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Abstract. We study the kinematics of nonlinear resonance broadening of
interacting Rossby waves as modelled by the Charney–Hasegawa–Mima
equation on a biperiodic domain. We focus on the set of wave modes which can
interact quasi-resonantly at a particular level of resonance broadening and aim
to characterize how the structure of this set changes as the level of resonance
broadening is varied. The commonly held view that resonance broadening can
be thought of as a thickening of the resonant manifold is misleading. We show
that in fact the set of modes corresponding to a single quasi-resonant triad has
a non-trivial structure and that its area in fact diverges for a finite degree of
broadening. We also study the connectivity of the network of modes which is
generated when quasi-resonant triads share common modes. This network has
been argued to form the backbone for energy transfer in Rossby wave turbulence.
We show that this network undergoes a percolation transition when the level
of resonance broadening exceeds a critical value. Below this critical value, the
largest connected component of the quasi-resonant network contains a negligible
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fraction of the total number of modes in the system whereas above this critical
value a finite fraction of the total number of modes in the system are contained in
the largest connected component. We argue that this percolation transition should
correspond to the transition to turbulence in the system.
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1. Introduction

The phenomenon of dispersive wave propagation is fundamental to our understanding of a wide
variety of spatially extended physical systems. In such systems, the frequency, ωk, of each wave
mode is a nonlinear function of its wave-vector, k [1]. Examples include gravity-capillary waves
on fluid interfaces [2], flexural waves in thin elastic plates [3], drift waves in strongly magnetized
plasmas [4] and Rossby waves in planetary oceans and atmospheres [5]. In this paper, we will
be interested in Rossby waves as modelled by the Charney–Hasegawa–Mima (CHM) equation
(see [4, 5] and the references therein) on the β-plane:

∂t(1ψ − Fψ)+β∂xψ + J [ψ,1ψ] = 0. (1)

This is the simplest two-dimensional model of the large-scale dynamics of a shallow layer of
fluid on the surface of a strongly rotating sphere. The surface of the sphere is approximated
locally by a plane, x ∈ R2, with x varying in the longitudinal (meridional) direction and the y
varying in the latitudinal (zonal) direction. The field ψ(x, t) is the geopotential height, β is the
Coriolis parameter measuring the variation of the Coriolis force with latitude, F is the inverse of
the square of the deformation radius and J [ f, g] denotes the Jacobian of two functions, f and g,
which is given by

J [ f, g] = ∂x f ∂yg − ∂y f ∂x g.

The CHM equation has two conserved quantities, the energy, E , and the potential enstrophy, Q:

E =

∫
[(∇ψ)2 + Fψ2] dx Q =

∫
[(∇2ψ)2 + F(∇ψ)2] dx.

It admits harmonic solutions,ψ(x, t)= Re[Ak exp(ik · x − iωkt)] with k ∈ R2. These solutions,
known as Rossby waves, have the anisotropic dispersion relation

ω(k)= −
βkx

k2 + F
. (2)

Since equation (1) is nonlinear, modes with different wave-vectors couple together and
exchange energy and potential enstrophy. If the nonlinearity is weak, one finds that this
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exchange is generally quite slow and occurs most efficiently between groups of modes which
are in resonance. For the CHM equation, such resonances involve three modes since the
nonlinearity is quadratic. Four modes would be involved in the case of systems with cubic
nonlinearity. Three wave-vectors (k1,k2,k3) satisfying the resonance conditions,{

k3 = k1 + k2,

ω(k3)−ω(k1)−ω(k2)= 0,
(3)

are referred to as a resonant triad. If one projects the spectral representation of the wave equation
onto a resonant triad, one obtains a set of ordinary differential equations for the coupled time
evolution of the amplitudes of the constituent modes. Such systems of equations appeared as
basic models of nonlinear mode coupling in a variety of physical systems including plasma
physics [6], nonlinear optics [7] and oceanic internal waves [8]. An advantage of such models
is that the equations of motion for a resonant triad are simple enough that explicit formulae can
be obtained for both amplitudes and phases of the resonant modes [9–13].

A disadvantage, however, is that such triads are generally not closed. Even if energy is
initially mostly restricted to a single triad, other resonant modes can be generated which are
not in the original triad. This process can repeat in a cascade-like fashion and result in the
excitation of a large number of modes. If a large number of degrees of freedom are excited, a
statistical description of energy and potential enstrophy transfer between modes is preferable.
Such a description is provided by the theory of wave turbulence [2, 14]. This theory provides
a kinetic description of ensembles of weakly interacting dispersive waves in which conserved
quantities are redistributed along the resonant manifolds. See [15, 16] for a review.

For an infinite system, in which wave modes are indexed by a continuous wave-vector,
the theory of weakly nonlinear wave turbulence becomes asymptotically exact in the weakly
nonlinear limit. For finite sized systems, in which the wave modes are indexed by a discrete
wave-vector, some subtleties arise. The simplest case, which is particularly relevant to numerical
studies of wave turbulence, is a biperiodic box. In this case, k, is restricted to a careful, detailed
and expert periodic lattice with a minimum spacing, 1k, between modes. Modulo this spacing,
the components of k must be integer valued. This is an issue because if the components of
k are integers, then the resonance conditions, equation (3), become a problem of diophantine
analysis. Such problems typically have far fewer solutions than their real-valued counterparts
and it is generally quite difficult to find them. A complete enumeration of all solutions for the
case of equation (2) with F = 0 was recently provided in [17]. This sparseness of solutions
means that, in discrete systems, resonant triads can exist in isolation or in finite groups of triads
known as resonant clusters. Two triads belong to the same cluster if they share at least one mode.
The dynamics of small clusters consisting of two triads has been studied in considerable detail
in [18]. Small clusters have attracted some interest in the context of atmospheric dynamics as
a possible explanation of the unusual periods of certain observed atmospheric oscillations [19].
Depending on the dispersion relation, there may or may not exist large clusters capable of
distributing energy over a large range of scales in a discrete system. For the dispersion relation of
Rossby waves on a sphere with infinite deformation radius, such a large exactly resonant cluster
has been shown to exist [20]. On the other hand, for the capillary wave dispersion relation there
are no exactly resonant triads at all [21]. For the dispersion relation (2) the question of existence
of large exactly resonant clusters is unknown. Numerical explorations indicate, however, that for
general values of F large exactly resonant clusters are rare. Thus, in discrete systems, it is often
necessary to rely on approximate resonances to account for energy transfer.
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Approximate resonance is possible due to the phenomenon known as nonlinear resonance
broadening. This is an effect whereby the frequency of a wave acquires a correction to its linear
value which depends on the amplitude (see [chapters 14 and 15 of 1]). Triads which are not
exactly in resonance can then interact at finite amplitude if the frequency mismatch is less
than this correction. Such triads are known as quasi-resonant triads and satisfy the broadened
resonance conditions{

k3 = k1 + k2,

|ω(k3)−ω(k1)−ω(k2)|6 δ,
(4)

where δ is a characteristic value for the resonance broadening taken to be positive. Although
equation (4) provides only a kinematic description of resonance broadening, the analogous
dynamical effect can be very strikingly visualized in linear stability analyses of weakly
nonlinear waves [22, 23] where it is found that the set of unstable perturbations lie in a
neighbourhood around the set of exactly resonant perturbations. This set of quasi-resonant
modes is often pictured as a ‘thickened’ or broadened version of the exactly resonant manifold.
For weakly nonlinear systems, this broadening is expected to be small since amplitudes are
small. It may nevertheless be large enough to overcome frequency mismatches which arise
when wave-vectors are restricted to a discrete grid and prevent discreteness from impeding the
cascade of energy. A striking example of this effect is observed for capillary wave turbulence
in a biperiodic box. For this system, since there are no exact resonances, as the nonlinearity is
decreased the resonance broadening eventually becomes smaller than the frequency mismatches
due to the grid. Direct numerical simulations illustrate that the cascade of energy to small scales
stops entirely when the level of nonlinearity gets sufficiently small leading to the phenomenon
of ‘frozen turbulence’ [24–26].

The interplay between exactly resonant and quasi-resonant clusters means that wave
turbulence in discrete systems is nowadays believed to exhibit several regimes. If the typical
resonance broadening, δ, is small enough that effectively only exactly resonant clusters can
interact, the dynamics are referred to as discrete wave turbulence [20, 27, 28]. If δ is larger
than the typical spacing between modes then effectively all triads can interact at least quasi-
resonantly and the classical statistical theory is expected to be valid. In between is a regime
consisting of a mixture of exactly resonant and quasi-resonant clusters which has been termed
mesoscopic wave turbulence [28, 29]. In this intermediate regime, it has been suggested [30, 31]
that forced systems could exhibit some aspects of self-organized criticality. This suggestion
is motivated by the idea that the forcing will cause the characteristic value of δ to increase
until it is large enough for a large quasi-resonant cluster to form which will then facilitate an
‘avalanche’ of energy transfer to the dissipation scale thereby reducing wave amplitudes and the
corresponding value of δ.

In this paper we develop a kinematic concept of criticality in quasi-resonant interactions
in the equation (1). Specifically, we address the question of how a large quasi-resonant cluster
emerges in the CHM equation as δ is increased. Inspired by the theory of percolation on random
networks [32], we take ‘large cluster’ to mean a cluster that consists of a finite fraction of all
modes in the system. We begin by analytically characterizing the shape of the quasi-resonant
set defined by equation (4) as a function of δ for a single triad in section 2. By expressing the
boundary of the quasi-resonant set in terms of the intersection of a pair of quadratic forms,
we find some surprises. In particular, we find that the area of the set diverges at a finite value
of δ illustrating that the common perception of the quasi-resonant set as a ‘thickened’ version
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of the exact resonant manifold is potentially quite misleading. In section 3 we numerically
construct the set of quasi-resonant clusters as a function of δ for various system sizes. We show
that a percolation transition occurs at a critical value, δ∗, of the resonance broadening as δ is
increased. At this critical value, the size of the largest cluster rapidly goes from containing
a negligible fraction of the modes in the system to containing a finite fraction of them. The
value of δ∗ decreases as the inverse cube of the system size, a fact which we trace to quasi-
resonant interactions between small scale meridional modes and large-scale zonal modes. We
finish with a short summary and discussion about what conclusions can be drawn about Rossby
wave turbulence from our results.

2. Characterization of the quasi-resonant set for a single triad

In what follows, we shall take k3 to be fixed with k2 = k3 − k1. The δ-detuned quasi-resonant
set of k3 is the set of modes, k1, which satisfy the inequality

|ω(k3)−ω(k1)−ω(k3 − k1)|6 δ. (5)

This section is devoted to determining the structure of this set as a function of the detuning, δ.
The boundaries of this set are given by the pair of curves

ω(k3)−ω(k1)−ω(k3 − k1)= δ, (6)

ω(k3)−ω(k1)−ω(k3 − k1)= −δ. (7)

We begin by finding these curves. Clearly it suffices to solve equation (6) since the second
boundary can be obtained from this by setting δ → −δ. To fix notation, let us write

k3 = (p, q), (8)

k1 = (r, s), (9)

k2
= p2 + q2. (10)

For the CHM dispersion relation, equation (2), the boundary of the quasi-resonant set,
equation (6), then corresponds to the curve in the (r, s) plane implicitly defined by

−
β p

k2 + F
+

β r

r 2 + s2 + F
+

β (p − r)

(p − r)2 + (q − s)2 + F
= δ. (11)

Let us shift the origin to the centre of symmetry of the curve by changing variables

x = r − p/2, y = s − q/2. (12)

We also set β = 1 by rescaling δ. We now introduce the variables,

u = x2, v = y2, w = xy. (13)

In terms of these variables, the boundary curve, equation (11), corresponds to the intersection
of two quadratic surfaces

a2(u + v)2 + a3u + a4v + a1 = a5w,

w2
= uv.

(14)

The coefficients are functions of p, q , F and δ. Technical details can be found in the appendix.
Notice that the surface w2

= uv is a cone, which is singular at the origin x = y = 0. We have
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performed a full analysis of the properties of the intersection curves for general values of
the parameters p, q , F and δ. This is a technical exercise which is not very illuminating.
In the interests of clarity, we will restrict ourselves here to discussing the following essential
qualitative features:

(i) If F > 0, the curve exists only for a finite range of δ. In the special case F = 0, the curve
exists for all values of δ and becomes localized in the neighbourhood of ±(p/2, q/2) as
δ → ±∞.

(ii) The curve becomes unbounded at the critical value of δ given by

δ = δ1 ≡ −
p

k2 + F
(15)

and the area of the quasi-resonant set consequently diverges. The common picture of the
quasi-resonant set as a ‘thickened’ version of the exact resonant manifold is therefore a
misconception. For all other values of δ, the curve (if it exists) is bounded. The special
case p → 0 corresponding to the case of k3 becoming zonal is discussed separately below.

(iii) There is a second critical value of δ given by

δ = δ2 =
3k2 p

(k2 + F)(k2 + 4F)
(16)

at which the curve either has a self-intersection or reduces to a single point depending on
the values of p, q and F . This is the only value of δ at which a self-intersection is possible.

Technical details can be found in the appendix. These features of the boundary of the quasi-
resonant set are illustrated graphically in figures 1 and 2 which show the shape of the curve for
different values of δ. Generic parameters, specified in the captions, have been chosen with no
particular symmetries. Hence the curves shown in these figures are representative of what is
found from the complete analysis of equation (11). Figure 1 shows an example in which no
self-intersection occurs at δ = δ2, while figure 2 shows an example in which a self-intersection
occurs. The hyperbolic curves identified at δ = δ1 are clearly visible in both cases.

A couple of special cases are worth noting:

(i) p = 1, q = 0 and F = 0.
This corresponds to a meridional mode. In this case, a5 = 0 so the intersection of quadratic
forms given by equation (14) lies entirely in the w = 0 plane and reduces to

−(1 + δ)(u + v)2 −
1
2(1 − δ)(u − v)+ 1

16(3 − δ)= 0. (17)

We can immediately identify the critical points. The curve self-intersects at δ = 3 and
diverges at δ = −1. The point δ = 1 is also noteworthy, being the complementary boundary
to the divergent case. For this value of δ the curve is a perfect circle.

(ii) p = 0, q = 1 and F = 0.
This corresponds to a zonal mode. In this case the curve simplifies to

δ (u + v)2 + 1
2 δ (u − v)+ 1

16 δ = −2w. (18)

The only special value of δ for this case is δ = 0. We then recover the exact resonant
manifold of a zonal mode, x y = 0. This consists of the two coordinate axes. It is now
less surprising that the boundary of the quasi-resonant set can diverge for finite δ once we
appreciate that the exact resonant manifold of a zonal mode is unbounded. The divergence
of the boundary of the quasi-resonant set of the non-zonal modes in some sense reflects the
presence of this structure in the dispersion relation.
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Figure 1. Solutions of equation (6) for different values of δ with no self-
intersection. Here k3 = (cos θ, sin θ) with θ = π/6 and F = 1/5. The values of
δ1 ≈ −0.721 688 and δ2 ≈ 1.202 81 are obtained from equations (15) and (16),
respectively.

Remark. Notice that the exactly resonant manifold in case (ii) consists of non-generic triads,
i.e. triads where one or more interaction coefficients are identically zero. A point on the x-axis
corresponds to a so-called catalytic interaction (|k1| = |k2|), for which the zonal mode k3 does
not change its energy but influences the energy exchange between the other two modes in the
triad. A point on the y-axis corresponds to a ‘spurious’ triad, formed by purely zonal modes,
which do not interact at all: the interaction coefficients are all identically zero because the three
modes are collinear. In our computations of the network of quasi-resonant modes (section 3),
non-generic triads are discarded from the start.

Having given a fairly complete qualitative description of the behaviour of the curves
which define the boundaries of the resonant sets as the detuning is varied, it now remains to
assemble these boundary curves for positive and negative values of δ to determine the interior
and exterior of the quasi-resonant set. This is again best accomplished by illustration. Figures 3
and 4 illustrate the quasi-resonant set for the two special cases discussed above for a range of
increasing values of δ. The shaded areas in these figures correspond to the quasi-resonant sets.
The exact resonant curve is also shown for reference. Figure 3 illustrates one of the key points
of this paper: the common picture of the quasi-resonant set as a thickened version of the exact
resonant manifold is appropriate only for small values of the broadening (e.g. figure 3(b)). One
might counter this with the observation that it is only in the weakly nonlinear regime that it
makes sense to be discussing quasi-resonant interactions in the first place and in this regime, the
broadening is necessarily small. Equation (15) tells us, however, that no matter how small the
broadening, there are always modes close to the zonal axis, whose quasi-resonant set diverges.
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Figure 2. Solutions of equation (6) for different values of δ which self-intersect
at δ = δ2. Here k3 = (cos θ, sin θ) with θ = 3π/7 and F = 1/5. The values of
δ1 ≈ −0.185 434 and δ2 ≈ 0.309 057 are obtained from equations (15) and (16),
respectively.

3. Structure of the network of quasi-resonant modes

In a turbulent system many modes are excited. The fact that a mode can be a member of more
than one quasi-resonant set leads to overlap between sets. This allows modes to join together
to form a network of quasi-resonant clusters analogous to the exactly resonant clusters which
have been extensively studied in the literature to date. In this section we study the structure of
this quasi-resonant network as the typical amount of broadening, δ, in the system is varied. We
consider a finite system of size 2π × 2π and truncate the wavenumber space such that there are
M modes in the kx and ky directions, M2 modes in all. The spacing between modes is 2π/M .
The quasi-resonant clusters were obtained by an exhaustive numerical search speeded up by
incorporating symmetries of the triads. As explained in the remark below equation (18), we
have eliminated from our list of triads the so-called non-generic triads, i.e. the triads for which
one or more interaction coefficients are zero. This includes triads formed out of collinear modes
and triads where any two wave-vectors have the same modulus.

We first measure the total number of clusters normalized by the maximum number of
possible isolated clusters which is approximately M4/3. This is shown as a function of δ for
several different system sizes, M , in figure 5. For each system size, as δ increases, the total
number of clusters first increases, then reaches a maximum at a particular value of δ, which we
shall denote by δ∗, and then decreases. The value, δ∗, at which the maximum occurs decreases
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Figure 3. Shaded regions correspond to the resonant set defined by equation (4)
with k3 = (1, 0), F = 0 and β = 1 for different values of δ. The exactly resonant
manifold is the red solid line. (a) δ = 0, (b) δ = 1/2, (c) δ = 1, (d) δ = 2, (e)
δ = 3 and (f) δ = 4.

as the system size, M , is increased. In order to understand these results one must realize that
for the CHM dispersion relation, the number of exactly resonant clusters which live on the grid
of discrete wavevectors is rather small with most discrete triads necessarily exhibiting a small
amount of detuning enforced by the geometry. The initial growth in the number of clusters is
explained by the addition of isolated triads to the list of quasi-resonant clusters as the broadening
grows large enough to incorporate the geometrical detuning generated by the grid. While one
would expect this rate of increase to slow down as clusters start joining to form larger clusters,
the attainment of a maximum and subsequent decrease in the total number of clusters becomes
much easier to understand when we measure the size of largest cluster, ρ, which is simply the
number of modes in the largest cluster normalized by the system size, M2. This is shown in
figure 6. We see that as δ approaches δ∗ the largest cluster quickly makes a transition from
including a negligible fraction of the total number of modes in the system to including almost
all of them. Thus the network of quasi-resonant modes undergoes a percolation transition at
δ = δ∗. While the results shown in figures 5 and 6 were obtained for β = F = 1, we checked
that the results are not very sensitive to this choice.

The decrease of the percolation threshold, δ∗, as the system size, M , increases is clearly
due to the fact that as M increases, the spacing between discrete modes decreases. The amount
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Figure 4. Shaded regions correspond to the resonant set defined by equation (4)
with k3 = (0, 1), F = 0 and β = 1 for different values of δ. The exactly
resonant manifold is the red solid line and corresponds to the two axes in this
case. As explained in the remark below equation (18), this exactly resonant
manifold consists of non-generic triads, i.e. triads where one or more interaction
coefficients are identically zero. The case F = 0 is chosen for simplicity only:
for F > 0, the resonant sets have the same qualitative shape as in the case F = 0.
(a) δ = 0, (b) δ = 1/10 and (c) δ = 1/2.
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Figure 5. The normalized total number of clusters, N , plotted as a function of δ
for different system sizes, M . Here, we have fixed F = β = 1.

of broadening required to overcome the geometrical detuning is therefore smaller and hence
clusters can form more easily. We would like to quantify this decrease. We have already learned
that the area of the quasi-resonant set of any particular mode, k, diverges at a finite value of
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Figure 6. The density of the largest cluster, ρ, as a function of resonance
broadening δ for different system sizes, M . Here we have fixed F = β = 1. The
percolation threshold, δ∗, decreases as a function of system size. The inset shows
the same data plotted as a function of δ M3. The solid line is a fit of equation (21)
to the data.

δ = ω(k) as indicated in equation (15). It seems plausible that as soon as the broadening is
sufficiently large to allow any mode in the system to have a divergent quasi-resonant set, then
the largest cluster must be of the size of the system. Thus one might estimate

δ∗ ≈ min
k

|ω(k)|. (19)

If this argument was correct, equation (2) tells us that for large systems we should see the
scaling, δ∗ ∼ M−2. A numerical measurement of the scaling of δ∗ scales with system size, M ,
for a range of values of F , is plotted in figure 7 and gives a different answer. For each value of
F , the curve converges to the straight line indicated by the scaling

δ∗ ∼ M−σ1 (20)

with exponent σ1 = 3.00 with a 95% confidence intervals of (2.97, 3.03), which was obtained
by bias-corrected bootstrapping. The connected component therefore forms much more easily
than the above naive argument above would suggest. The origin of this M−3 scaling can be
traced to the fact that zonal modes require very little detuning in order to interact with high k
almost meridional modes. Take F = 0 for simplicity, although the following argument works for
any F > 0. Let us consider the largest-scale zonal mode in the system, k = (0, 1).We recall that
the exactly resonant manifold xy = 0 of this zonal mode, figure 4(a), gives rise to non-generic
triads which do not interact efficiently and therefore must be discarded. So we ask what is the
minimum value of the detuning so that the quasiresonant set of the mode k = (0, 1) contains
some new modes. From figure 4(b) it is clear that the first new mode to join the quasi-resonant
set will be k1 = (M, 0), corresponding to x = M , y = −1/2. By substituting these values of
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x, y into equation (18), we obtain[(
M2 +

1

4

)2

+
1

2

(
M2

−
1

4

)
+

1

16

]
δ∗ = M.

For large M , this has solution δ∗ ∼ M−3, in agreement with figure 7 and the inset of figure 6.
This suggests that the percolation transition is driven by interactions between large-scale zonal
modes and small scale meridional modes. This is consistent with the known scale-non-locality
of wave turbulence in the CHM equation (see [33] and the references therein) and provides
further evidence, albeit circumstantial, that the percolation transition is associated with the onset
of turbulence in the CHM model.

In order to further illustrate this point, we can ask which modes have the greatest or least
tendency to become part of a quasi-resonant cluster. This is done in figure 8, where we have
coloured each mode according to the minimal amount of resonance broadening required for
this mode to join a cluster of any size. Blue modes become active very easily whereas red
modes are resilient to becoming part of any cluster. Rather than appearing homogeneous and
random, we see the appearance of definite structure. We see a circular region containing modes
with a strong propensity to join clusters including a narrow large-scale region of zonal modes
accumulating near the kx = 0 axis with very low interaction thresholds as expected from the
discussion above. We also remark upon the group of large-scale meridional scales reluctant to
form any quasi-resonant connections. The relative reluctance of large-scale meridional modes
to exchange energy has already been remarked upon in the literature and suggested as an
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Figure 8. Colour map in k-space showing the smallest value of broadening
required for each mode to become a member of a cluster of any size. The darker
regions are resilient to becoming members of clusters in the sense that large
values of broadening are required. Lighter regions join clusters easily.

explanation of the inherent anisotropy of Rossby wave turbulence. For example in [34], a wave-
turbulence boundary was computed by comparing the CHM dispersion relation to the inverse
of the eddy-turnover time. It is then argued that inside this region Rossby waves dominate, but
with a frequency incommensurate with that of the surrounding turbulence so that energy cannot
penetrate into this region. The boundary thus obtained seems similar in position and shape to the
dark region in figure 8. This anisotropic energy distribution at large scales has been documented
in numerical simulations of Rossby wave turbulence (see [35] and the references therein). It is
somewhat surprising to see it emerging again here from purely kinematic considerations.

Finally we might ask whether the density of the giant cluster illustrated in figure 6 shows
the generic profile for a second order phase transition,

ρ(δ)=

{
0 δ 6 δ∗

c (δ− δ∗)
z δ > δ∗,

(21)

and, if so, what is the exponent z. Notice that the system size M has been absorbed after
appropriate rescalings of δ and δ∗ by the factor M3. Equation (21) contains three adjustable
parameters, δ∗, c and z, which makes it difficult to unambiguously determine the exponent z. As
pointed out in [36], if equation (21) holds, then

ρ

(
dρ

dδ

)−1

=
1

z
(δ− δ∗) (22)

for δ > δ∗. Plotting this quantity against δ produces an easier fitting problem because the
amplitude c cancels out, the fitting becomes linear and the value of δ∗ corresponds to the point at
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Figure 9. Fitting the data in figure 6 to a standard phase transition profile. The
left-hand side (LHS) of equation (21) is plotted as a function of δ. The fit (solid
line) is taken over the range [δ∗ : 2] with δ∗ = 0.815. It has slope 2.03. which
suggests a value of z ≈

1
2 .

which the fitted line crosses zero. The values of dρ
dδ would ideally be obtained independently from

the values for ρ. In our case, this was not possible so we obtained them by locally interpolating
the measured values of ρ using Mathematica and differentiating the result. The outcome of
this analysis is shown in figure 9. We can see that a case can be made for a linear fit in the
neighbourhood of δ∗. Taking δ∗ = 0.815 (the point at which the straight line fit obviously starts
to fail), and fitting the data over the range [δ∗ : 2] gives the fit shown in the figure. The slope
gives a value of z ≈

1
2 . This is standard Landau value for the mean field theory of a second

order phase transition of a scalar field. These results, while suggestive, are far from definitive.
A more detailed numerical study in the vicinity of δ∗ will be required before we can start putting
estimates of uncertainty on these values. For the purposes of comparison, equation (21) with the
best fit values of the parameters, is plotted with the original data in the inset of figure 6 (solid
line).

4. Conclusions and outlook

To conclude, we have presented a kinematic analysis of the properties of quasi-resonant triads
in the CHM equation. We described the analytic form of the quasi-resonant set defined by
the quasi-resonance conditions, equation (4), as a function of the resonance broadening, δ. We
found that they have non-trivial geometric shape and are not well described as simply thickened
versions of the exact resonant manifold as is commonly assumed. In particular, we found that
the quasi-resonant set becomes unbounded above a critical value of δ and that this can occur
for arbitrarily small values of δ as we consider modes approaching the zonal axis. We then
conducted an in-depth numerical study of the structure of quasi-resonant clusters as a function

New Journal of Physics 15 (2013) 083011 (http://www.njp.org/)

http://www.njp.org/


15

of δ and identified a percolation transition as δ is increased. At the transition, a large cluster is
formed which contains a finite fraction of all the modes in the system. For a system containing
M2 modes, the value of the percolation threshold decreases as M−3. This scaling results from the
ease with which large-scale zonal modes interact with small scale meridional modes, a reflection
of the non-locality of Rossby wave turbulence.

We speculate that the percolation transition corresponds dynamically to the transition
from mesoscopic to classical wave turbulence. The fact that a percolation transition exists is
consistent with earlier work on capillary waves [26]. In fact, we believe that this transition
is not a special feature of the CHM dispersion relation and is generic [37]. Furthermore our
results provide circumstantial support for the sandpile picture of mesoscopic wave turbulence
suggested in [30] since a small change in resonance broadening in the vicinity of δ∗ can
trigger a transition from a state which cannot support an energy cascade to one which can.
In order to better understand these issues, we believe that it is important to move beyond the
kinematic picture of resonance broadening and attempt to devise methods of studying these
effects dynamically.
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Appendix. Characterization of the quasi-resonant set for a single triad

This appendix provides additional technical details related to the properties of the curve (11)
describing the boundary of the resonant set. After shifting the origin to the centre of symmetry
of the curve using the variable x and y defined by (12) and rescaling δ to remove β, the curve
we wish to study is

−
p

k2 + F
+

x + p/2

(x + p/2)2 + (y + q/2)2 + F
−

x − p/2

(x − p/2)2 + (y − q/2)2 + F
= δ. (A.1)

Gathering these terms together with a common denominator we obtain the quartic curve

c(x, y)= a1 + a2(x
2 + y2)2 + a3x2 + a4 y2

− a5xy = 0, (A.2)

where the coefficients are given by

a1 =
1

16 (k
2 + 4F)[3k2 p − (k2 + F)(k2 + 4F) δ],

a2 = − p − (k2 + F) δ,

a3 = −
1
2 [p(p2 + 3q2 + 6F)− (k2 + F)(p2

− q2
− 4F) δ],

a4 =
1
2 [p(p2 + 3q2

− 2F)− (k2 + F)(p2
− q2 + 4F) δ],

a5 = 2q[q2 + F − p(k2 + F) δ].

Upon introduction of the variables u = x2, v = y2 and w = xy, it becomes clear that
equation (A.1) corresponds to the intersection of the two quadratic surfaces given by

New Journal of Physics 15 (2013) 083011 (http://www.njp.org/)

http://www.njp.org/


16

equations (14) in the main text. We have performed a full analysis of the properties of the
intersection of these curves for general values of the parameters p, q, F and δ but, as mentioned
in the main text, this exercise is not very illuminating. The following qualitative features give a
good picture of the general behaviour of these curves:

(i) The curve typically exists only for a finite range of δ.
This is evident from studying equation (A.1) as δ → ±∞. The LHS can only diverge if
one of the denominators diverges. This is impossible if F > 0. Hence if F > 0, solutions
to equation (A.1) must cease to exist if δ gets too large by absolute value. In the
exceptional case F = 0, solutions indeed exist for all values of δ and become localized
in the neighbourhood of ±(p/2, q/2) as δ → ±∞.

(ii) The curve is bounded except at single critical value of δ.
Examining equation (14), it is clear that since u and v are both positive, it is generally
not possible to balance the quadratic terms if u2 + v2

→ ∞. Hence the curve, if it exists is
bounded. The single exception to this occurs when the coefficient of the quadratic terms
vanishes. The curve may therefore diverge at the single critical value of detuning given by
equation (15) in the main text

δ = δ1 ≡ −
p

k2 + F
.

Note that this corresponds to δ = ω(k3). At δ = δ1, some algebra shows that the curve is
given by the hyperbola

x2 + 2
q

p
xy − y2

=
1
4 (k

2 + F). (A.3)

(iii) The curve may self-intersect only at a single critical value δ.
From equation (14), self-intersection is only possible if the curve passes through (0, 0) in
the (u, v) plane. This can only happen if the coefficient a1 = 0. Thus we identify the second
critical value of δ given by equation (16) of the main text:

δ = δ2 =
3k2 p

(k2 + F)(k2 + 4F)
.

Note that a1 = 0 does not necessarily mean the curve self-intersects. It is possible that at
δ = δ2, the curve reduces to a single point. To probe what happens at δ = δ2, we consider
the surface z = c(x, y) defined by equation (A.2) when δ = δ2 in the neighbourhood of the
origin. Calculation of the partial derivatives indicate that this surface has a critical point at
the origin. After some tedious algebra, we find that the determinant of the matrix of second
derivatives is

1= −
4(k2 + F)2(k4 + 4(q2

− 3p2)F)

k2 + 4F
.

If1> 0 then the critical point at (0, 0) is a maximum or a minimum. The curve c(x, y)= 0
is then an isolated point. On the other hand, if 1< 0 the critical point is a saddle and the
curve c(x, y)= 0 has a self-intersection at (0, 0). The condition for self-intersection is
therefore

k4 + 4(q2
− 3p2)F > 0. (A.4)

We note that for F = 0 we always have a self-intersection.
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These qualitative features of the boundary of the quasi-resonant set are illustrated
graphically in figures 1 and 2 in the main text. These figures are illustrative of the typical
behaviour for general values of p, q and F .
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