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Abstract. Collective excitations in nano-plasmas are described by dynamical
bi-local auto-correlation functions. These excitations, which are related to the
plasmon excitations in bulk plasmas, arise in the classical as well as the quantum
regime. Instead of the wave-vector-dependent dynamical structure factor, which
is not well defined in finite systems, two different signatures are considered
to characterize collective excitations: the bi-local particle density correlation
function and the bi-local current density correlation function. The relation
between both signatures is not as trivial as in the homogeneous case and is
given here. Exemplary calculations are performed for expanding nearly spherical
clusters of sodium atoms after excitation by a high-intensity short pulse laser
beam. The lowest collective excitations obtained in the classical regime using
molecular dynamics simulations agree well with the lowest collective excitations
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obtained from quantum calculations using fluid dynamics. The energy, damping
and structure of the lowest collective modes are given. The dynamical bi-local
correlation functions are of relevance for the optical properties, in particular the
determination of photo absorption coefficients of nano-plasmas.
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1. Introduction

The investigation of small clusters with respect to collective plasma excitations has been of
increasing interest in recent years [1, 2]. In particular, nano-plasmas are formed in metallic
clusters after irradiation with intense short pulse laser beams [3]. In previous works [4, 5],
a complex excitation spectrum of hot weakly bound electrons inside clusters was obtained
experimentally; however, there is still a lack of theoretical understanding. Experimental
investigations on the surface plasmon amplification of nano particles [6] suggest applications
such as a nanoscale quantum generator and an ultrafast amplifier. Unusual resonances in nano-
plasmonic structures [7] were found as a non-local response after the excitation of electrons
inside nano cylinders.

We are interested in studying nano-plasmas in clusters considered after short pulse laser
irradiation with intensities of the order of 1012 W cm−2. In earlier investigations [8], the role of
the additional ionization and heating due to collective effects inside clusters has been discussed.
We address the collective effects of the nano-plasma in thermal equilibrium after the excitation
process. The plasma properties of finite systems are mainly determined by the dynamics of
the electrons that are bound to the cluster but delocalized from the original atoms. They are
comparable to the conduction electrons in bulk systems. As was already shown in earlier
publications, see [9], the electrons relax to local thermodynamic equilibrium (LTE) within time
scales of a few fs after the laser is switched off. Therefore, the temperature T and the electron
density ρ(r) as used in bulk plasmas can serve as the characteristic parameters of the electron
system (nano-plasma) after LTE is established. Additionally, the cluster size (the number of ions
Ni) and the net charge Z have to be considered in finite systems.

Scattering, absorption of radiation and corresponding phenomena are determined by
collective excitations of plasmas. The volume plasmon is well known as a collective excitation in
an infinite, homogeneous plasma that occurs at eigen-frequencies ω2(k) = ω2

pl(1 + 3k2/κ2 + · · ·),
see [10], with the wave number k, the plasmon frequency ω2

pl = ne2/ε0me and the Debye
screening parameter κ2

= ne2/ε0kBT . In the case of homogeneously charged spheres the
strongest signal is the dipole mode with the Mie resonance ωMie = ωpl/

√
3 [1, 2].

New Journal of Physics 14 (2012) 115016 (http://www.njp.org/)

http://www.njp.org/


3

So far [11–13], we have obtained excitation spectra for bulk and cluster materials via
correlation functions. In the case of clusters, the correlation functions were analyzed using
spherical harmonics. In order to bridge from finite systems to bulk plasmas, first results
with respect to size effects have been reported in [9, 14]. In particular, we are interested
in the dynamical structure factor and the response function for such finite nano-plasmas,
which are related specifically to correlation functions of the spatially resolved electron density
fluctuations. After some general remarks on the relations of different correlation functions in
section 2, two different theoretical approaches—molecular dynamics (MD) simulations and
fluid dynamics calculations—will be presented here to discuss collective excitation modes.

In section 3, the results for frequency-dependent bi-local current density correlation
functions calculated via MD simulations are presented. For this approach, excited electrons in
clusters at temperatures larger than the Fermi energy are considered, where the nano-plasma can
be treated classically. Strong correlations are taken into account via collisions of all particles.
Concepts such as the dynamical collision frequency that have been well established for infinite
bulk systems near thermodynamic equilibrium [15] have to be modified for applications to
finite systems, e.g. the clusters considered here. Therefore, a restricted MD scheme [9, 16]
was used, where the ion configuration is frozen representing thermodynamic parameters at a
particular instant of time within the cluster expansion. The dynamics of electrons inside the
cluster can then be calculated separately. Using the ergodic theorem, the ensemble averaging
over the classical trajectory of multiple simulations of the same physical process can be replaced
by temporal averaging over a single trajectory. From the spatially resolved time-dependent
current density j(r, t), the bi-local current density correlation function was calculated in the time
domain. The corresponding frequency-dependent bi-local correlation functions are accessible
after Laplace transformation. Finally, we are able to treat the optical response of a thermalized
nano-plasma via bi-local current density correlations 〈j(r); j(r′)〉ω in the frequency domain. For
arbitrary degeneracy, the Laplace transform of the correlation function,

〈A; B〉ω =

∫
∞

0
dt eiωt

∫ 1

0
dλTr[ρ0 A(t − ih̄βλ)B], (1)

is defined with the equilibrium statistical operator ρ0, and β = 1/kBT .
Alternatively in section 4, we consider a fully quantum mechanical T = 0 description in

terms of time-dependent density functional theory (TDDFT), see, e.g., [2]. The dynamics of
excitations is treated in the linear domain, which allows a straightforward sorting in terms of
eigenmodes and associated eigenfrequencies. The excitation spectrum thus obtained will be
used to derive the various correlation functions as were considered in the analysis of the MD
simulation. This then allows a direct comparison of MD and TDDFT. For the quantum case,
we consider the solution spectrum in random phase approximation (RPA) and fluid dynamical
approximation [13, 17]. The latter relies on the full quantum mechanical ground state but
includes approximations of the excitations in terms of local flow pattern, in this way establishing
a bridge between full quantum mechanical treatment and classical MD. This will be discussed
in section 5.

We would like to stress that collective excitations are not specific quantum phenomena but
appear also in the classical case, as is well known from the bulk plasmons. Similar collective
resonances in both approaches are expected. We therefore attempt a comparison of the results
of quantum description and those of the classical approach.
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Within MD simulations, the interaction of electrons with cluster ions is described by the
error-function potential

Vei(r) =
e2

4πε0

erf
(

r
λ

)
r

, (2)

where λ = 6.02a0 was used in order to reproduce the ionization energy of Vei(0) = −5.1 eV for
solid sodium. The ion positions are randomly distributed within the cluster sphere at the solid-
state density. The resulting ionic potential is not sensitive to the actual position of the ions due
to the smooth feature of the error function potential.

For TDDFT and fluid dynamics, the jellium-like potential

Vjel(r) =
e2

4πε0

∫
d3r1 ρjel(|r − r1|)

1

r1
(3)

was used. The Coulomb interaction is convoluted with a soft surface [18] using the
Wood–Saxon-type radially symmetric ionic density distribution [19]

ρjel(r) =
ρ0

1 + exp
[
(r − rs N 1/3)/σ

] , (4)

where ρ0 has to be determined from the normalization Ni =
∫

d3rρjel(r). For the jellium
potential Vjel(r) to be in accordance with the error function potential used for MD simulations,
the surface width is taken as σ = 1.6a0.

2. Definition of correlation functions

As correlation functions of fluctuations around thermodynamic equilibrium will play a
key role in the following discussions, we briefly state the major relevant properties. We
treat the near-equilibrium system in linear response in terms of the generalized Zubarev
formalism [20]. Within this approach, induced quantities in non-equilibrium due to external
fields are determined via equilibrium correlation functions (A(t); B) and the frequency
spectrum limε→0 〈A; B〉ω+iε, after Laplace transformation. We introduce the external Hamilton
operator

H t
ext =

∫
d3r ρ(r)Uext(r, t), (5)

due to an external scalar field Uext(r, t). This induces a density fluctuation 〈δρ(r)〉t , δρ(r) =

ρ(r) − 〈ρ(r)〉, which reads in the frequency domain

〈δρ(r)〉ω =

∫
d3r′ χ(r, r′, ω) Uext(r′, ω), (6)

where χ(r, r′, ω) = β 〈δρ(r); δρ̇(r′)〉ω is the response function as also introduced within the
Kubo formalism. Using partial integration, one is able to express the dynamic response
function

χ(r, r′, ω) = (δρ(r); δρ(r′))|t=0 + iω 〈δρ(r); δρ(r′)〉ω (7)
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via the respective bi-local density correlation function; for details see [11, 20]. Alternatively,
one can describe the excitation by considering the current density-dependent Hamiltonian

H t
ext =

∫
d3r j(r)A(r, t), (8)

with the time derivative of the vector potential Ȧ(r, t) = c2 grad Uext(r, t) = −c2E(r′, t).
Accordingly, a current density will be induced,

〈δj(r)〉ω =

∫
d3r′ σ(r, r′, ω) E(r′, ω), (9)

where σ(r, r′, ω) = β 〈j(r); j(r′)〉ω is known as the conductivity tensor. Using the continuity
equation, the bi-local current density correlation function can also be related to the response
function equation (7)

χ(r, r′, ω) = −
1

iω
divr divr′

〈
j(r); j(r′)

〉
ω
, (10)

where divr is the tensor divergence with respect to r. Simulation data of different approaches
are now used to calculate the bi-local current density correlation function 〈j(r); j(r′)〉ω, on the
one hand, and the bi-local density correlation function 〈δρ(r); δρ(r′)〉ω, on the other hand. Our
aim is to show the relation between the bi-local current density and the bi-local particle density
correlation function using the expressions in equations (7) and (10).

The most prominent feature of electronic modes in metal clusters is collective excitations
(such as, e.g., the Mie plasmon) which appear as sharp resonance peaks in the spectrum.
The spatial properties of the corresponding modes are described by the electronic transition
density or the transition current density. We will discuss the relation between these two spatially
resolved distribution functions for the strongest collective modes.

3. Molecular dynamics simulations of collective excitations

Starting from MD simulations [21], a restricted MD scheme [11] was introduced for the
cluster case, treating the electron dynamics within a fixed ion configuration due to adiabatic
approximation. Exemplarily, we discuss the collective resonances for an Na+19

1000 cluster
immediately after laser irradiation at an average ion density ni = 2.8 × 1022 cm−3. This is the
solid-state density of sodium and corresponds to a Wigner–Seitz radius of rs = 3.9a0. The initial
electron distribution is thermalized at a temperature T = 1 eV. The electron dynamics has been
calculated considering the trajectory from tMD = 10 · · · 100 ps using time steps of δt = 0.1 fs.
The z component of the total current density of all electrons inside the cluster

j z(t) =
e

me

1

�

Ne∑
l=1

pz
l (t) (11)

has been determined from the electron momenta pz
l (t), with � the cluster volume. We calculated

the current density auto-correlation function

( j z
; j z(t)) =

1

tMD

〈
j2

〉 ∫ tMD

0
dτ j z(τ ) j z(t + τ). (12)
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Figure 1. Top: the total current density correlation function (13). Bottom: the
leading modes of bi-local correlation matrix Ka,b(ω) for spatially resolved
current density; both for the Na1000 cluster at electron temperature T = 1 eV,
cluster charge Z = 19 and ionic density rs = 3.9a0.

The spectrum of the auto-correlation function

〈 j z
; j z

〉ω =

∫
dt eiωt ( j z

; j z(t)) , (13)

see figure 1 (top), shows a main maximum at ω = 0.23 Ry marked with a dashed vertical line.
It is related to the Mie resonance. Additional structures are visible at higher frequencies.

The complete response function for finite systems, which resolves the resonances spatially,

can be determined from the bi-local correlation functions of the current density K j
r,r′(ω) =

〈 j z(r); j z(r′)〉ω or density fluctuations K δρ

r,r′(ω) = 〈δρ(r); δρ(r′)〉ω.
For the spatial resolution, the cluster volume was divided into a finite number of cells (a, b)

using spherical coordinates, centered at (r, r′). The discrete correlation matrix Ka,b(ω) was then
analyzed by solving the following eigenvalue problem:∑

b

Re Ka,b(ω)9µ,b(ω) = Kµ(ω)9µ,a(ω), (14)

for the leading eigenvectors 9µ,a(ω). They characterize the spatial structure of the individual
modes (9µ,a(ω) → 9µ(r, ω)). The strength of each mode is given by the eigenvalues Kµ(ω).
Details are given in [11], where the corresponding mode analysis of the response function has
been presented for a different cluster size (Ni = 309).

The decomposition of the locally resolved current correlation matrix into eigenvalues
Kµ(ω), see figure 1 (bottom), shows a fairly complex structure of resonance modes. To
analyze the spatial structure within the cluster, a Fourier decomposition of the eigenvectors
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Figure 2. Selected eigenvectors 9µ(r, ω) of the dipole-like mode (black line
in figure 1, bottom) of the Na+19

1000 clusters with ionic density rs = 3.9a0 and
temperature T = 1 eV. The spatial x- and z-axes are scaled in units of the cluster
radius R = 39.0a0.

into the spherical Bessel functions jl(kn,lr) and spherical harmonics Yl,m(θ, φ) was performed
according to

9µ(r, ω) =

Nn∑
n=1

Nl∑
l=0

l∑
m=−l

Sn,l,m(ω) Nn,l jl(kn,lr)Yl,m(θ, φ), (15)

where Sn,l,m(ω) is the spherical Fourier component with ordinal numbers n, l, m. The
normalization factor Nn,l as well as the wave number kn,l are chosen in the way the eigenvector
has a node at the cluster surface.

In figure 1 (bottom), the four strongest eigenvalue modes are shown. They are characterized
by pairs of ordinal numbers l, m, which determine the angular part of the eigenvector in terms
of the spherical harmonics Yl,m(θ, φ). The leading dipole-like mode, represented via a solid
line (black online), is characterized by an overlap of Y0,0(θ, φ) and Y2,0(θ, φ). We find three
resonance frequencies which are identical to the ones found in the total current density auto-
correlation function. They are indicated by vertical dashed lines (blue online).

In a next step, we analyze selected eigenvectors 9µ(r, ω) of the dipole-like mode, which
is the strongest mode shown in figure 1 (bottom). The results are given in figure 2. At the
resonance frequency ω = 0.23 Ry, figure 2(a), all electrons are moving in the same direction.
No nodes can be seen, as one would expect in the case of a Mie oscillation. The mode at the
third resonance frequency, see figure 2(c), is similar to a plane wave oscillation of electrons, but
trapped inside the cluster. To identify a wave number of the plane wave oscillation, a Fourier
decomposition into plane waves has been done. A characteristic plane wave number in the
z-direction of k = 1.6 nm−1 was found. The resonance structure in figure 2(b) appears as a mix
of the first and the third resonance structure.

4. Collective modes via fluid dynamics

To describe collective modes at low temperatures, a quantum mechanical approach has to be
used. In this section, we investigate the electron dynamics of the cluster at T = 0 using the
time-dependent density functional theory [2]. The electron cloud confined by the potential of
the ion distribution equation (4) is described in local-density approximation (LDA) [22] using

New Journal of Physics 14 (2012) 115016 (http://www.njp.org/)
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the density functional of Perdew and Wang [23]. The excitation spectrum is computed with
linearized time-dependent LDA, also known as random-phase approximation (RPA), using the
efficient operator techniques developed by Reinhard et al [13, 17]. It yields a spectrum of
excitation operators C†

ν and associated eigenfrequencies ων . The operators are optimized by
variation with respect to Cν , i.e.

δCν
〈80|

[
Cν,

[
H, C†

ν

]]
|80〉 = 0, (16)

where |80〉 is the ground state. A special approximation is determined by the class of operators
C†

ν considered for the variational problem.
A simple fluid dynamical picture [13, 24] is realized by choosing the excitation

operators from a purely local distribution Q(r) as C†
ν + Cν ∈ {Q(r)}, C†

ν − Cν ∝ i [H, Q] .

The variationally optimized field Q(r) represents a velocity potential such that the current
associated with that excitation mode becomes j(r) = ρ(r)∇Q. Therefore, it is an irrotational
flow, ∇ × (j/ρ) = 0. Fluid dynamics is a collective model in the sense that only the global flow
determines the system while details of single-particle motion are ignored.

The full single-particle picture is maintained in RPA, which is realized by allowing
a composition of all conceivable one-particle–one-hole (1ph) states C†

ν =
∑

ph(x (ν)

ph a†
pah +

y(ν)

ph a†
hap), where a†, a are fermion operators. The superposition coefficients are, again, to be

determined variationally by equation (16) where variation with respect to Cν means, in practice,
variation with respect to x (ν)∗

ph and y(ν)∗

ph .
The system which we consider here is modeled with spherical jellium background and

has an electron number which yields a closed shell configuration. The many-electron ground
state is spherically symmetric. As a consequence, the excitations can be sorted according to
angular momentum (L , M). We will indicate that by the notation C†

nL M . Key observables for
an excitation are the excitation frequency ωnL M and the corresponding multipole strength. More
detailed information on the structure of excitation is provided by the transition density δρnL M

and transition current jnL M defined as

δρnL M(r) = 〈80|[ρ(r), C†
nL M]|80〉, jnL M(r) = 〈80|[j(r), C†

nL M]|80〉, (17)

where ρ(r) and j(r) are the operators of local particle density and current density, respectively.
Spherical symmetry leads to the separable form

δρnL M(r) = δρnL M(r)YL M(�), (18a)

jnL M(r) =

∑
l∈{L−1,L+1}

j (l)
nL(r)YLl M(�), (18b)

YLl M(�) =

∑
mq

YLm(�)eq

√
2L+1 (−)L−1+M

(
l 1 L
m q −M

)
, (18c)

where YL M are spherical harmonics, eq the three-dimensional (3D) unit vector in spherical
representation and YLl M vector spherical harmonics [25]. The continuity equation ωνL MδρnL M =

∇ · jnL M admits only two independent radial distributions. Fluid dynamics, as mentioned
above, produces laminar flow which ties together j (L+1)

nL M and j (L−1)

nL M and reduces the number
of independent radial distributions to a single one. In any case, the transition density δρnL M(r),
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being a scalar and 1D function, is the simplest object for a detailed visualization of the transition.
Finally, this is related to the bi-local density correlation as〈

δρ(r); δρ(r′)
〉
ω

=

∑
nL

0

(ω − ωnL)2 + 02
δρ∗

nL(r)δρnL(r ′)PL(cos θ), (19)

with the Legendre polynomials PL(x); θ is the angle between r and r′. The folding width 0 is
taken as 0 = 0.01 Ry. For a better overview, we produce an ω weighted and L-dependent radial
density by superposing the various spectral states with a weight given by the corresponding
transition matrix element and some smoothing

δρ̃L(r; ω) =

∑
n

ωnL
0

(ω − ωnL)2 + 02
δρ∗

nL(r) MnL, (20a)

MnL =

∫
∞

0
dr ′ r ′2+L

δρnL(r ′). (20b)

This form has the advantage that photo-absorption strengths and the corresponding sum
rule can be obtained by integration over r and ω.

Figure 3 shows the frequency-dependent transition densities equation (20a) for a test case
Na16+

354 . Fluid dynamical L = 1 and 2 modes are visualized and a comparison with full RPA
is given for L = 1. The r 2 weight has been applied to show directly the contributions to the
corresponding multipole momenta. Two angular momentum modes are shown as indicated:
dipole (L = 1) on the left panels and quadrupole (L = 2) on the right panel.

The mode at the lowest energy in the fluid dynamical picture for L = 1 (lower left panel)
is clearly the Mie surface plasmon. Above that energy a second surface mode is found. Higher
modes acquire more and more volume components [26] (a feature which is, however, not well
visible at the present color scale). The transition densities of full RPA (upper left panel) show
the same two dominant surface modes as the fluid dynamical approach in spite of the fact that
the pattern indicates, of course, a much richer spectrum behind. Each one of these many detailed
particle–hole states carries a small amount of strength. It is impressive that the entity of these
states forms together a pattern similar to the collective model. This effective collectivity holds
even for the volume modes found at higher frequencies. One can spot it for the mode at 0.41
Ry which is just visible in full RPA at a given color scale. However, one encounters a growing
fragmentation with increasing energy such that separate volume modes become hard to uncover
in a fully fledged RPA spectrum.

The right panel of figure 3 shows the fluid dynamics spectrum for the quadrupole mode.
It looks very similar to the dipole modes. But all eigenfrequencies for L = 2 are systematically
slightly higher than for L = 1. Such an up-shift can already be estimated from the simple Mie
picture which predicts the frequency of the leading surface plasmon as ωpl

√
L/(2L+1) where L

is the angular momentum of the mode [26]. This predicts an up-shift by about 10% when going
from L = 1 to 2. The actual up-shift seen in figure 3 is smaller due to the soft jellium surface
profile.

After all, we see that the fluid dynamics picture provides a pertinent model of the dominant
flow pattern in the dynamics of a large cluster as being studied here. Fluid dynamics is, in fact,
a classical concept and so we find a classical description validated by the results. It is then to
be expected that fully classical MD simulations should display the same dominant collective
pattern in the excitation spectrum.
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Figure 3. Radially weighted, frequency-dependent transition density r 2δρL(r, ω)

according to equation (20a) for Na16+
354 as a color-scale plot: dipole modes

(L = 1) on the left panels and quadrupole mode (L = 2) on the right panel, fluid
dynamics results in the lower panel and full RPA in the left upper panel. The
system radius is indicated by a faint vertical line. The frequencies of the first
three fluid dynamical L = 1 eigenmodes are indicated by a faint horizontal line.

5. Resonance structures of the local current density and local density fluctuation

Using the equation of continuity ωδρ(r) = div j(r), the current density mode j(r) is related to the
density fluctuations mode δρ(r). A similar problem was considered earlier for very small cluster
sizes in [27]. Here, we consider a more general description relevant for arbitrary excitation
modes. Because the current density represents a vector field, its spatial dependence must be
decomposed into vector spherical harmonics Y∗

L ′,L M(θ, φ) as they were introduced in [28],
resulting in two radial profiles j−(r) and j+(r) for a given angular momentum number L ,

jL(r) = j−(r) Y∗

L−1,L M(θ, φ) + j+(r) Y∗

L+1,L M(θ, φ). (21)

The density fluctuation (see equation (18a))

δρL(r) = δρL(r) Y ∗

L M(θ, φ), (22)

where δρL(r) gives the radial dependence of the respective oscillation mode, is related to the
current density in the following way. The current density jL(r) is composed of angular parts of

New Journal of Physics 14 (2012) 115016 (http://www.njp.org/)

http://www.njp.org/


11

vector spherical harmonics L + 1 and L − 1. We calculate the radial dependence of the current
density from the density fluctuation via

ω δρL(r) =

√
L + 1

2L + 1

(
d

d r
+

L + 2

r

)
j+(r) −

√
L

2L + 1

(
d

d r
−

L − 1

r

)
j−(r). (23)

Note that rot j(r) is not determined by the density distribution. Assuming an irrotational current
density field, one is able to find solutions for the radial functions of the current density
separately,

j+(r) = (1 − a)

√
2L + 1

L + 1

ω

r L+2

∫
∞

r
dr1 r L+2

1 δρL(r1),

j−(r) = a

√
2L + 1

L
ω r L−1

∫
∞

r
dr1

δρL(r1)

r L−1
1

,

(24)

where 06 a 6 1 appears as a free mixing parameter since the current density profile is not
unambiguously determined by the density profile. Using equation (21), the complete solution
of the current density in terms of the density fluctuations then reads

jL(r) =
√

2L + 1 ω

[
(1 − a)

Y∗

L+1,L M(θ, φ)
√

L + 1
r−(L+2)

∫
∞

r
dr1 r L+2

1 δρL(r1)

+a
Y∗

L−1,L M(θ, φ)
√

L
r L−1

∫
∞

r
dr1

δρL(r1)

r L−1
1

]
. (25)

The spatial resolution of the density fluctuation correlations resulting from our MD
simulations is statistically not good enough for further analysis. Subsequently, the direct
comparison of the current density from MD simulations with that obtained via the electron
density eigenvector is viable. We will therefore focus on a dipole mode of the density fluctuation
oscillation, which consists purely of spherical harmonics L = 1. Thus, in our case (ρL(r) for
L = 1) the complete solution of the current density is a superposition of the spherical harmonics
Y0,0(θ, φ) and Y2,0(θ, φ) as it already appeared in the results for the strongest collective mode
of the MD simulations. In figure 3 (bottom, left), the spatial dependence of such a density
fluctuation mode is shown in dependence on the excitation energy. This was calculated via fluid
dynamics.

Using the density fluctuation mode shown in figure 3 (bottom, left), the current density
mode is determined from equation (25). The z component is shown in figure 4 for the resonance
frequencies found in the fluid dynamics calculations. The resulting current density compares
well with the eigenvectors from the bi-local current density correlation function for the resonant
excitation energies calculated in MD simulations, shown in figure 2. Thus we conclude that
the Mie-like character of the strongest collective resonance observed from density fluctuation
correlations 〈δρ(r); δρ(r′)〉ω via fluid dynamics as well as from the current density correlations
〈j(r); j(r′)〉ω via MD simulations is in remarkable agreement.

The most important difference between the two approaches to obtain the resonant
oscillation structure is due to the ground-state distribution of electrons considered inside the
nano-plasma. In the case of MD simulations, electrons thermalized at a finite temperature
T = 1 eV are considered. In contrast, the fluid dynamics ground state of the nano-plasma
electrons corresponds to T = 0. Obviously, the oscillation mode structures and resonance
frequencies are not strongly affected by thermal effects.
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Figure 4. Mode structure in the z–x-plane for resonance frequencies of the Na+16
354

cluster at ionic density rs = 3.9a0 and T = 0 calculated via fluid dynamics. Top:
transition density modes δρL(r) (L = 1). Bottom: current density modes j z(r)
calculated from the transition density (above) via equation (25). The spatial x-
and z-axes are scaled in units of the cluster radius R = 27.6a0.

The statistical fluctuations of the MD simulations are considerably lower for the calculation
of the current density correlations than for the electron density correlation. This is also clear
from figure 4. The averages of the current density vanish whereas the fluctuating average
electron densities have to be subtracted to get the electron density fluctuations. Now, we are
able to solve this problem by transferring the density modes into current density modes.

Beyond that, collisions between electrons are included via MD simulations which lead to
a damping of collective electron oscillations. This is not included in the fluid dynamics scheme.
An additionally introduced damping width of 0 = 0.01 Ry is relatively small compared to the
MD simulations case. Nevertheless, at resonance frequencies, the oscillation mode structure
is in agreement for both schemes. However, in comparison to 1D chains, see [29], where the
spatial mode structures were simply allocatable by their wave number k, the current density
mode structures of 3D clusters are more complex.

6. Conclusions and outlook

We have been successful in using the continuity equation to relate the frequency-dependent
bi-local correlation functions of the current and charge densities. This allows us to compare
different approaches to investigate collective excitations in finite systems and to analyze their
spatial excitation structures. From MD simulations as well as from a time-dependent density
functional approach, we were able to calculate resonance frequencies at similar frequencies.
Our approach offers a generalization of the dynamic structure factor relevant in bulk systems
that are homogeneous in space, to spatially resolved correlation functions applicable to finite
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inhomogeneous systems. Collective excitations in highly excited nano-materials are relevant
for the response to external perturbation, in particular considering the emission and absorption
of light.

A systematic treatment, as well as the proof of general properties such as the Thomas
Reiche–Kuhn sum rules, is left for our future work. The relation of the total current density auto-
correlation function to the dielectric function is given by ε−1(ω) = 1 − iβnC 〈 j z

; j z〉ω /(ε0ω),
see [15]. Here, nC is the density of clusters. Also the bi-local response function that results
from the bi-local current density correlation function is now accessible with MD as well as
fluid dynamics simulations. Hence, we are able to discuss the bi-local conductivity of nano-
plasmas which is directly related to the bi-local current density correlation function. Finally,
these material properties allow us to discuss the role of collective excitations and the damping
of these excitations in nano-plasmas, which has not been completely understood until now.
For example, this is important for discussing experimental results which suggest still unknown
effects of nano-plasmonics. Experimental consequences, in particular absorption spectra as well
as scattering of light and charged particles, are therefore of interest.
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