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Abstract. The role of laser frequency chirps in the laser wakefield accelerator
is examined. We show that in the linear regime, the evolution of the laser pulse
length is affected by the frequency chirp, and that positive (negative) chirp
compresses (stretches) the laser pulse, thereby increasing (decreasing) the peak
vector potential and wakefield amplitude. In the blowout regime, the frequency
chirp can be used to fine-tune the localized etching rates at the front of the laser.
In our simulations, chirped laser pulses can lead to 15% higher self-trapped
electrons and 10% higher peak energies as compared to the transform-limited
pulse. Chirps may be used to control the phase velocity of the wake and to relax
the self-guiding conditions at the front of the laser. Our predictions are confirmed
by multi-dimensional particle-in-cell simulations with OSIRIS.

Contents

1. Introduction 2
2. Longitudinal bunching 3
3. Wakefield excitation in the linear regime 5
4. Blowout regime 8
5. Conclusions 12
Acknowledgments 12
References 13

3 Author to whom any correspondence should be addressed.

New Journal of Physics 14 (2012) 023057
1367-2630/12/023057+13$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:vishwa.bandhu@ist.utl.pt
http://www.njp.org/


2

1. Introduction

One of the main goals of plasma-based accelerators is to deliver multi-GeV electrons [1–4]
at distances that can be orders of magnitude shorter than those with standard acceleration
techniques. Recent particle-in-cell (PIC) simulations in Lorentz-boosted frames [4, 5] predict
electron bunch energies beyond 10 GeV in meter-scale plasmas using next-generation 10
petawatt laser systems. In fact, accelerating wakefields of nearly 50 GeV m−1 have been
observed experimentally in plasmas [1], which are almost 1000 times higher than the
fields observed in conventional accelerators. In laser or plasma wakefield acceleration
(LWFA/PWFA), a short laser pulse or ultra-relativistic electron beam propagates in an
underdense plasma, and excites plasma waves [6, 7] that can trap and accelerate electrons
to ultra-relativistic energies. This paper examines the role of the frequency chirped laser in
LWFA, where the laser pushes plasma electrons away from the propagation axis through
the ponderomotive force. This creates a positive space charge, as the ions remain essentially
immobile on the time scales associated with the plasma period. Depending upon the laser
and plasma parameters, linear or nonlinear plasma waves are excited. If the laser intensity is
sufficiently high, the radial ponderomotive force can lead to the cavitation of all the plasma
electrons from the region where the laser propagates, creating a spherical plasma wave (bubble
or blowout regime [8, 9]).

The potential of the blowout regime for several applications has been confirmed in
numerous experiments. The large accelerating fields associated with the blowout, which can trap
and accelerate plasma electrons (self-injection), lead to the generation of quasi-monoenergetic
multi-GeV electrons [2, 3, 10–12]. In addition, the linear transverse focusing forces associated
with the bubble [9] are ideal for the generation of x-ray radiation, as the accelerated electron
beams perform betatron oscillations in the ion channel [13–16]. The beams obtained from
LWFA also have potential to drive a free electron laser [17] after solving their present beam
quality issues. For these applications it is crucial to control and manipulate the injection
process that determines the charge, energy, energy spread and strength parameter for x-ray
radiation [18]. Although several techniques have been proposed for this purpose, including the
use of short plasma down-ramps [19, 20], the use of transverse external magnetic fields [21], and
through the beating structures associated with counter or cross-propagating lasers [2, 22, 23] and
through ionization mechanisms [24], this paper explores the possibility of using chirped lasers
to control self-injection.

Previous investigations of the role of the laser envelope asymmetries in wakefield excitation
have already shown that a sharp laser intensity rise can drive stronger wakefields [25–27]. In
addition, theoretical and simulation works [28, 29] on the impact of frequency chirps on the long
pulse instabilities have shown that the growth of Raman forward scattering-like instabilities
can be controlled by acting upon the laser frequency chirps. The role of frequency chirps in
the laser intensity profile has been explored experimentally [30] in the self-modulated LWFA,
showing significant enhancement of the total charge for sharp rising asymmetric pulses with
positive chirps, where the frequency is lower at the front of the laser pulse. In this case, the
ponderomotive force is also stronger at the front of the laser, which leads to stronger wakefields.
Supported by analytical results, these experiments then emphasized the importance of the
asymmetry of the laser pulse for the wake excitation and particle acceleration.

In this paper, we investigate, through numerical simulations with two-dimensional (2D)
and 3D PIC simulations in OSIRIS [31], the role of the frequency chirps in the blowout regime
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to show that the chirp can be used to adjust the self-injection rates, charge and the output energy
of LWFA. For the same plasma density, even though the peak energy of the accelerated electrons
is at the same level for the chirped and un-chirped laser pulses, the total injected charge can be
increased by 15%, using a chirped pulse laser for these parameters. Positive chirps increase
(decrease) the self-injected charge (maximum energy) by up to 10% in comparison to negative
chirps in state-of-the-art conditions. Moreover, frequency chirps also change the laser group
velocity in the plasma. These results agree with [30], although they are due to a different
physical mechanism.

In section 2, an analytical model for the longitudinal bunching of a laser pulse with a
frequency chirp is developed in the linear regime. Our model shows that laser with positive
(negative) frequency chirp will compress (stretch) throughout the propagation. Accordingly, in
the linear regime positive (negative) chirp leads to higher (lower) peak laser intensities. Good
agreement between the analytical model and the simulations is observed in the linear regime.
In section 3, the evolution of the linear wake is investigated for different frequency chirped
driving laser pulses. Although initially the wakefield amplitude is nearly independent of the
sign of the frequency chirp, at later stages of the laser propagation, the wakefield amplitude
increases (decreases) for positively (negatively) chirped pulse. In the blowout regime, which
cannot be examined by the linear model, the peak intensity increases for positive as well as
negative chirps; however, the positively chirped pulse evolves faster than the negatively chirped
pulse. In section 4, the effect of frequency chirp on self-injection in the blowout regime is
analyzed. Finally, the conclusions are stated in section 5.

2. Longitudinal bunching

The dominant contributions to the plasma refractive index, associated with the propagation
of short laser pulses, come from the ponderomotive and effective mass nonlinearities. The
nonlinear coupling between the laser pulse and the plasma dynamics can lead to several
processes, such as laser self-steepening [27], self-compression [32], self-focusing [33] and
self-modulation ([7, 33] and references therein). For our work, however, the most relevant
mechanisms are associated with the self-compression, by which the laser pulse length changes
during its propagation in the plasma.

In order to examine the self-compression of a chirped laser pulse, we will use similar
physical arguments to those presented in [33]. Our analysis is valid as long as the envelope
approximation can be employed, i.e. as long as k0L0 � 1, where k0 is the central laser wave
number and L0 is the laser pulse length. This assumption is well verified in the LWFA, where
the refractive index for a linearly polarized laser pulse, in the weakly relativistic regime,
becomes [33]

η =

[
1 −

ω2
p

2ω2
0

{
1 +

δn

n0
−

〈a2
〉

2
− 2

δω

ω0

}]
, (1)

where ωp =
√

n0e2/(mε0) is the plasma frequency, n0 is the background plasma density, ω0

is the laser frequency, a = eA/(mec2) is the normalized vector potential, me is the electron
mass and c is the speed of light, and where δn = n − n0 and δω = ω − ω0 are perturbations
to the plasma density and laser central frequency ω0. In addition, 〈a2

〉 is the average of
a2 over one laser period. According to equation (1), the laser group velocity of the laser
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vg = (c2/vφ)/[1 + ω2
p(γ0 − 1)/(2ω2

0γ0(γ0 + 1))] [33, 34], where vφ = cη−1 is the phase velocity

and γ0 =
√

(1 + 〈a2〉/2), can be written as [33]

vg = c

[
1 −

ω2
p

2ω2
0

{
1 +

δn

n0
−

〈a2
〉

4
− 2

δω

ω0

}]
. (2)

In equations (1) and (2), the second term within the braces ({}) is related to the plasma density
perturbations δn, the next term represents the relativistic effects associated with the quiver
motion of the electrons in the laser field, and the last term is due to the laser frequency
modulations. The evolution of the laser pulse length is given by [33]

1

L

∂L

∂t
= −

1

c

∂vg

∂ξ
, (3)

where L is the laser length, t is time, and ξ = t − z/c is the distance in the co-moving frame.
Using equation (2), equation (3) can be rewritten as

∂ log L

∂t
=

ω2
p

2ω2
0

∂

∂ξ

[
δn

n0
−

〈a2
〉

4
− 2

δω

ω0

]
. (4)

To examine the relative contributions of these terms, we can consider, in the linear
regime, the laser pulse profile 〈a2

〉 ∼ a2
0 sin2(cπξ/L). For this profile, the density modulation

in the wake varies as δn/n0 ∼ πa2
0 sin(ωpξ)/8 [7] and the maximum contribution from the

first two terms on the right-hand side of equation (4) is ∼ ωpa2
0/2. In the regime where

δω/ω0 � ωpa2
0/4, the effect of ponderomotive and relativistic nonlinearities can be neglected

with respect to the term for the spectrum change. In an underdense plasma (ω2
p/ω

2
0 � 1), for

a Gaussian chirped laser pulse with electric field EE = EE0 exp (−c2ξ 2/L2) exp(−iω0(1 + βξ)ξ)

and chirp coefficient β, the average wave number 〈k〉 =
∫

∞

−∞
kW(d)k/(

∫
∞

−∞
Wdk) [35, 36],

where W =
∫

ds EE(ξ − s/2) · EE∗(ξ + s/2) exp(iks) is the Wigner transform, can be written as
〈k〉 = k0(1 + 2βξ), with k0 ≈ ω0 and δω/ω0 ≈ δ〈k〉/k0 = 2βξ . Therefore, the first and second
terms on the right-hand side of equation (4) can be neglected when 2βξ ∼ 2βL � ωpa2

0/L . In
the remainder of this paper, β � ωpa2

0/2 will be assumed.
To evaluate further equation (4), we note that in the absence of any nonlinear

plasma effects, the frequency chirp coefficient of a Gaussian chirped pulse varies as
β = [2c2 ln 2/(L2ω0)]

√
(L/L in)2 − 1) [37], where L in is the pulse length of the transform-

limited laser pulse. As the laser pulse disperses with time, the rate of frequency variation
inside the pulse changes, and the frequency chirp coefficient varies as β = β0(L0/L)2√

(L2 − L2
in)/(L2

0 − L2
in), where L0 and β0 are the initial pulse length and the frequency chirp

coefficient respectively. For L , L0 � L in, the frequency chirp coefficient varies as β = β0L0/L .
Equation (4) then yields

L = L0

(1 −
L2

in

L2
0

)(
1 − 2β0t

ω2
p

ω2
0

1

1 − L2
in/L2

0

)2

+
L2

in

L2
0

1/2

, (5)

where L in/L0 =

√
1/[1 + (L2

0ω0β0)2/(2c2 ln 2)2]. For the typical parameters of interest for

LWFA (L0 ∼ λp/2, ω0 = 20ωp; λp = 2πc/ωp is the plasma wavelength), and β0/ωp ∼O(10−2),
(L in/L0)

2
∼ 0.37, in this case the expression for the pulse length (equation (5)) simplifies to
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L = L0(1 − 2β0tω2
p/ω

2
0), which predicts that the positive (negative) frequency chirp compresses

(stretches) the laser pulse as it propagates through the plasma. This can be interpreted by
investigating the dynamics of different laser photons. For β0 >0 (β0 < 0), the photons located
at the front move slower (faster) than the photons located at the back (front) of the laser. Thus,
the distance between the laser photons decreases (increases) as the laser propagates, and laser
length thus decreases (increases).

In order to investigate further the role of the frequency chirp in the laser pulse length
evolution, 1D OSIRIS PIC simulations [31] were performed. The simulation uses a moving
window that travels at c, with length 30 c/ωp, and is divided into 3000 cells, with 500 particles
per cell. The length of the plasma is 1000 c/ωp, and the ions form an immobile neutralizing fluid
background. In this section, the role of the chirp is identified by keeping the laser length, a0, and
ω0/ωp constant regardless of the amount of chirp used. In section 4, studies are shown, where
we change the pulse length and the vector potential of the laser consistently with its chirp.

The prediction for longitudinal compression (equation (5)) is in good agreement with the
simulations, as illustrated in figure 1. Figure 1(a) uses a laser with a0 = 0.05, ω0/ωp = 20
and L0 = 3 c/ωp, thus exciting linear plasma waves. The laser pulse compresses (stretches)
linearly with time for positive (negative) frequency chirp. We note that in these conditions,
and in comparison to the scenarios where β0 6= 0, the pulse length remains constant during the
laser propagation for β0 = 0.0ωp (if dispersion effects are neglected). This thus indicates that
the ponderomotive and relativistic nonlinearities cancel, confirming that the pulse compression
is essentially determined by the initial frequency chirp. Figures 1(c)–(e) show the Wigner
transform [35, 36], and average wavenumber distribution (〈k〉) within a chirped laser pulse with
β0 = 0.05 ωp at ωp(t) = 0, ωpt = 500 and ωpt = 1000. The variation in average wavenumber is
linear within the pulse until ωpt ∼ 500, and varies as 〈k〉 = k0(1 + 2βξ), where β = β0 = 0.05ωp

at ωpt = 0 and β ≈ β0(L/L0) = 0.057ωp at ωpt = 500. For time ωpt > 1000, 〈k〉 does not
change linearly within the laser pulse. The laser evolution cannot be predicted by the theory
discussed here for ωpt > 1000, since a nonlinear mechanism such as self-steepening [27] starts
to be relevant.

Figure 1(b) shows the evolution of the laser length using a0 = 2.0 for various frequency
chirps ranging from β0 = −0.05 ωp to 0.05 ωp. In this particular case, pulse compression is
observed for the range of frequency chirps β0 >−0.05 ωp; however, the compression was
relatively stronger for positively chirped pulses. At higher intensities (a0 ∼ 1), in conditions
where our analytical model is not valid, the two nonlinearities (ponderomotive and relativistic
mass) do not cancel each other entirely, resulting in the net compression of the pulse [27], and
including the contribution of frequency chirp will produce the effects as shown in figure 1(b).

In this section, we have shown that the initial frequency chirp can compress or stretch the
laser pulse depending upon the sign of β0. In the next section, we examine the effect of frequency
chirp on the wakefield excitation in the linear regime due to the longitudinal bunching.

3. Wakefield excitation in the linear regime

The plasma density modulations driven by a linearly polarized laser with normalized vector
potential aL = a0 × Z(z, t) × cos[ω0(1 + βξ)ξ ] are given by [7, 38](

∂2

∂t2
+ ω2

p

)
ñ

n0
=

c2

2

∂2

∂ξ 2
|a2

L|, (6)
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Figure 1. Effect of the initial laser frequency chirp on longitudinal bunching:
(a) the variation of L (normalized by L0) with time t (normalized by ω−1

p ) in
the linear regime (a0 = 0.05, ω0/ωp = 20, L0 = 3c/ωp), and (b) the variation
of L with time in the nonlinear regime (a0 = 2.0, ω0/ωp = 20, L0 = 5c/ωp)
for various β0, ranging from −0.01 ωp to 0.01ωp. Solid lines in (a) show the
theoretical prediction for the pulse length evolution with time for different
chirps. Panels (c)–(e) plot the Wigner transform of the positively chirped laser
(β0 = 0.05 ωp) used in the linear regime (a), and the solid lines represent the 〈k〉

distribution within the pulse at ωpt = 0, 500 and 1000, respectively.

where a0 is the initial peak normalized vector potential, Z(z, t) is the longitudinal profile of
aL, ñ is the density modulation in the wake and n0 is the initial homogeneous plasma density.
Considering that the laser electric field in 1D is given by EE = x̂ E0 exp[−ξ 2/(2L(t)2)] cos(ωξ),
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ñ

x
a

m
[n
0
]

ñ
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Figure 2. Evolution of peak plasma density (nmax) as a function of propagation
distance for different chirps and using a0 = 0.05, ω0/ωp = 20 and L0 = 3 c/ωp.
(a) The simulation values of ñmax at different times for chirp coefficients
β = 0.0 ωp are given by (◦), −0.05 ωp by (+) and 0.05 ωp (�). (b) A comparison
of theory (dashed line) and the simulation (solid line) by plotting the ñmax

normalized by n0 with the frequency chirp coefficient β0 (normalized by ωp)
at an early stage, neglecting the effect of pump evolution. Solid lines in (a) show
the theoretical predictions.

then Z is given as

Z =
1

1 + βξ

√
L0

L(t)
exp[−ξ 2/(2L(t)2)], (7)

where L(t) is given by equation (5). Further assuming that βL/c � 1, the 1D solution for
equation (6) is [7, 38]

ñ =
1

2ωp

∫ ξ

−∞

sin{ωp(ξ − ξ ′)}

[
∂2

∂ξ 2
|a2

|

]
ξ=ξ ′

dξ ′. (8)

In order to directly compare the theoretical predictions of the plasma density modulations
with the simulations, equation (8) was solved using the same laser pulse profile as that used
in the simulations. In the simulations, we have used a Gaussian-like fifth-order symmetric
polynomial profile defined as

Z = 10 f (z)3
− 15 f (z)4 + 6 f (z)5, (9)

where, for −L0 < z < 0, f (z) = (L0 + z)/L0, and for 0 < z < L0, f (z) = (L0 − z)/L0. We
have used the simulation parameters from section 2. Figure 2(b) shows the initial wakefield
amplitude for different frequency chirps. For the typical values of βL0 used in our simulations,
no significant variation in the wake, at initial time, is observed with different βs; for example,
for β0 = ±0.05 ωp, the wakefield amplitude changes by 1% of the wake amplitude driven
by an un-chirped laser pulse. This is because, if we ignore the pulse length variation, the
normalized peak laser vector potential is aL/aβ=0 = 1/(1 − β2

0 L2
0/c2) ' 1, aβ=0 being the peak
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laser vector potential for β0 = 0, no significant change in the wakefield with frequency chirp
can be expected. Figure 2(a) demonstrates, however, that the frequency chirp (β0 > 0.05 ωp)
can significantly change the amplitude of the plasma wave during laser propagation. Since the
laser pulse compresses or stretches according to the sign of β0 (cf section 2), with increasing or
decreasing laser vector potential, the amplitude of the plasma density modulation also changes
accordingly. The evolution of the wakefield amplitude, plotted in figure 2(b), shows that this
amplitude increases (decreases) for a positively (negatively) chirped pulse, as the laser peak
vector potential increases (decreases). Inserting equation (5) into equation (10), the vector
potential can be approximated as

a2
≈ a2

0(1 + 2β0tω2
p/ω

2
0) exp[−ξ 2/L2

0]/(1 + β0ξ)2, (10)

which, using in equation (8), gives ñ ≈ (1 + 2β0tω2
p/ω

2
0)ñ0, where ñ0 is the initial wake

amplitude. Thus, the density perturbation depends upon the chirp as

ñ/ñ0 − 1 ≈ 2β0ω
2
p/ω

2
0t. (11)

The theoretical estimates for the density modulations match with the simulation results as shown
in figure 2.

In a transform-limited 20 fs Ti:sapphire laser pulse, the maximum chirp coefficient that
can be introduced is around β0 ≈ 1.0 × 1012 s−2

∼ 0.01 ωp by stretching the pulse to ∼ 28.3 fs,
for ω0 = 20 ωp. In such scenarios, the wake amplitude changes by only 0.5% at ωpt = 1000.
Therefore, pulse compression, and hence the wakefield enhancement due to frequency chirp,
play a significant role in LWFA for higher values of frequency chirp coefficients β0 > 0.05 ωp,
which can be achieved by stretching a ∼ 12 fs transform-limited laser pulse to a chirped ∼ 18 fs
laser pulse.

In the blowout regime, where the plasma dynamics is highly nonlinear, effects like self
steepening and localized laser absorption also play a significant role in driving a nonlinear
wake, and in self-injection. In such scenarios, frequency chirp may influence the laser etching
rates, which can further affect the injection rates and beam characteristics. This will be analyzed
in the following section.

4. Blowout regime

In order to investigate the role of laser frequency chirp in the blowout regime, a set of 3D
PIC simulations were performed. For this purpose we consider a linearly polarized 350 mJ
transform-limited laser with pulse duration 20 fs (full-width at half-maximum (FWHM) of the
field) and 6 µm spot size, with the central laser wavelength λ0 = 800 nm. In the simulation,
these parameters are translated into a transform-limited pulse with a0 = 5.0, central frequency
ω0 = 8 ωp, pulse length L0 = 5 c/ωp, transverse spot size W0 = 5 c/ωp and Gaussian transverse
field profile given as exp(−r 2/W 2

0 ), where r is the transverse coordinate, for a homogeneous
plasma with plasma density n0 = 1.75 × 1019 cm−3. As the pulse is stretched, the maximum
chirp coefficient βmax = c2 ln 2/L2

in can be obtained at L = 1.414 L in [37]. This corresponds
to a chirp coefficient of β0 = 0.0055 ωp; the peak normalized vector potential is reduced to
a0 = 4.23. Adding this frequency chirp stretches the pulse to ∼ 30 fs. To keep the pulse length
and plasma wavelength ratio equivalent to the transform-limited laser case, i.e. L = 5 c/ωp,
the electron density is lowered to n0 = 8.77 × 1018 cm−3, which translates into ω0 = 11.3 ωp

and W0 = 3.54 c/ωp for a chirped pulse. For a negatively chirped pulse with β = −0.0055 ωp,
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Figure 3. Time evolution of (a) peak energy, (b) total charge injected inside the
first bubble and (c) bubble radius (Rb) in four scenarios (cases). Case (i): (solid
line (black)) transform-limited pulse with a0 = 5.0, ω0 = 8 ωp, W0 = 5 c/ωp and
L = 5 c/ωp. Case (ii): (dash-dot line (green)) the same transform-limited pulse
with a0 = 5.0, ω0 = 11.3 ωp, W0 = 3.54 c/ωp and L = 3.54 c/ωp. Case (iii):
(dashed line (red)) positively chirped laser pulse with β = 0.0055ωp, a0 = 4.23,
ω0 = 11.3 ωp, W0 = 3.54 c/ωp and L = 5 c/ωp. Case (iv) (dotted line (blue))
negatively chirped pulse with β = −0.0055ωp, a0 = 5.0, ω0 = 11.3 ωp, W0 =

3.54 c/ωp and L = 5 c/ωp. Dark dots in figure 3(a) represent the time at which
peak energy as well as peak efficiency is achieved in LWFA. The efficiencies for
cases (i), (iii) and (iv) are the same, greater than the efficiency for case (ii) by
∼ 15%.

the rest of the laser simulation parameters are equivalent to the positively chirped pulse (β =

0.0055 ωp) case. These chirps can be routinely introduced/controlled in the experiments with
lasers [40]. In order to compare directly the effect of chirp on the LWFA, a simulation using the
transform-limited pulse propagating in a plasma with density n0 = 8.77 × 1018 cm−3 (the same
as used with the chirped pulses) was also performed, using as simulation parameters a0 = 5,
L0 = 3.54 c/ωp, W0 = 3.54 c/ωp and ω0 = 11.3 ωp. The laser is initialized in a simulation
window that moves with the speed of light, and with dimensions 30 c/ωp × 36 c/ωp × 36 c/ωp,
divided into 1800 × 180 × 180 cells. The 3D simulations used two particles per cell.

Figure 3 shows the variation of electron beam energy and total charge in the first bucket
due to the introduction of frequency chirp in a transform-limited pulse in the 3D simulations.
We discuss here results for four cases, (i) a transform-limited pulse with a0 = 5, ω0 = 8 ωp,
L0 = 5 c/ωp and W0 = 5 c/ωp; (ii) the same transform-limited pulse (but with plasma density
the same as used with the chirped pulse) with a0 = 5, ω0 = 11.3 ωp, L0 = 3.54 c/ωp and
W0 = 3.54 c/ωp; (iii) a positively chirped pulse with β = 0.0055 ωp, a0 = 4.23, ω0 = 11.3 ωp,
L0 = 5 c/ωp and W0 = 3.54 c/ωp; and (iv) a negatively chirped pulse with β = −0.0055 ωp,
a0 = 4.23, ω0 = 11.3 ωp, L0 = 5 c/ωp and W0 = 3.54 c/ωp. Two scenarios are identified. Firstly,
when the ratio of pulse duration to plasma wavelength is kept constant by changing the plasma
density (cases (i), (iii) and (iv)); and secondly, when plasma density is kept the same (cases (ii),
(iii) and (iv)). In the first scenario, for the chirped pulse (cases (iii) and (iv)) the peak energy
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of the accelerated electrons reaches 1.5 times the peak energy that can be reached using the
transform-limited pulse (case (i)) but on longer time scales (figure 3(a)). The higher peak energy
for a chirped pulse is obtained at the expense of lower total charge (figure 3(b)) as compared to
the transform-limited (un-chirped) laser pulse. The main reason behind these differences is the
higher ω0/ωp, i.e. lower plasma density in the case of the chirped pulse. Since the laser group
velocity (vg), and hence the wake phase velocity vφ, which play a key role in the self-trapping
mechanisms in the LWFA [21, 24], is lower for larger densities, the trapping thresholds [7] in
case (i) is relaxed as compared to the cases (ii), (iii) and (iv).

In the case of a transform-limited laser pulse (case (i)), the peak energy (200 MeV) is
achieved after ∼ 200 µm. At ∼ 400 µm, the laser becomes pump-depleted, and a transition to
the plasma wakefield accelerator (PWFA) was observed. Since the blowout radius is measured
at the same longitudinal position in figure 3(c), it drops to zero when the laser pump depletes.
Simulations show that self-injection still occurs when the wake is driven by the laser self-
injected electrons, which increases the total charge of the beam at ∼ 500 µm. At ∼ 700 µm, the
self-injected electrons can no longer sustain the wake, and are lost to the background plasma.
The total acceleration length for LWFA in this case is ∼ 220 µm, which is three times smaller
compared to the acceleration lengths observed for the chirped pulse. The dark dots in figure 3(a)
represent the points where the peak energy is reached. The efficiency is similar for all three
cases. For the chirped pulse the self-injection and acceleration process is relatively gradual
compared to the un-chirped pulse. The amount of injected charge for the chirped pulse can
reach up to 60% of the total charge obtained with the transform-limited pulse (case (i)).

In the second scenario (keeping the plasma density constant), the peak energy for the
transform-limited pulse (case (ii)) is ∼ 15% lower than in the case of a negatively chirped
pulse (figure 3(a)), and with the total peak charge ∼ 16% less than the charge obtained with
the chirped pulse (figure 3(b)). Hence, using a chirped pulse in place of a transform-limited
pulse results in better efficiency, as well as ∼ 25% shorter acceleration lengths.

Within the chirped pulses, the positively chirped pulse provides higher (lower) charge (peak
energy) as compared to the negatively chirped pulse (figure 3). Simulations suggested that the
higher final electron energies in the case of a negatively chirped pulse are due to the fact that
negatively chirped laser propagates with higher group velocities, followed by the bubble with a
higher phase velocity. This increases the threshold for the initial γ of the electrons which can be
trapped, reducing the number of electrons as well as electrons that can be accelerated to higher
velocities. Beam loading effects [41] also play a significant role in reducing the wake field for
the positively chirped pulse due to the higher charge self-injection, whereas for the negatively
chirped pulse the beam loading effects are not significant due to relatively lower charge injection
compared to the positively chirped pulse. These simulations showed that by adjusting the initial
chirp of the laser pulse, the number of self-injected electrons and self-injected electron beam
energy can be controlled. For the laser parameters discussed here, the difference in total charge
for the two chirped cases ((iii) and (iv)) can reach up to 15%, and in peak energy 10% of the
difference can be achieved. These results highlight some of the advantages of using chirped
pulsed laser in LWFA.

According to section 3, the wake field amplitude is not significantly changed for the
frequency chirp discussed here. We believe that it is the combined effect of longitudinal
bunching as well as localized etching of the laser that leads to differences in LWFA by positively
and negatively chirped pulse.
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Figure 4. Effect of the frequency chirp on localized laser etching: (a), (d) line
out of charge density on the axis at the front of the laser, (b), (e) line out of laser
field on the axis and (c), (f) laser field (Ex) in the x–z plane at time 448.43/ωp

for β = 0.05 ωp(a, b, c) and β = −0.05 ωp(d, e, f ), respectively.

Considering the effect of localized etching [42], the laser group velocity vg is given by
vg = vl

g − vetch, where vl
g = c[1 − ω2

p/(2ω(ξetch)
2)] is the laser linear group velocity, vetch =

cω2
p/ω(ξetch)

2 is the etching velocity [42] and ξetch is the position of the localized etching within
the laser in ξ coordinates. A positively chirped pulse, with a red shifted front, etches faster, and
may thus propagate with lower group velocity, compared to a negatively chirped laser pulse.
Furthermore, the phase velocity of the plasma wave (wake), propagating at the back of a laser,
is roughly equal to the group velocity of the laser; thus, for a positively chirped laser pulse the
wake phase velocity is lower compared to a bubble propagating behind a negatively chirped
laser pulse. Electrons with a sufficiently high velocity in the forward direction (this velocity is
roughly equal to the phase velocity of the bubble at the back) have higher probability of getting
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trapped inside the bubble ([39] and the references therein), which means that the positively
chirped laser pulse lowers the threshold for electron trapping by slowing down the wake. On the
other hand, a negatively chirped laser pulse will have a higher group velocity, thus increasing
the threshold for trapping.

To illustrate clearly the effect of positive and negative frequency chirps on localized etching
and on laser self-guiding [39], in figure 4, we show the results of 3D PIC simulations for two
linearly polarized laser pulses with a0 = 5.0, with central frequency ω0 = 20ωp, pulse length
L0 = 3c/ωp, transverse spot size W0 = 4.5c/ωp and β = ±0.05ωp. We have exaggerated the
chirp such that effects attributed to the chirp are clearly visible. Since for β > 0 the laser
intensity is higher at the front than when β < 0, a sharper density spike is formed at the
front of the laser for β > 0 (figures 4(a) and (d)), which leads to a stronger localized pump
depletion (figures 4(b)–(f)). For the negatively chirped pulse considered in the simulations,
the density spikes are not sharp, so the localized etching is either absent, or very weak, as
compared to the positively chirped pulse. Thus, positively chirped lasers may also relax the
self-guiding conditions for stable laser propagation in the blowout regime. These results indicate
that the variation in laser group velocity and localized pump depletion, due to the initial laser
frequency chirp, may impact the rates at which self-injection occur and the number of self-
trapped particles. For the parameters considered in figure 3 (cases (ii) and (iii)), we observe the
effect of chirp sign (positive or negative) on localized laser etching; however, and for realistic
chirps, the effects are not as strong as shown in figure 4, since the amount of frequency chirp
used in the laser for figure 4 is five times as high as the amount of frequency chirp used in the
laser for figure 3.

5. Conclusions

In conclusion, we have examined the effect of the frequency chirp on LWFA. In the linear
regime, a positive (negative) frequency chirp compresses (stretches) the laser pulse, resulting
in enhanced (reduced) wakefield amplitude with time due to dispersive effects. In the blowout
regime and using the chirps that can be routinely introduced in the experiments, simulations
show that negatively chirped lasers can provide higher peak energies to the self-injected
electrons in comparison to un-chirped lasers. Moreover, chirped laser pulses can also lead to
a higher number of self-injected electrons. In addition, the laser group velocity, and thus the
wake phase velocity, is lower (higher) when the laser frequency is lower (higher) at the front
of the laser due to positive (negative) frequency linear chirp, which then influences the rate at
which self-injection occurs and the number of self-injected electrons, providing extra control
over the self-injection process in LWFA.
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