature (<10 K) and strain
limit. Circular polarized light drives spin-selective transitions between those states, that might
be advantageous for tuning the detunings and couplings. Additionally, the Raman-transition
within the 3-scheme has to be carefully tuned to a single sideband, that is either the red or blue
one, as otherwise the phonon dependence of the effective ground-state transition is cancelled by
interference of those two paths. For this task, the high phonon frequencies of nanodiamonds
are advantageous as they allow the single sideband addressing without stringent conditions
on the Rabi-frequency of the coupling field. The gate interaction itself follows from a two-
step process. Firstly, the Raman transition provides a phonon-dependent coupling within the
ground-state manifold. Secondly, this phonon-dependent coupling can be used to implement a
gate between two NV centres by off-resonantly exciting the phonon state similar to the direct
Mølmer–Sørensen approach. That way the excited-state relaxation is suppressed by the off-
resonance of the Raman transition, leading to an improved ratio between gate and relaxation
time compared to a direct gate implementation on the ground–excited-state transition as will
be discussed below. Moreover, contributions of different excited states simply add up, therefore
allowing for a straightforward integration of this effect into the formalism and not leading to an
excitation of several states as might happen in the direct implementation.
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Figure 2. Phonon-mediated gate. (a) Setup for creating a Raman-induced
phonon coupling within the ground-state manifold by off-resonantly exciting
the excited state with a carrier and blue-sideband transition. Dashed lines
represent couplings that just appear in the double-path setup. Green lines are
compensation pulses that become relevant for gates in the non-perturbative limit
κ2 = �̃/1ε . 1. (b) Final effective two-qubit gate interaction for the single (only
continuous lines) and both-path (all interactions) configuration. (c) Effective
gate frequency versus size (=diameter) of a spherical nanodiamond and different
values of κ1 and κ2, taking the coupling to the second neighbouring excited
state into account. Herein �2 = κ1 ν, �1 = η�2 and κ2 defined as in the text.
Continuous, dashed and dashed dotted lines correspond to κ2 = 0.1, 0.05, 0.35,
whereas blue, red and green correspond to κ1 = 0.01, 0.05, 0.1, respectively.
Horizontal lines (with triangle endpoints) denote the corresponding 0eff value
that imposes a limit on the maximal nanodiamond size shown for κ2 = 0.05
and 0.1 by the vertical yellow lines. The area for which the ratio �gate > 0eff

is coloured with decreasing saturation for increasing κ2. Note that this ratio is
independent of the choice of κ1 for a given nanodiamond size.

3.1. Setup and first effective form

The setup for this gate is illustrated in figure 2(a) where the dashed transitions are present only
in the double-path (dp) setup, that leads to a complete σx ⊗ σx -type coupling in the ground-state
manifold, whereas they are absent in the single-path (sp) one resulting in a gate in the reduced
manifoldM1 = {|g+1, g−1〉, |g−1, g+1〉}. The corresponding Hamiltonian in a frame rotating with
the laser frequency for NV centre k can be written as

H sp
k =

�1

2
|e〉〈g+1| e−iε1 t +

�2

2
|e〉〈g−1| e−i (ν+ε2) t + i ηk

�2

2
a†

|e〉〈g−1| e−i ε2 t + h.c. (8)

with �1 ' ηk �2. Herein the first and last contribution form the phonon-dependent Raman tran-
sition consisting of a carrier and blue sideband excitation, respectively, provided that ε1 ��1

and ε2 ��2 (the same can be achieved with a red sideband interaction as well). The sec-
ond contribution describes the unavoidable carrier excitation associated with the sideband term
and is not required for the gate interaction itself, however cannot be neglected either. Higher-
order terms in ηk have been omitted. For the double-path setup H dp

k = H sp
k + H sp

k ||g+1〉↔|g−1〉

with the second contribution corresponding to the first one by replacing |g+1〉 by |g−1〉 and
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vice versa, i.e. both of the couplings �1 and �2 are present simultaneously on both tran-
sitions. Describing the off-resonance ratio between driving fields and detuning by κ1 � 1
(κ1 =�1/ε1 ' η�2/ε2) and noting that εk � ν, the optimal choice of parameters is given by
�2 ∼ κ1 ν and ε1 ' ε2 = 1/κ1 η�2.

Eliminating the off-resonant excited-state results in the effective Hamiltonians

H I,dp
eff,k =

δ
dp
k

2
σx +

[
i
�̃k

2
ei1ε t a† (σx + 1)+ h.c.

]
, (9a)

H I,sp
eff,k =

δ
sp
k

2
σz +

[
i
�̃k

2
ei1ε t a†σ+ + h.c.

]
(9b)

with �̃k =
1
4 �1 (ηk �2) (ε1 + ε2)/(ε1 ε2) and δdp

= δµ=2 and δsp
= 1/2 δµ=1 with δµ =

1/2 (�2
1/ε1 + (−1)µη2

k (1 + n̂)�2
2/ε2 + (−1)µ�2

2/(ν + ε2)). Moreover 1ε = ε1 − ε2 +χ η2
k�

2
2/ε2

where the last term accounts for the coupling induced shift of the mode frequency with
χ = 1/4 for the double and χ = 1/8 for the single-path configuration. The Pauli operators σx ,
σz and σ+ are defined in the ground-state manifold {|g+1〉, |g−1〉} and n̂ denotes the phonon
number operator. The terms involving phonon excitations correspond to paths involving both
the sideband and carrier transition whereas non-combined paths lead to single transitions or ac-
Stark shifts not associated with an effective phonon (de-) excitation, respectively. Note that the
last contribution in δµ originates from the �2 carrier interaction and can be significantly larger
by a factor of 1/η than the preceding terms. Interestingly, taking into account the coupling to
several excited states, contributions arising from |A1〉 and |A2〉 (as well as |E1〉 and |E2〉), both
equal ms = +1 and −1 superpositions, have opposite signs and therefore subtract. This limits
the maximal amplitude of the uncorrelated flip contributions arising from carrier transitions to
κ2

1 1 with 1∼ 4 GHz the excited-state energy splitting, that can be considerably lower than
expected from the coupling to a single excited state.

3.2. Second effective form and gate Hamiltonian

In a second stage, we consider Hamiltonian (9a) and (9b) for two NV centres (k = 1, 2) and
choose 1ε = 1/κ2 �̃ with κ2 � 1 denoting the off-resonance of the corresponding transition.
That way the phonon transition is only virtually excited which allows us to obtain a second
effective form

H II,dp
eff =

∑
k=1,2

δ̃
dp
k

2
σ k

x −
�gate

2
σ 1

x σ
2
x , (10a)

H II,sp
eff =

∑
k=1,2

δ̃
sp
k

2
σ k

z −
1

4

�gate

2
(σ 1

x σ
2
x + σ 1

y σ
2
y ) (10b)

corresponding to the final gate Hamiltonian. Herein the effective gate frequency is defined

as �gate = �̃1 �̃2/1ε, δ̃dp
k = δ

dp
k + (�̃1 + �̃2)�̃k/1ε and δ̃

sp
k = δ

sp
k + (1+2 n̂) �̃2

k
41ε . For the double-

path scheme this corresponds to a σx ⊗ σx -type gate rotating the states within the two-qubit
manifolds M1 = {|g+1, g−1〉, |g−1, g+1〉} and M2 = {|g+1, g+1〉, |g−1, g−1〉} at a Rabi-frequency
�gate ∼ κ1 κ2 (η�2). Additionally, there exist uncorrelated single qubit flips between the ground-
state levels with δ̃

dp
k ∼ κ1 η�2 that are by an order 1/κ2 larger than the gate term itself
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Figure 3. Simulated gate interaction. Simulation of the double-path gate
interaction (10a) for a 15 nm diamond and (a) κ1 = 0.05, κ2 = 0.05 and
(b) κ1 = 0.05, κ2 = 1/(2

√
2)' 0.35 (time-conditioned version). The upper

figures show the population of the states |g+1, g+1〉 (blue), |g−1, g−1〉 (red) and
|g−1, g+1〉, |g+1, g−1〉 (black). Dashed lines illustrate the interaction including the
uncorrelated flips that are refocused by an echo pulse, whereas continuous lines
focus on the pure gate interaction. The lower plots show the phonon population
during the gate interaction that can be significant for the time conditioned (close-
resonant) gate.

(see figure 2(b)). However, both terms commute which allows us to remove the single qubit
flips by a simultaneous echo-π -pulse in σz or σy on both NV centres, leaving the gate
interaction unchanged but adding a negative sign to the uncorrelated single-flip contributions.
Interestingly, choosing σy for that task offers the possibility to decouple the ground-state system
from decoherence processes as well, therefore extending the coherence time significantly. To
conclude, a pure gate interaction can be achieved by adding any periodic pulsed decoupling
sequence in σy acting on an inter-pulse timescale larger than the one required for the effective
Hamiltonian form to be valid, i.e. 1t � (1ε)−1

∼ (η�2)
−1. For a two-qubit π/2-rotation this

gate interaction including the echo-refocusing is illustrated in figure 3(a).
The single-path scheme behaves in a similar way, with the gate interaction restricted to a

rotation in the M1 manifold, more challenging with respect to the initial state initialization
on the nanometre scale of adjacent NV centres that requires individual addressing. For the
case of equal σz-contributions, i.e. identical configurations on both of the NV centres, the gate
and single qubit contributions commute again and the latter can be removed by an echo pulse
and combined with decoupling sequences in σx and σy , analogue to the two-path situation.
Uncorrelated transitions do not occur as they do not form sideband-independent paths. Note that
dependent on the parameters, the ac-Stark shift contributions might be an obstacle in adjusting
the off-resonance for the second effective gate Hamiltonian form. Therefore, choosing smaller
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Rabi frequencies (�2 ∼ η κν) might be advantageous to suppress the predominant influence of
the carrier term.

3.3. Comparison with a direct gate implementation

At this point it is interesting to compare the relevant timescales of this Raman-induced scheme
to a direct gate implementation on the ground–excited-state transition. For the direct gate
implementation, the conditional gate operation is directly implemented between one of the
ground and the dissipative excited state, i.e. the Raman transition step is omitted. In the
Raman-induced implementation, the gate frequency ∝ κ1 κ2(η�2) and has to be compared
with the effective decay rate 0eff = κ2

10 with 0 ' 15 MHz the excited-state decay rate [34]
suppressed by the probability κ2

1 of actually populating the excited level. �2 is limited by the
off resonance to the carrier transition as described above. The corresponding ratio follows as
�gate/0eff ∼ (κ2/κ1) (η�2/0). In contrast to that a direct gate implementation leads to a gate
frequency �e↔g

gate ∝ κ1 η� with the same � limitations, that in this setup has to be related to the
bare decay rate 0, therefore�e↔g

gate /0 = κ1 η�/0. Note that this is by a factor κ � 1 worse than
for the Raman-induced gate scheme.

3.4. Time-conditioned gate

To improve this ratio larger κ2 values are advantageous, corresponding to smaller off-resonances
with respect to the intermediate sideband states. Interestingly, the condition κ2 � 1 can be
significantly relaxed for the double-path setup, noting that in this case the time evolution
following from Hamiltonians of the form (9a) can be exactly integrated [33] as will be shown in
appendix C. An important prerequisite in that regime consists of compensating the phonon-
number-dependent terms appearing in (9a) (the ‘η2-terms’) to ensure the commutativity of
the gate relevant term (the �̃k-term) with the contributions that do not involve an effective
phonon (de-) excitation (the δk-contribution). Such a compensation can be achieved by the green
compensation couplings illustrated in figure 2(a) and also leads to significant improvements for
the gate in the perturbative regime (10a), (10b) in cases when it is implemented not deep within
the κ2 � 1 limit. Replacing the condition 1ε � 1 by the gate time condition tgate = m 2π/1ε
(m ∈ N), the resulting evolution can still be described by Hamiltonian (10a), even this does
not hold for intermediate time steps. That way κ2 =

√
θ/(2π m) with θ the gate rotation angle

taking the value κ2 = 1/(2
√

2) for creating a maximally entangled state (θ = π/2) with m = 2,
providing that the phonon population refocuses before the intermediate echo pulse is applied
(see figure 3(b)).

A similar gate that allows one to perform the gate in the non-perturbative regime despite
maintaining its independence on the phonon state can be constructed out of the single-
path configuration by adding a continuous microwave driving within the ground-state triplet
manifold [31] and we will discuss that idea in appendix D.

3.5. Size limitation

Figure 2(c) compares the gate speed to the excited-state decay limitation for different
configurations including the time conditioned κ2 = 0.35 case. The maximal size limitation is
determined by the off-resonance parameter κ2 and is given by . 25 nm for the κ2 = 0.05 and
. 35 nm for κ2 = 0.1. Here it should be noted that the lifetime in nanocrystals is increased
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compared with the bulk counterpart due to the strong change in the refractive index and
dielectric screening effects [21, 35] with typical values [36, 37] 0ND ' 1/20 = 7.5 MHz.
Therefore, longer excited-state lifetimes have to be expected what was not taken into account in
figure 2(c) as the exact magnitude is very sensitive to the substrate environment [35]. Provided
that the Rabi frequencies can take the same values as in the bulk counterpart, a decay rate
halved in value would double the ratio�gate/0eff, therefore making the conditional gate operator
less prone to spontaneous decay for a given diamond size. For a spherical diamond this would
increase the maximal radius by a factor of

√
2.

3.6. Influence of dipolar couplings

Up to now we neglected the influence of dipolar couplings, that is the optical dipolar
coupling [38] on the ground–excited-state transition as well as the magnetic equivalent [9, 10]
within the ground-state manifold. Whereas this is a good approximation for specific
configurations, e.g. an angle of 54.7◦ of the axis connecting two NV centres to an equally
oriented symmetry axis for which the dipolar couplings are exactly zero, for other configurations
they can be of the same magnitude as the gate interaction itself. These couplings take values of
jopt ' 2π × 52.4 MHz (optical ground–excited-state coupling) contributing as j̃opt ∼ κ2

1 jopt due
to the excited-state off-resonance, and jmag ' 2π × 104 kHz (magnetic ground-state coupling)
for an NV-centre distance of r = 10 nm. That is the effect of the dipolar interactions cannot
be neglected in the general case. A detailed discussion about how to include the effect of
dipolar couplings in the formalism is presented in appendix E. As a result this requires to
replace the detunings by εk → εk − jopt/2 and the gate frequency for the both-path setup
by �bp

gate →�
bp
gate − 2 j̃opt − jmag/2 and �bp

gate →�
bp
gate + jmag/2 for the M1-and M2-interaction,

respectively, as well as �gate →�gate − 4 j̃opt for the single-path setup. Herein j̃opt ∼ κ2
1 jopt.

Therefore, as long as jopt � ν together with identical coupling configurations on both NV
centres, both coupling mechanisms can be combined by taking into account the modified
detuning configurations and adjusting εk correspondingly.

3.7. Experimental implementation

Here we give a brief outline on how we believe the phonon coupling schemes could be
realized in experiments. As mentioned earlier the scheme relies on the possibility of individually
resolving single excited states, which requires to work in the low-temperature regime (<10 K).
A first step naturally consists in the characterization of the mode frequencies, that is, the
measurement of an absorption or emission spectrum. As the typical THz phonon frequency
range for nanodiamonds is well above the natural linewidth broadening (∼15 MHz), we expect
a clear significance of phonon sidebands in the spectrum, that allows one to determine the
relevant frequencies along with a first estimation of the phonon coupling by fitting the data to
an appropriate model (see e.g. [29]). Beside nanodiamonds on a substrate, recent experiments
have demonstrated the levitation of nanodiamonds in optical dipole traps [39], which is
promising in that the phonon mode spectrum can be expected to resemble more closely the
one of a free particle as outlined in appendix B. Initialization of the electron-spin state in
the low-temperature regime can be performed by optical pumping using resonant excitation
techniques [40]. Alternatively, the Lambda scheme, which is also used for the Raman transition
in the gate proposals of the previous sections, allows for the initial state preparation in a coherent
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population trapping configuration [26]. Readout can be carried out by resonant excitation
(projective measurements) on a specific ground–excited-state transition [40] after mapping the
state from the {| + 1〉, | − 1〉} gate manifold by means of a microwave π -pulse into {| ± 1〉, |0〉},
such as to obtain selective state-specific transitions for the read-out process. Here we would
like to point out that the individual read-out is challenging on the nanometre scale; however
global fluorescence correlation measurements allow for a clear distinction between entangled
and mixed states and while full quantum state tomography could be performed analysing the
different fluorescence levels obtained in global measurements [7], the measurement of a small
number of observables suffices to obtain very tight quantitative bounds on entanglement [41]
and fidelities [42]. Nevertheless, by choosing a configuration of two NV centres with a distinct
symmetry axis orientation, provides, combined with a weak magnetic field, the possibility
for individual microwave addressing within the spin-triplet ground-state manifold. This also
allows, beside the spectrum analysis, for a detailed analysis of the dipolar coupling using
double electron–electron resonance techniques [7]. Here it seems favourable to choose an axis
configuration with a dipolar coupling as small as possible in order to make the phonon-induced
mechanism the dominant one. The gate scheme itself as described in the previous sections relies
on purely global laser interactions that do not require individual addressability with the echo
π -pulse implemented by either global microwave or carrier Raman laser couplings, respectively.

4. Summary

In summary, we analysed the coupling of NV centres to long-wavelength acoustical phonons, a
mechanism capable of mediating gate interactions between NV centres for nanodiamond sizes
of several tens of nanometres. Exploiting the existence of a 3-scheme in the low temperature
and strain limit, fully noise decoupled two qubit gates can be constructed within the ground-state
manifold, even in the presence of dipolar couplings. This might be interesting for the creation
of entangled states but also for manipulating the phonon mode itself, that is the control of the
motional degrees of freedom, e.g. the cooling of vibrational modes. Moreover, the realization of
entangled states in nanodiamonds could have crucial application for future sensing protocols.
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Note added. While finalizing this paper we became aware of a similar investigation [43] studying
phonon-induced spin–spin interactions in diamond nanobeams.

Appendix A. Calculation of the electron–phonon coupling

The effect of strain induced by phonons, i.e. the electron–phonon coupling, can be calculated by
analysing the effect of a change in the intra-atom distance on the Coulomb coupling interaction
equation (1) [22, 23]. Assuming that this displacement is small, a realistic assumption by

New Journal of Physics 15 (2013) 083014 (http://www.njp.org/)

http://www.njp.org/


13

restricting the analysis to the long-wavelength acoustical modes or more precise to the one
defined by k l = n 2π with n = 1, for which the wavelength is given by the length scale of the
diamond crystal, it suffices to expand the coefficients hi j to first order in the atom displacements
Eui out of the equilibrium positions Er 0

i (i.e. Er 0
i → Eri = Er 0

i + Eui ). With the additional spherical
symmetry assumption that the energy will just depend on the absolute value of the relative
two-atom displacement, that is hi j = hi j(|Eri − Er j |) one obtains hi j = h0

i j + δhi j with

δhi j =
1

|Er 0
i − Er 0

j |

∂hi j(|Eri − Er j |)

∂ |Eri − Er j |

∣∣∣∣
0

(Er 0
i − Er 0

j ) (Eui − Eu j) (A.1)

=
1

|Er 0
i − Er 0

j |

∂hi j(|Eri − Er j |)

∂ |Eri − Er j |

∣∣∣∣
0

(Er 0
i − Er 0

j ) e(Er 0
i − Er 0

j ), (A.2)

where in the second line we introduced the displacement tensor eµν = ∂uµ/∂rν and the
derivation is evaluated at the equilibrium position of the atoms. Inserting the explicit expressions
for the positions Er 0

i as defined in figure 1(a) and using the expressions of the electronic states
Mel in terms of the dangling bond orbitalsMdb, the strain Hamiltonian (2) can be rewritten as

δVMel = −2 ζ exx |ex〉〈ex | − 2 ζ eyy |ey〉〈ey| − 8β2 ζ ezz |a2〉〈a2|

−ζ (exy + eyx)
(
|ex〉〈ey| + h.c.

)
. (A.3)

Herein we defined

ζ =

√
2

3

∂hi j(|Eri − Er j |)

∂ |Eri − Er j |

∣∣∣∣
0,C

q (A.4)

with the index C referring to the coupling for two carbon atoms and the difference for the
carbon–nitrogen case is accounted for by the factor β. The quantity q denotes the next-
neighbour distance in the diamond lattice and is equal to q =

√
3/8 (Er 0

i − Er 0
j ). Moreover,

couplings between |a2〉 and |ex,y〉 levels have been neglected, justified by the large energy
separation. Those would correspond to strain-induced transitions between the ground and
excited states of the NV centre and consequently do not play a significant role. Note also that
the energy level |a1〉 has been neglected as it is delocalized in the valence band and does not
contribute to the properties of the NV-centre energy-level structure.

Out of equation (A.3) the impact of strain on the NV-centre energy levels can be calculated
by using the expression of the energy levels in terms of the electronic statesMel as provided,
e.g. in [22]. For the ‘two-hole’ description the strain perturbation Hamiltonian takes the form

Hel–phon = [δVMel ⊗ 1el + 1el ⊗ δVMel] ⊗ 1spin (A.5)

with 1el the identity on Mel and 1spin the one on the spin degrees of freedom. Projecting
Hamiltonian (A.5) on the NV-centre energy-level states finally leads to

H gs
el–phon = 2 δ1 (|g0〉〈g0| + |g+1〉〈g+1| + |g−1〉〈g−1|) (A.6)

for the ground-state electron-spin triplet states and

H es
el–phon =


δ1 + δ4 0 0 0 δ2 −i δ3

0 δ1 + δ4 0 0 i δ3 −δ2

0 0 δ1 + δ4 + δ2 δ3 0 0
0 0 δ3 δ1 + δ4 − δ2 0 0
δ2 −i δ3 0 0 δ1 + δ4 0
i δ3 −δ2 0 0 0 δ1 + δ4

 (A.7)
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for the excited-state triplet states in the basis {|A1〉, |A2〉, |Ex〉, |Ey〉, |E1〉, |E2〉} with δ1 =

−ζ (exx + eyy), δ2 = −ζ (exx − eyy), δ3 = −ζ (exy + eyx) and δ4 = −8β2 ζ ezz. Combining the
Hamiltonians (A.6) and (A.7) and neglecting the off-resonant couplings between {|A1〉, |A2〉} ↔

{|E1〉, |E2〉} results in Hamiltonian (3) of the main text.
In the case of phonons, the displacement can be expressed in terms of Bloch-type

wavefunctions, such that for a specific mode α, and noting that in the framework of classical
elasticity theory applicable in the long-wavelength limit the microscopic structure can be
replaced by a continuous displacement field ( Eri → Er ), the displacement takes the form

Euα(Er)=

√
h̄

2 M ν(Ek)
Ee (α) [aαei EkEr + a†

αe−i EkEr ] (A.8)

with M the total mass of the system, Ee (α) the eigenvector of mode α, Ek the wavevector and ν(k)
the angular frequency and aα, a†

α the mode annihilator and creator operators, respectively. With
the definition of eµν = ∂uµ/∂rν and using that Ek Er�1 this results in equation (4) in the main
text, that together with the electron–phonon coupling Hamiltonians (A.6) and (A.7) complete
the analysis of the phonon influence on the NV energy-level structure.

Appendix B. Phonon coupling in the elastic sphere model

Herein we will reconsider the NV-phonon coupling (deformation potential coupling) for the
special case of a sphere subject to stress-free boundary conditions. Confinement effects in such
finite systems lead to a modification of the phonon modes compared to the periodic boundary
condition analysis provided earlier in section 2. This modification depends on the shape and size
or more precise on the boundary conditions of the particle under consideration.

The acoustical vibrations u of a homogeneous, free spherical elastic body in the framework
of continuous elasticity theory can be described by

∂2

∂t2
u(r, t)=

λ+µ

ρ
∇ (∇ · u(r, t))+

µ

ρ
∇

2u(r, t) (B.1)

and has been first studied by Lamb [44]. Herein λ and µ are the Lame’s constants that describe
the material-dependent elastic properties and are related to the transverse and longitudinal
speed of sound in diamond by vt =

√
µ/ρ = 1.283 × 104 m s−1 and vl =

√
λ+ 2µ/ρ = 1.831 ×

104 m s−1, respectively, with ρ = 3.512 g cm−3 the mass density [45]. This continuous elastic
body model has been successfully applied to describe the phonon properties of nanoparticles
as validated by numerous experiments, and forms a good description as long a the particle size
is not too small, that is, as long as the phonon wavelength is much larger than the interatomic
distance to allow for the homogeneous continuum description.

The equation of motion (B.1) can be solved by introducing a scalar φ ∼ ψlm(hr, �) and
vector potential A ∼ rψlm(kr, �)= êr r ψlm(kr, �) with ψlm(kr, �)= jl(kr) Ylm(�), wherein
jl(kr) and Ylm(�) are the lth order spherical Bessel function and the (l,m)-spherical
harmonics, respectively [46, 47]. The corresponding displacement modes follow as derivatives
of those potentials, with the scalar potential describing compressive (longitudinal) and the
vector potential shear (transverse) waves, and can be classified into torsional ul,m,n

tor and
spheroidal modes ul,m,n

sph (see figure B.1(b)). Herein the orbital quantum number l and its
z-component m with |m|6 l characterize the mode’s spherical symmetry whereas n refers to the
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Figure B.1. Mode properties and NV-phonon coupling in the elastic sphere
model. (a) Dimensionless eigenvalues χ = k R of the spheroidal and torsional
modes in diamond. The modes are characterized by the orbital quantum number
l and exhibit a (2l + 1)-degeneracy in m. Higher modes for a given l account
for the overtones denoted by n. For a diamond of 10 nm in diameter, the
frequencies following out of (B.6) are indicated by the right axis. (b) Schematic
illustration of spheroidal (the breathing mode and the lowest energy mode l = 2)
and torsional modes. (c) Left: scaling of the phonon coupling coefficient η with
the particle diameter. The blue dashed line corresponds to the expectation for
the lowest frequency mode with periodic boundary conditions and corresponds
to the one of figure 1, whereas orange and green lines follow out of the
elastic sphere model for l = m = 0, n = 0 (orange, solid line), l = m = 0, n = 1
(orange, dashed dotted) both at r = 0, and l = 2, m = 0, n = 0 (green, solid line),
l = 2, m = ±1, n = 0 (green, dashed dotted) both at r = R/2 evaluated at the
angles of maximal coupling, respectively. All lines exhibit the expected η ∝ 1/R
behaviour. Right: mode frequency scaling with diameter for the lowest mode
out of periodic boundary conditions (blue, dashed), the elastic sphere breathing
mode (l = m = n = 0; orange) and the lowest energy elastic sphere ellipsoidal
mode (l = 2, m = n = 0; green). (d) Radial coupling distributions for a spherical
diamond of R = 5 nm and different modes as indicated in the figure. Whereas
the l = 0 modes are completely angle independent, the l 6= 0, m = 0 modes are
evaluated at the angle θ = 0 of maximal coupling (independent of φ).
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specific overtone. Imposing stress-free boundary conditions results in an eigenvalue equation
that allows us to determine the k- and h-values along with the mode frequencies.

The torsional modes are characterized by a purely transversal character without radial
displacement, that is the sphere volume remains unchanged under these vibrations

ul,m,n
tor =N tor

l,m,n ∇ × [êr r ψl,m(kr, �)], l > 1 (B.2)

with N tor
l,m,n describing a normalization constant. The eigenvalue equation in that case takes the

form

(l − 1) jl(χ)−χ jl+1(χ)= 0 (B.3)

with the definition χ = k R and R being the sphere radius. Note that this equation is independent
of the particle’s elastic constants and is therefore of universal character.

In contrast to that, spheroidal modes exhibit a mixed longitudinal and transversal character
and are described by

ul,m,n
sph =N sph

l,m,n

[
pl

(
1

k
∇ψlm(hr, �)

)
+ ql

(
1

k
∇ ×∇ × [êr r ψlm(kr, �)]

)]
(B.4)

with the coefficients pl and ql following out of (χ = k R, ξ = h R)(
αl βl

γl δl

) (
pl

ql

)
= 0

(B.5)

with
αl = −(χ 2/ξ) jl(ξ)+ 2(l + 2) jl+1(ξ),

γl = −(χ2/ξ) jl(ξ)+ 2(l − 1) jl−1(ξ),

βl = lχ jl(χ)− 2l(l + 2) jl+1(χ),

δl = (l + 1)
[
2(l − 1) jl−1(χ)−χ jl(χ)

]
and ql = 0 for l = 0 (pure radial displacement, ‘breathing mode’). The coefficients χ and ξ are
obtained from the eigenvalue equations αlδl −βlγl = 0 (l 6= 0) and αl = 0 (l = 0) by introducing
the material-dependent relation ξ = (vt/vl) χ .

The mode eigenvalues χ calculated that way for diamond are depicted in figure B.1(a)
together with the corresponding frequency ν for a diamond of 10 nm in diameter, the latter
following from the relation

ν = vt k = vl h = vt
χ

R
. (B.6)

Note that these modes are degenerate in m for a perfect spherical symmetry. Out of (B.6) it
follows that the frequency scales as the inverse of the radius, that is it exhibits the same scaling
as the one obtained from the periodic boundary condition calculation. Moreover, we show in
figure B.1(c) that the magnitude for the lowest breathing mode (l = 0) is in good agreement
with the lowest mode obtained in the periodic approach, that will turn out to form a promising
mode for the NV-centre coupling.

We will now proceed by calculating the coupling (deformation potential coupling) to these
elastic sphere modes. In a second quantized form the displacement takes the form [48]

u(r, �)=

∑
lmn,τ

√
h̄

2ρντlmn

(aτl,m,n + (−1)maτ†
l,−m,n)ul,m,n

τ (B.7)

with τ denoting either spheroidal or torsional modes and the displacement is normalized
over the crystal volume as

∫
d3r (ul,m,n

τ )∗ · ul,m,n
τ = 1. Combining (B.7) with (3) allows for a

straightforward calculation of the NV-centre coupling to a specific mode. For the excited states
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|e〉 ∈ {|A1〉, |A2〉, |E1〉, |E2〉} the phonon coupling (3) can be approximated by the rather simple
expression

H τ
el–phon ' ζ (exx + eyy + ezz) |e〉〈e| = ζ div(ul,m,n

τ )|e〉〈e| (B.8)

such that for the spheroidal modes

H sph
el–phon ' −ζ

√
h̄

2ρνsph
lmn

N sph
l,m,n pl hl,n jl(hl,n r)Yl,m(�)(a

sph
l,m,n + (−1)masph†

l,−m,n)|e〉〈e| (B.9)

and H tor
el–phon ' 0 for the torsional modes, with hl,n = (vt/vl) (χl,n/R). This is in accordance

with the dominant contribution expected for the general case of a deformation potential
coupling [48]. From (B.8) it follows that only the longitudinal displacement contributes
significantly to the NV-centre phonon-coupling mechanism and therefore the coupling to
torsional modes can be neglected. It should be noted that Hel–phon ∝N sph

l,m,n hl,n/
√
ωlmn ∼ R−2

scales quadratically with the inverse particle radius and therefore the coupling factor η as
defined via (5) scales as η ∼ R−1, thus exhibiting the same scaling as already obtained in
section 2. We verified that scaling behaviour in figure B.1(c) for the breathing mode (l = m = 0)
and the lowest frequency mode (l = 2, m = 0, ±1). The breathing mode coupling constant η
matches fairly well the expectation calculated by using periodic boundary conditions. Here
one should take into account as well the radial position dependence that is illustrated in more
detail in figure B.1(d). Only the l = 0 modes have a non-vanishing coupling around the particle
centre (r = 0) whereas modes with l 6= 0 exhibit an increasing region of vanishing coupling for
increasing l around the particle centre (for a fixed overtone number n). Combined with the fact
that NV centre near the surface are less stable and additionally are more prone to decoherence,
the l = 0 breathing modes can be considered as the promising modes to obtain phonon coupling,
in particular the low frequency n = 0 mode that shows the most uniform coupling achievable
throughout the possible NV-centre positions within the crystal. However, one should keep in
mind that the coupling to other modes, which depends on the specific position of the NV centre
within the diamond, is not necessarily weaker than the coupling to l = 0. In figure B.1(c) this
behaviour just arises from the fact that for the l = 0 mode the NV centre is assumed to be
at the centre (the position of maximal coupling) whereas for the l = 2 modes the reasonable
assumption r = R/2 has been chosen, that does not correspond to the maximal coupling position
which in fact would be given by r = R. As a general behaviour higher overtones, also known as
inner modes, are accompanied with a decreasing phonon coupling layer around the surface (e.g.
as can be seen in figure B.1(d) left and a similar behaviour would be observed for l 6= 0 modes);
these modes depend only weakly on the specific boundary conditions.

In summary, the general scaling and magnitude of the phonon coupling obtained previously
in section 2 by assuming periodic boundary conditions (‘infinite crystal approximation’) is in
good agreement with the results obtained by assuming a confined finite spherical particle.
This indeed has to be expected as the scaling properties arise from universal dimensionality
arguments as, e.g. the mode normalization factor, thus allowing a rather simple estimation of
the coupling properties and strength even for different ‘shapes’ (dimensionality) in the periodic
boundary model. However, the exact microscopic spatial coupling, e.g. the spatial distribution
of the coupling parameter, depends on the explicit mode properties for which the particle
confinement and shape become crucial and in fact the low-frequency modes (n = 0 modes)
are most sensitive to a change in these surface properties.
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Appendix C. Exact integration of the gate Hamiltonian

The time evolution following out of Hamiltonian (9a) can be integrated exactly for commuting
state operators (e.g. for the double-path gate setup), what allows to overcome the κ2 � 1 limit
by identifying appropriate time conditions. We will consider the generic form

H(t)= i (γ (t) Ô a†
− γ ∗(t) Ô† a) (C.1)

with [Ô, Ô†] = 0. For the double-path setup considered here (9a)

γ (t)=
�̃

2
ei1ε t (C.2)

and

Ô = σ 1
x + σ 2

x + 2 1. (C.3)

Using the properties of the displacement operator D(α)= exp(α a†
−α∗a), the time evolution

of (C.1) follows as [33]

U = T e−i
∫

H(t ′) dt ′
= D(α(t) Ô) exp( 1

2 [β(t) Ô Ô†
−β∗(t) Ô† Ô]) (C.4)

with

α(t)=

∫ t

0
dt ′ γ (t ′)= −

i

2

�̃

1ε
(ei1ε t

− 1), (C.5)

β(t)=

∫ t

0
dt ′ γ (t ′)

∫ t ′

0
dt ′′ γ ∗(t ′′)= i

�̃2

41ε

(
t +

i

1ε
[ei1ε t

− 1]

)
. (C.6)

Noting that the phonon dependence only appears in the displacement operator, it can be
eliminated by choosing the gate time tgate such that 1ε tgate = m × 2π with m ∈ Z in which
case α(tgate)= 0. Implying that the condition is fulfilled, the total evolution corresponds exactly
to the one out of (10a) (up to local contributions of the first-order effective Hamiltonian and
global phases), i.e.

U (tgate)= exp

(
−i

[
−
�̃2

21ε

(
σ 1

x σ
2
x + 2 [σ 1

x + σ 2
x ]
)]

tgate

)
. (C.7)

Appendix D. Microwave-assisted gate

A gate interaction with similar properties as the double-path gate discussed in the main text can
be constructed out of the single-path setup combined with a continuous microwave driving of
the states |g0〉 ↔ |g+1〉 and |g0〉 ↔ |g−1〉 (see figure D.1(a)). Mainly this allows us to perform
the gate in the non-perturbative regime implying a time condition to ensure the independence
of the phonon state. As a side effect such a driving also decouples the gate from ground-state
decoherence.

Considering the single-path setup alone, the gate term in (9b) includes the operators

σ± =
1
2 (σx ± i σy). (D.1)

In that case a closed phase space trajectory, that is a refocusing to the initial phonon state at
a specific time, is prevented by the rotation around two orthogonal axes (σx and σy) [31].

New Journal of Physics 15 (2013) 083014 (http://www.njp.org/)

http://www.njp.org/


19

Figure D.1. Microwave-assisted gate. (a) Gate setup: the gate consists of a single
blue sideband transition connecting |g−1〉 to |g+1〉 (realized by a Raman transition
via the excited state) and a continuous microwave coupling �MW between the
states |g0〉 and |g±1〉. An additional compensation coupling (green line) removes
the phonon-number-dependent ac-Stark shift. (b) Simulated gate process for
�MW = 10 MHz, �1 = η�2 = 6.3 MHz, ε1 = 0.4 GHz, 1ε = 53 MHz and a
diamond size of 15 nm. The time condition is given by tgate = 4π/1ε (n = 2).
For simplicity and clarity, the carrier contributions of the blue sideband laser
have been neglected in the simulation. The cyan dashed line corresponds to the
sum of all populations that do include the state |g0〉. (c) Possible implementation
of the gate process. Blue lines denote a time evolution under the Hamiltonian
form (D.2) and Se ∈ {σ pm

x , Sy, Sz}.

In a more formal way, the non-commutativity of σx and σy prevents the exact integration of
the gate Hamiltonian as described in appendix C. Now adding a continuous microwave driving
such that the σy contribution is suppressed, removes those difficulties and additionally leads to
a (σx ⊗ σx)-type gate similar to the double-path gate proposal that rotates states both within
M1 and M2. One possibility to achieve that task would be to continuously drive the states
|g+1〉 ↔ |g−1〉 [31, 32], which however is not really practicable for our setup. Therefore, we will
incorporate the full ground-state triplet and show that a driving of the form |g0〉 ↔ |g±1〉 will
be suitable for this task as well. In the following, we will refer to the qubit operators within
{|g+1〉, |g−1〉} by the indices ‘pm’ and denote the Pauli spin-1/2 operators in that manifold as
{σ pm

x , σ pm
y , σ pm

z ,1pm} whereas we will denote the spin-1 operators in the ground-state triplet
manifold as {Sx , Sy, Sz,1}.

The Hamiltonian of the total system including the microwave driving HMW is given by

H =

∑
j=1,2

H (j)
MW + H (j)

1pm
+ H (j)

σ
pm

z
+ H (j)

gate (D.2)
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with

H (j)
MW =

�MW

2
S(j)x ,

H (j)

1pm
=
δ1
2

1(j)pm with δ1 =
1

4

(
�2

1

ε1
+
�2

2

ν + ε2

)
,

(D.3)

H (j)
σ

pm
z

=
δsp

2
σ pm,(j)

z with δsp =
1

4

(
�2

1

ε1
−

�2
2

ν + ε2

)
,

H (j)
gate = i a† �̃

2
ei1ε t 1

2

(
σ pm

x + iσ pm
y

)
+ h.c. with �̃=

1

4
�1 (η�2)

(
1

ε1
+

1

ε2

)
,

where we assumed that the η2-terms have been successfully compensated to avoid the existence
of phonon-number-dependent terms (see green laser coupling in figure D.1(a)). This describes
the microwave driving, the global ac-Stark shift of the |g±1〉 states with respect to the |g0〉 state,
the relative shift of the |g±1〉 states and the gate relevant term, respectively. Note that the global
H1pm

term can be neglected if the microwave frequency is already tuned to the ac-Stark shifted
states.

In an interaction picture with respect to the continuous microwave driving and assuming
that �MW�{�̃, δsp, δ1}, the following substitutions can be made by neglecting fast rotating
terms (‘rotating-wave approximation’):

σx = Sx Sx − Sy Sy → Sx Sx −
1
2

(
Sy Sy + Sz Sz

)
=

3
4 σ

pm
x −

1
4 1pm + 1

2 |g0〉〈g0|,

σy = Sx Sy + Sy Sx → 0,
(D.4)

1pm = S2
z →

1
2

(
Sz Sz + Sy Sy

)
= −

1
4 σ

pm
x + 3

4 1pm + 1
2 |g0〉〈g0|,

σ pm
z = Sz → 0.

Therefore, in that frame, the Hamiltonian takes the form

Hint '

∑
i=1,2

δ1
2

(
−

1

4
σ pm

x +
3

4
1pm +

1

2
|g0〉〈g0|

)
(i)

+

[
i a† �̃

2
ei1ε t 1

2

(
3

4
σ pm

x −
1

4
1pm +

1

2
|g0〉〈g0|

)
(i)

+ h.c.

]
. (D.5)

That way the σy-contribution is suppressed, all contributions commute, ideally the state |g0〉

is never populated in the interaction frame and importantly the operators appearing in the
gate Hamiltonian part (the second term in (D.5)) commute which allows to integrate the time
evolution exactly as described in appendix C (corresponding to Ô = 1/2 (3/4 σ pm

x − 1/4 1pm) in
equation (C.3)). Note that, as already discussed in the double-path setup, the uncorrelated single
flip interactions can be removed by a single echo π -pulse in σ pm

y or σ pm
z . Therefore, including

an echo pulse the effective time evolution is exactly given by

U (tgate)= exp

(
−i

[
�gate

2
σ pm

x ⊗ σ pm
x

]
tgate

)
with�gate =

9

8

�̃2

81ε
(D.6)
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if the time condition 1ε tgate = n (2π) (n ∈ N) is fulfilled. That is, for the optimal choice with
respect to the gate time n = 2 (n = 1 cannot be realized due to the required echo pulse) this
leads to κ2 = �̃/1ε =

√
(4/3)2 θ/π for performing a two qubit rotation �gatetgate = θ . Here it

is interesting to note that the (maximal) ratio between the gate speed and the effective excited-
state decay rate is independent of the absolute values of the laser Rabi frequency (independent of
κ1 =�2/ν =�1/ε1 as defined in the main text) and therefore the condition �MW � �̃ does not
alter the maximal nanodiamond size limitations as depicted in figure 2. However, the absolute
magnitude of the gate speed (∼κ2

1 ) decreases with a decreasing microwave field, such that other
limitations as the T2-time of the ground-state triplet states can replace the effective excited-state
decay rate as the limiting quantity.

Note also that the continuous microwave driving decouples the gate interaction from
ground-state decoherence, an effect that can be modelled as a fluctuating energy shift Hdecoh =

δ(t)/2 Sz and is suppressed according to equation (D.4), such that the limiting quantity will
be given merely by T1 for a strong driving (for a more complete discussion of the decoupling
method we refer to [9]). As a final remark, the interaction frame with respect to

∑
j=1,2 H (j)

MW
can be implemented using the pulse sequence (see figure D.1(c))

exp (−i Hint t)= Uint e−i H t/2U †
int e−i H t/2 (D.7)

with H given by (D.2) and Uint = exp(−iπ Se) and Se ∈ {σ pm
x , Sy, Sz} (noting that UintSxU †

int =

−Sx whereas Hint is invariant under this pulse sequence).

Appendix E. Influence of dipolar couplings on the gate interaction

On the nanometre distance between NV centres, dipolar interactions can play a significant
role and might itself provide the conditional coupling interaction at the same time disturbing
the phonon-induced mechanism. The optical dipolar interaction on the ground–excited-state
manifold can be described by [38, 49]

Hopt,dip =
jopt

2
(|e, g+1〉〈g+1, e| + |e, g−1〉〈g−1, e| + h.c.) (E.1)

with the coupling constant [49, 50] (nk0r � 1)

jopt =
3

2

0 ξ0

(n k0 r)3
( p̂1 · p̂2 − 3 ( p̂1 · êr) ( p̂2 · êr))

' 2π × 52.4 MHz

(
10 nm

r

)3

( p̂1 · p̂2 − 3 ( p̂1 · êr) ( p̂2 · êr)) (E.2)

with r the distance between the NV centres, 0 the spontaneous decay rate (0 =

15 MHz [34, 51]), k0 = 2π/λ0 the vacuum wavevector of the transition and λ0 = 637 nm, n the
refractive index (n = 2.4), ξ0 the fraction of emissions into the zero phonon line (ξ0 ' 0.03 [52]),
p̂i the normalized dipole moment direction of NV centre i and êr the unit vector in the
direction of the axis connecting the two NV centres. Additionally, there exists a magnetic dipolar
interaction within the ground-state triplet manifold, that, nevertheless being orders of magnitude
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weaker than the optical one, can play a role for far detuned gates. It takes the form [9, 53]

Hmag,dip =
jmag

2
σ 1

z σ
2
z

with jmag = 2

(
µ0

4π

γ 2
el h̄

r 3

)
( p̂1 · p̂2 − 3 ( p̂1 · êr) ( p̂2 · êr)) (E.3)

' 2π × 104 kHz

(
10 nm

r

)2

( p̂1 · p̂2 − 3 ( p̂1 · êr) ( p̂2 · êr)),

wherein µ0 denotes the magnetic permeability, γel the gyromagnetic ratio of the electron spin
and σz the Pauli z-matrix defined within {|g+1〉, |g−1〉}.

For the derivation of the first effective Hamiltonian form (9a), (9b), the influence of the
magnetic dipolar interaction on the excited-state elimination can be neglected, and for the
double-path scheme the following Hamiltonian is obtained assuming identical configurations
on both NV centres:

H I,dp
eff =

δdp

2

∑
k

σ k
x +

[
i ei (ε1−ε2) t a† 1

2

(
�̃σ k

x +�a 1
)

+ h.c.

]

+
j̃opt

2
(σ 1

x σ
2
x + σ 1

y σ
2
y + σ 1

z σ
2
z )+

jmag

2
σ 1

z σ
2
z (E.4)

with

δdp
= −

1

2

(
−

�2
1

( jopt/2)− ε1
−
(1 + n) η2�2

2

( jopt/2)− ε2
−

�2
2

( jopt/2)− (ν + ε2)

)
,

�̃= −
1

4
(η�2)�1

(
1

( jopt/2)− ε1
+

1

( jopt)/2 − ε2

)
,

�a =
1

2
�̃−

1

8
(η�2)�1

(
ε1

( jopt/2)2 − ε2
1

+
ε2

( jopt/2)2 − ε2
2

)
, (E.5)

j̃opt = −
1

4
jopt

[
�2

1

( jopt/2)2 − ε2
1

+
η2�2

2 (1 + n)

( jopt/2)2 − ε2
2

+
η2�2

1�
2
2 jopt

161ε

(
1

( jopt/2)2 − ε2
1

+
1

( jopt/2)− ε2
2

)2

+
�2

2

( jopt/2)2 − δ2
2

]
.

This effective form is valid for any magnitude of the dipolar coupling as long as |�1| ' |η�2| �

|( jopt/2)− ε1| and additionally |κ2
1 ( j/εk)| � 1 for | j |> |εk| to avoid a quasi-resonant second-

order process to the double excited state |ee〉. Compared with the derivation without dipolar
interaction (9a), the dipolar modified Hamiltonian follows essentially by replacing the detuning
εk → εk − ( jopt/2) that has a clear interpretation as a coupling to the dressed states of the
optical dipolar interaction (see figure E.1). Additionally, direct off-resonantly suppressed dipolar
interaction terms of the order j̃opt ∼ jopt κ

2
1 appear in the Hamiltonian together with the magnetic

equivalents. Interestingly, for the case of equal couplings on both NV centres, only couplings
to the |+〉 dressed state occur (except for the state-independent phonon terms described by �a),
explaining why the detuning εk + ( jopt/2) is not a relevant quantity in the effective form (E.4).
This is originated in the fact that |−〉 couplings cancel by interference due to the different sign of
both paths as illustrated in figure E.1. However note that this is only valid for identical coupling
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Figure E.1. Dipolar coupling (single flip process). Illustration of a single flip
process of NV centre 2 from |g+1〉 to |g−1〉 in the presence of optical dipolar
interactions. The initial and final states are coupled to the dressed states |+〉(+1)

and |−〉(+1) here illustrated for the case | jopt|> |ε| (assuming ε1 ' ε2 ' ε)
and ε < 0 (red detuned). Blue lines denote couplings that are independent of
the dipolar interaction, whereas red dashed ones describe dipolarly induced
processes. Upper indices denote the corresponding NV centre and lower ones
refer to a specific coupling type. Paths related to the |−〉(+1) state cancel
by interference due to the negative sign if �(1)

1 =�
(2)
1 , i.e. in general if the

configurations on both NV centres are identical. Analogue processes can be
identified for other single flip and |g+1, g−1〉 ↔ |g−1, g+1〉 conditional coupling
processes.

configurations on both NV centres, otherwise replacements of the form (here for k = 1, upper
indices refer to k)

�1�2

jopt/2 − ε
→

�
(1)
1 �

(1)
2 ε

( jopt/2)2 − ε2
+

1

2

jopt

2

(
�
(1)
1 �

(2)
2

( jopt/2)2 − ε2
+

�
(2)
1 �

(1)
2

( jopt/2)2 − ε2

)
(E.6)

are required in δdp
k , �̃k and�a, taking into account couplings to both dressed states with the first

part describing the dipolar independent and the second one the dipolar-induced contributions.
The terms in j̃opt always involve terms of both k = 1 and 2 such that the replacements are
obvious in that case.

In the absence of the magnetic dipolar term in (E.4) all terms commute and therefore the
optical dipolar contribution just adds to the phonon-induced gate interaction that can be derived
from the first two terms as in (10a). A small modification of this behaviour arises from the
magnetic dipolar contributions, that do not commute with the σx -terms in (E.4). However, due
to jmag�(δdp, �̃) the magnetic dipolar term contributes to (E.4) in the secular approximation as

Hmag,dip '
jmag

4
(σ 1

z σ
2
z + σ 1

y σ
2
y ) (E.7)
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that commutes with all other contributions. Thus, the second effective Hamiltonian form
analogue to (10a) is given by

H II,dp
eff =

(
δdp

2
+
�a �̃

1ε

)∑
k

σ k
x −

�̃2

21ε
σ 1

x σ
2
x

+
j̃opt

2
(σ 1

x σ
2
x + σ 1

y σ
2
y + σ 1

z σ
2
z )+

jmag

4
(σ 1

z σ
2
z + σ 1

y σ
2
y ), (E.8)

wherein the single flip contributions (the first term) can again be removed by an echo pulse and
all contributions commute. The σ 1

z σ
2
z -contributions just correspond to a global phase in theM1

andM2-manifolds such that in total the gate frequency is given by �gate = −�̃2/1ε + 2 j̃opt +
jmag/2 for aM1 rotation, and �gate = −�̃2/1ε− jmag/2 for aM2-rotation, respectively.

A similar analysis can be carried out for the single-path setup leading to the same
replacements of the detunings by ε → ε− ( jopt/2) in the uncoupled form (9b) and direct dipolar
contributions as in (E.4) with

j̃opt = −
1

8
jopt

[
�2

1

( jopt/2)2 − ε2
1

+
η2�2

2 (1 + n)

( jopt/2)2 − ε2
2

+
�2

2

( jopt/2)2 − (ν + ε2)2

]
. (E.9)

In total, the gate interaction arises from replacing �gate by �gate − 4 j̃opt in (10b) beside the
detuning replacements.

Appendix F. Mode decay and excited-state decay

Herein we will briefly comment on how the spontaneous decay and the coupling among
vibrational modes can be incorporated into the gate formalism. Both effects can be described
using a master equation approach. For the spontaneous excited-state decay, this takes the form

∂ρ

∂t

∣∣∣
sp. dec

=
0

2
(2 σ̃−ρσ̃+ − {ρ, σ+σ−}) (F.1)

with σ+ = |e〉(〈g+1| + 〈g−1|) and σ− = (σ+)
†, 0 the excited-state decay rate, {a, b} = ab + ba

denoting the anti-commutator and σ̃± = σ± e±i η(a†+a). The phonon mode relaxation can be
modelled as [27]
∂ρ

∂t

∣∣∣
moderelax.

=
ν

Q
(nth + 1)

[
aρa†

−
1

2
{a†a, ρ}

]
+
ν

Q
nth

[
a† ρ a −

1

2
{aa†, ρ}

]
, (F.2)

with ν the mode frequency as defined in the main text, Q the corresponding mode quality
factor and nth the thermal phonon population. Both of those equations hold on the level of
the original Hamiltonian after the Schrieffer–Wolff transformation, i.e. in the same frame as
Hamiltonian (8).

The elimination of the excited-state manifold, i.e. calculating an effective Hamiltonian as
in (9a), (9b), corresponds to a unitary transformation T [54] such that H I

eff = PgT H T †Pg with
Pg the projector on the ground-state manifold and H(t) the original Hamiltonian as e.g. given
by (8). Up to second order the transformation is given by Cohen-Tannoudji et al [54] and James
and Jerke [55] (for the case of a Hamiltonian that is purely off-diagonal, e.g. only includes terms
that couple the ground to the excited state)

T = 1 + i S with S =

∫ t

H(t ′) dt ′ (F.3)
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with H(t ′) the ground–excited-state coupling Hamiltonian (H sp
k (8) for the single-path setup or

H dp
k for the double-path equivalent), and the effective Hamiltonian follows as

H I
eff(t)=

1
2 i Pg [S, H(t)] Pg. (F.4)

An arbitrary operator Ô in that effective frame can therefore be calculated by

Ô I
eff = Pg (Ô + i [S, Ô] −

1
2 [S, [S, Ô]])Pg, (F.5)

which for the specific case of the ladder operators σ− and a results in

σ eff,I
−

= −i σ− S, aeff,I = a −
1
2 [S, [S, â]] (F.6)

and σ eff,I
+ = (σ

eff,I
− )† and a†

eff,I = (aeff,I)
†. Therefore, the evolution in the first effective frame is

correctly described by replacing the operators appearing in the master equations (F.1) and (F.2)
with the effective ones as defined in (F.5) and (F.6). Additionally one has to account for the
ground-state dephasing by either a stochastic approach or a master equation approach in the
Markovian limit [9], unchanged by the unitary transformation for the first effective form, as T
is diagonal by construction within the ground-state manifold.

To give an explicit example, we will consider the double-path setup and assume equal
coupling configurations η1 = η2 = η, which results in (with σx , 1 defined within the ground-
state manifold, e.g. σx = |g+1〉〈g−1| + h.c.)

σ eff,I
−

= (1 + σx)

(
�1

2 ε1
e−i ε1 t +

�2

2(ε2 + ν)
e−i(ε2+ν) t + i a† η�2

2ε2
e−i ε2 t

)
, (F.7)

aeff,I = a −
1

2
(σx + 1)

η�2

2ε2

(
−i
�1

2ε1
ei1ε t

−
η�2

2ε2
a − i

�2

2(ε2 + ν)
eiνt

)
. (F.8)

Out of (F.7) it is obvious that the decay rate 0 appearing in (F.1) can be replaced by an effective
one of the order 0eff,I ∼ κ2

1 as expected by the fact that this corresponds to the probability of
populating the excited state.
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