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Abstract. The loss of coherence is one of the main obstacles for the
implementation of quantum information processing. The efficiency of dynamical
decoupling schemes, which have been introduced to address this problem, is
limited itself by the fluctuations in the driving fields which will themselves
introduce noise. We address this challenge by introducing the concept of
concatenated continuous dynamical decoupling, which can overcome not only
external magnetic noise but also noise due to fluctuations in driving fields.
We show theoretically that this approach can achieve relaxation limited
coherence times, and demonstrate experimentally that already the most basic
implementation of this concept yields an order of magnitude improvement to the
decoherence time for the electron spin of nitrogen vacancy centers in diamond.
The proposed scheme can be applied to a wide variety of other physical systems,
including trapped atoms and ions and quantum dots, and may be combined with
other quantum technologies challenges such as quantum sensing and quantum
information processing.
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1. Introduction

Coherent control of quantum systems has opened a promising route towards novel quantum
devices for quantum technologies, such as quantum information processing, quantum metrology
and quantum sensing [1–4]. The performance of such quantum devices critically depends on
coherence times of their constituent quantum systems which, in turn, are limited by uncontrolled
interactions with their surrounding environment. This results in a challenging but fundamentally
important task in current quantum experiments, namely how to protect individual quantum
states from decoherence by their environment while retaining the ability to control the quantum
dynamics of the system, in particular in solid state systems with characteristic complex
environments. For slow environmental noise a successful strategy is dynamical decoupling
due to rapid sequences of intense pulses of electromagnetic radiation, which has been applied
successfully in NMR [5]. Significant progress has been made with various theoretical proposals
for dynamical decoupling [6–13], and their experimental demonstration [14–23].

The recently developed dynamical decoupling schemes that require only continuous
oscillatory driving fields [7, 8] inherit the advantages of standard dynamical decoupling,
namely requiring no encoding overhead, no quantum measurements, and no feedback controls.
Moreover, they are easier to realize experimentally and are more naturally combined with other
quantum information tasks, such as the implementation of high-fidelity quantum gates [11–14].
In principle, one can apply continuous driving to reduce the noise suffered by a qubit
considerably simply by increasing their intensity. However, random and systematic fluctuations
which are inevitably present in the driving field itself will ultimately limit the efficiency of
dynamical decoupling. The deleterious effect of driving field fluctuations in particular will
become significant when employing strong driving fields to achieve ultralong coherence times.
This is important in all applications in which environmental noise cannot be avoided (e.g.
sensing in biological environments) and thus represents a fundamental obstacle. Overcoming
the limitations imposed by driving field fluctuations and thus extending coherence times further
represents a key step towards the construction of quantum memory [24], highly sensitive
nanoscale magnetometers [1–3] and error-resistant quantum operation [13]. It will also be of
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particular interest for T1 limited Rabi-type magnetic resonance imaging, the resolution of which
is highly dependent on the stability of microwave driving fields [25, 26].

In this work, we address this challenge by introducing the scheme of concatenated
continuous decoupling (CCD), which can significantly extend coherence times by protecting
against driving field fluctuations. As a proof-of-principle, we implement a second-order CCD
with a single nitrogen–vacancy (NV) center in diamond where a second, weaker driving field,
reduces the impact of the amplitude fluctuations of the first-order driving field. We demonstrate
experimentally that CCD schemes with only a weak second driving field can already increase
coherence times by an order of magnitude as compared to standard schemes based on a single
drive.

2. Concatenated continuous dynamical decoupling

We start by considering a two-level quantum system with eigenstates |↑〉 , |↓〉, see figure 1(a),
and Hamiltonian H0 =

h̄ω
2 (|↑〉 〈↑| − |↓〉 〈↓|). Environmental noise causes fluctuations to the

energies ω↑, ω↓ and thus the loss of coherence. To counter such effects, we can apply a driving
field on resonance with the energy gap h̄ω between |↑〉 and |↓〉 as

Hd1 = h̄�1 cos (ωt)σx , (1)

where σx = |↑〉 〈↓| + |↓〉 〈↑|. In the interaction picture with respect to H0 and with rotating
wave approximation, we find H (1)

I =
h̄�1

2 σx , and its eigenstates |↑〉x =
1

√
2
(|↑〉 + |↓〉) and |↓〉x =

1
√

2
(|↑〉 − |↓〉) are the dressed states [27]. On this basis, the effect of dephasing noise now

induces transitions among these dressed states, which are suppressed by an energy penalty as
long as the noise power spectrum at the resonance frequency is negligible [14]. The decoupling
efficiency will be limited if the noise has a wide range of frequencies, while it can be very
efficient for slow baths, e.g. in diamond [28, 29]. The above analysis is based on the assumption
that the amplitude of the driving fields is stable. In realistic experiments, however, the intensity
of the driving fields will fluctuate owing to limited stability of microwave sources and amplifiers
(the frequency instead can be relatively much more stable), and thus cause fluctuations of the
energies of the dressed states. Achievable coherence times of the dressed qubit using a single
drive are thus ultimately limited by the stability of the driving fields [25], which appears as the
fast decay of Rabi oscillation.

The principal idea of CCD is to provide a concatenated set of continuous driving fields
with decreasing intensities (and thus smaller absolute value of fluctuation) such that each new
driving field protects against the fluctuations of the driving field at the preceding level. For
example, fluctuations in the amplitude of the first-order driving can be suppressed by applying
a second-order driving field as follows:

Hd2 = 2h̄�2 cos
(
ωt +

π

2

)
cos(�1t)σx . (2)

This second-order driving field is on resonance with the energy gap of the first-order dressed
state, see figure 1(a), which actually describes rotation about the axis ŷ in the interaction picture
(see the appendix for details) and thus plays the role of decoupling the first-order dressed states
from the fluctuation of �1. With these two driving fields as Hd1 and Hd2 , we find the effective
Hamiltonian in the second-order interaction picture (see the appendix for details) as

H (2)
I =

h̄�2

2
σy, (3)
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Figure 1. (a) Second-order concatenated continuous dynamical decoupling
scheme: the first-order driving field with the frequency ω and the Rabi frequency
�1 creates the first-order dressed states |↑〉x and |↓〉x , which suffer less from
the dephasing effect of environmental noise. These dressed states are, however,
subject to the fluctuation in the amplitude �1 of the driving field. The additional
second-order driving field with the amplitude �2 (which is generally smaller
than�1) has a detuning ±�1 and a relative phase π

2 with respect to the first-order
driving field. This second-order driving field leads to second-order dressed states
|↑〉 and |↓〉 which are protected against the intensity fluctuations of the first-order
drive and are thus suffering much reduced energy fluctuations. This scheme may
be iterated further to nth order. (b) The diagram for the energy levels of the NV
center electron spin. The NV spin triplet electronic ground state is split by an
applied magnetic field. The effective two-level system used in our experiment
is formed by the spin sublevels ms = 0 (labeled as |↓〉) and ms = −1 (labeled as
|↑〉). (c) The procedure for the Ramsey experiment with the second-order dressed
qubit: the NV electron spin is first polarized into the ms = 0 sublevel, which is
a coherent superposition of the second-order dressed qubit |↑〉y and |↓〉y; the
first- and second-order driving fields are simultaneously switched on for time τ
followed by the optically readout of the population of ms = 0 via spin-dependent
fluorescence.

where σy = −i |↑〉 〈↓| + i |↓〉 〈↑| and the second-order dressed states are |↑〉y =

√
1
2 (|↑〉 + i |↓〉)

and |↓〉y =

√
1
2 (|↑〉 − i |↓〉), which can be used to encode and store quantum information.

In general, we can apply nth order continuous driving fields on the condition that two
subsequent drivings describe rotations about orthogonal axes (x̂ and ŷ) in the corresponding
interaction picture. The higher-order driving fields can be explicitly written as

Hd2k+1 = 2k h̄�2k+1

k∏
j=1

cos(�2 j t) cos(ωt)σx , (4)

Hd2k = 2k h̄�2k

k∏
j=1

cos(�2 j−1t) cos
(
ωt +

π

2

)
σx . (5)
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We would like to stress that the achievable coherence time is limited by the T1 time, which can
usually be achieved using a fourth-order scheme in the context of NV centers in diamond.
The decoherence of the nth order dressed qubit stems dominantly from the fluctuation of
the nth order driving field. As long as the orthogonality of two consecutive driving field is
satisfied, the (n+1)th driving field protects against the noise of the nth driving field. Hence
with a concatenated scheme in which subsequent driving fields have decreasing intensities,
the effective dephasing will be sequentially suppressed and coherence times can be extended
significantly.

3. Experimental demonstration of the concatenated continuous decoupling (CCD)
scheme

We have used NV centers in diamond to demonstrate the working principle and efficiency of
our concatenated continuous dynamical decoupling scheme. As a promising candidate physical
system for modern quantum technologies, NV centers have been used to demonstrate basic
quantum information processing protocols [30], as well as ultrasensitive magnetometry and
nanoscale imaging at room temperature [31–33]. The electronic ground state of NV centers is
a spin triplet with three sublevels with magnetic quantum numbers ms = 0 and ±1, and the
zero field splitting is ∼2.87 GHz [34], see figure 1(b). We apply an additional magnetic field
along the axis of the NV center to split the energy levels of ms = ±1. The two electronic
transition frequencies corresponding to ms = 0 → ms = ±1 are determined to be 2042 and
3696 MHz via an optically detected magnetic resonance (ODMR) measurement. The effective
two-level system we use is formed by the sublevel |ms = −1〉 ≡ |↑〉 and |ms = 0〉 ≡ |↓〉.
Interaction with 13C nuclear spin bath is the dominant source of decoherence for ultrapure
IIa type crystals [29], which were used in our experiments. The magnetic noise can be
modelled by a fluctuating field and its spectrum is expected to be Lorentzian [28, 29].
While significant progress has been achieved in material engineering [35], it will not be
possible to eliminate all sources of magnetic noise in this way, in particular for implanted NV
defects [33]. Thus this relatively slow bath is both practically important and at the same time
ideal for decoupling experiments [21] and thus for the demonstration of CCD.

In our experiment, we first polarize the NV center electron spin into the sublevel ms = 0
with a green laser (532 nm). We note that this is equivalent to the preparation of an initial

coherent superposition of the dressed states, namely |ms = 0〉 ≡ |↓〉 =

√
1
2(|↑〉x + |↓〉x). For

comparison, we start by applying a single driving field on resonance with the electronic
transition ms = 0 ↔ ms = −1. We measure the oscillation of the state ms = 0 population. It can
been seen from figure 2(a) that the decay of the Rabi oscillation is very fast. Theoretically, we
model the microwave fluctuation by an Ornstein–Uhlenbeck process, and thus the amplitude of
the driving field is time-dependent with random fluctuation as�i(t)=�i [1 + δi(t)]. The system
dynamics is described by the following master equation:

d

dt
ρ = −i[H(t), ρ] +

0

2

∑
a=σ±

(2a†ρa − ρaa†
− aa†ρ). (6)

The relaxation takes the high temperature limit, which is the case for our experiment at
room temperature. We choose the relaxation parameter 0 corresponding to T1 = 1.5 ms, which
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Figure 2. (a1) Coherent driven oscillation of NV center with a single microwave
field. The Rabi frequency is �1 = 40 MHz. The blue curve is the experimental
data, and the red one is the decay envelope from numerical simulation. We
thereby estimate that the relative amplitude fluctuation is about 2.4 × 10−3 (i.e.
98 kHz), and the decay time is about 2.3µs. (a2) Numerical simulation for the
decay of Rabi oscillation under different drivings: 40 MHz (purple, rectangle)
and 20 MHz (blue, circle). For comparison, we also plot the results assuming
that there is no microwave fluctuation: 40 MHz (red, rectangle) and 20 MHz
(green circle). (b) Persistent Rabi oscillation by adding a second-order driving
field, the intensity of which is ten times weaker than the first driving (�1 =

20 MHz). The four panels shows the very slow decay of Rabi oscillation beyond
1000µs.

is close to the value of the diamond used in our experiment. The numerical result agrees
well with the experimental data and fits a Gaussian decay envelope S1(τ )= exp (−b2

1τ
2/2)

for slow fluctuating fields [36], see figure 2(a). We thus estimate that the decay rate of
Rabi oscillation is b1 ≈ 98 kHz, and the decay time scale is τ1 = 2.3µs defined by S(τ1)=

e−1. We stress that the fast decay is mainly due to intensity fluctuations of the microwave
field. To support this observation, we have simulated the decay of coherence for two
different Rabi frequencies �1 = 20 and 40 MHz. For comparison, we also perform simulations
assuming that there is no microwave fluctuation. Our results are shown in figure 2(a2), which
provides evidence that the fast decay mainly stems from the microwave fluctuation, while
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the residual effect of magnetic noise from the slow spin bath formed by 13C nuclei is
comparatively small.

To demonstrate the working principle of our concatenated continuous dynamical
decoupling, we add a second-order driving field with a weaker amplitude than the first driving6.
We first show that the CCD scheme can sustain Rabi oscillations by applying a second-order
driving field, the intensity of which is ten times weaker than the first driving field. In figure 2(b),
we observe coherent Rabi oscillation after 300, 500, 800, 1000µs, and find that it decays
significantly more slowly than the one using only a single driving field, see figure 2(a) for
comparison. Our experimental data thus demonstrate that the effect of the fluctuation of the first
driving field can be significantly suppressed by a second-order driving field; see the appendix
for more discussion.

We further demonstrate a significant improvement of the dephasing time. In our
experiment, the concatenated driving fields are generated using arbitrary waveform generator.
With a second-order driving field about 103 times less intense than the first-order driving, we
observed a prolongation of the coherence time by an order of magnitude from T2 = 2.3µs to
T2

∼= 21µs (see footnote 6) as estimated by numerical fitting the decay of beat oscillation, see
figure 3(a). We stress that such a weak additional driving significantly improves the coherence
time, mainly by decoupling the amplitude fluctuation of the first driving field (and incidentally
further suppressing the residual effect of magnetic noise). By increasing the amplitude of the
second-order driving one can suppress the effect of the fluctuation in the first driving field
more effectively; however, this will result in larger fluctuations of the second-order driving
itself. The compromise between these two effects leads to the optimal choice of second-
order driving. This observation has also been confirmed by our experiment data, from which
we estimate the coherence times for various strength of the second-order driving field, see
figure 3(c) (red curve with error bars). In the experiment we used the simplified second-
order field Hd2 = h̄�2 cos [(ω +�1) (t)+ϕ]σx for which some counter-rotating terms persist
that limit the achievable coherence time. This limitation can be overcome by using the refined
second-order field given in equation (2), as confirmed by our numerical simulation shown in
figures 3(b) and (c) (red squares). These simulations use the parameters estimated from the
experiment and exhibit the same qualitative features as the measured data shown in figure 3(c)
(red curve with error bars). To further extend T2, one would need to apply higher-orders driving
fields. Our calculations show that (see figure 3(d)) the coherence time can approach the T1 limit
(T1 = 1.5 ms in the present example) with the fourth-order scheme (i.e. adding the driving fields
as in equations (4)–(5)) for the current experiment parameters. The general ability of high-
order schemes to suppress decoherence from the environment and the driving fields is valid
on condition that the microwave fluctuation is slow (i.e. its bandwidth is smaller 1/T1), which
is usually the case in experiments. This implies that the width of the microwave fluctuation
spectrum (which is proportional to the inverse of the correlation time of fluctuation) is relatively
small. Thus, high-order driving fields can still effectively suppress the effect of the proceeding
field fluctuation as long as their amplitude is much larger than the width of the microwave noise
spectrum.

6 In our experiment, we use the simplified second-order field as Hd2 = h̄�2 cos [(ω +�1)t +ϕ]σx , which leads to
a similar second-order effective Hamiltonian. The estimated improvement is, however, slightly smaller than those
obtained for the numerical simulations using the driving fields in equation (2) due to the presence of counter-
rotating terms that are cancelled for the fields in equation (2).
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Figure 3. (a) The measured state population of the sublevel ms = 0 as a function
of the evolution time τ . The blue curve is the experimental data, and the purple
curve is numerical simulation using the parameters estimated from the Rabi
experiment of single driving. The Rabi frequency of the first driving is �1 =

40 MHz, and the intensity of the second driving is three orders of magnitude
weaker. (b) Numerical simulation for the decay of coherence using first- and
second-order driving scheme using the field in equation (2). (c) The coherence
times extracted from our experimental data (red curve with error bars) of the
second-order dressed qubit as a function of the amplitude of the second-order
driving, and the further improved coherence times (purple, square) calculated
from numerical simulation with a refined second-order field in equation (2) as a
function of the amplitude of the second-order driving. The error bars are obtained
with more than 95% confidence. (d) The scaling of the coherence time with K th-
order driving fields, see equations (4) and (5). The relaxation time is T1 = 1.5 ms.
In (b)–(d), the parameters are�1 = 40 MHz and�K =�K−1/30 for K = 2, 3, 4.

4. Coherent manipulation of a dressed qubit within the CCD scheme

Dressed qubits can be coherently manipulated by external driving fields and coupled with each
other via electron spin dipole interaction. For single qubit rotation, we can use the following
radio-frequency field:

Hsg = h̄�

[ ∏
k=1,...,n

cos(�kt +ϕk)

]
σz. (7)

To demonstrate explicitly how this works, we consider the second-order dressed qubit
as an example and apply the field Hsg = h̄� cos (�1t) cos (�2t +ϕ2)σz. In the first-order
interaction picture with respect to the original Hamiltonian H (1)

0 =
h̄ω
2 σz, the coupling can be
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Figure 4. (a) Coherent manipulation of a second-order dressed qubit: the
population of the dressed state |↓̃〉 ≡ | ↓〉y as a function of time τ . The param-
eters are �1 = 40 MHz, �2 =�1/30 and �=�2/15, φ2 = 0, see equation (7).
(b) The fidelity of two-qubit coupling with respect to the corresponding
ideal (noiseless) effective coupling Hamiltonian. The dipole–dipole interaction
strength is J = 50 kHz. The other parameters are �1 = 40 MHz, �2 =�1/30.

written as

H (1)
c =

h̄�1

2
σx + h̄�2 cos(�1t)σy + h̄� cos(�1t) cos(�2t +ϕ2)σz. (8)

In the second-order interaction picture with respect to H (2)
0 =

h̄�1
2 σx , and using the rotating wave

approximation, it becomes

H (2)
c =

h̄�2

2
σy +

h̄�

2
cos (�2t +ϕ2)σz. (9)

By choosing appropriate phase ϕ2, one can implement general rotations of the second-order
dressed qubit (encoded in the eigenstates of σy: |↑〉y and |↓〉y), e.g. see figure 4(a). Similar
results can be obtained for general higher-order dressed qubits. In fact, this also implies the
possibility to measure the amplitude of the radio-frequency field � by Rabi-type spectroscopy
with the robust dressed qubit, e.g. see equation (9). The sensitivity is determined by the
coherence time of the dressed qubit [25, 37]. Using concatenated continuous dynamical
decoupling, the coherence time of the dressed qubit is possible to be prolonged to the relaxation
time, and one could thus in principle construct a magnetometer with the sensitivity scaling
with 1/

√
T1. We would also like to point out that CCD can also be combined with the

sensing protocols in biological environments proposed in [26], where the noisy biological
environment requires strong driving. With the robust energy gap provided by the CCD scheme,
the Hartmann–Hahn condition [38] will be more stably matched, and thus the measurement of
the coupling between NV center and the target nuclear spin will be more efficient and precise.

5. Coherent coupling between CCD dressed qubits

Regarding the coupling between dressed qubits, we again take the second-order decoupling
scheme as an example. The dipole–dipole interaction, e.g. between NV electron spins, is
described by

Hd−d = J (3Sa
z Sb

z − ESa · ESb), (10)
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where S is the spin-1 operator of NV centers. In the first-order interaction picture, the
electron–electron interaction with the driving fields becomes [12]

H (1)
d−d = 2J Sa

z Sa
z + h̄�a

1σ
a
x + h̄�b

1σ
b
x + h̄�a

2 cos(�a
1t)σ a

y + h̄�b
2 cos(�b

1t)σ b
y . (11)

We use the two sublevels |ms = −1〉 ≡ |↑〉 and |ms = 0〉 ≡ |↓〉 of NV electron spin as a qubit.
The above interaction in the qubit Hilbert subspace can be written as

H (1)
d−d =

J

2

(
σ a

z σ
b
z + σ a

z + σ b
z

)
+

h̄�a
1

2
σ a

x +
h̄�b

1

2
σ b

x + h̄�a
2 cos(�a

1t)σ a
y + h̄�b

2 cos(�b
1t)σ b

y , (12)

where σx , σy and σz are Pauli operators in the spin up and down basis. The effective Hamiltonian
in the second-order interaction picture with respect to H (d)

0 = h̄�a
1σ

a
x + h̄�b

1σ
b
x is

H (2)
d−d =

J

4

(
σ a

y σ
b
y + σ a

z σ
b
z

)
+

h̄�a
2

2
σ a

y +
h̄�b

2

2
σ b

y . (13)

The effective entangling coupling between dressed qubits is thus feasible (as in equation (13)),
and can be exploited to construct two-qubit gates [39]. We use the following quantity to
characterize the fidelity [40] between the coherent coupling of two dressed qubits and the
evolution (Uideal) from the ideal (noiseless) effective coupling Hamiltonian

F (Uideal,M)=
1

16

[
4 +

1

5

∑
µ,ν

tr
[(

Uideal

(
σµ ⊗ σν

)
U †

ideal

)
M

(
σµ ⊗ σν

)]]
, (14)

where σµ, σν = I, σx , σy, σz and
(
σµ ⊗ σν

)
6= I ⊗ I. We numerically simulate the dynamics M

by solving the master equation in equation (A.9), including both the external magnetic noise
and microwave field fluctuations. The result is shown in figure 4(b), which demonstrates that
the CCD scheme can also be helpful in the protection of two-qubit coupling.

6. Potential applications of CCD schemes

The CCD scheme can be combined with various quantum information processing tasks, making
them robust not only against noise, but also the fluctuations of decoupling fields. The coherent
manipulation of the nth order dressed qubit can be implemented with a radio frequency field, see
section 4. Such a qubit encoded with the sequential dressed states has an ultralong coherence
time limited only by its T1 time, and thereby can be exploited to construct a single-spin
magnetometer [37] to probe a weak oscillating magnetic field with an improved sensitivity. The
scheme can also be beneficial for the construction of a precise noise spectrometer [41–43]. We
note that the inhomogeneity over an ensemble of quantum systems (namely spatial fluctuation)
leads to dephasing of the ensemble collective state. However, if the amplitudes of the first
order driving field exceeds the disorder, then the effect of spatial fluctuations is suppressed
(see e.g. [44] for a detailed discussion). This again points to the usefulness of CCD as it allows
us to increase the driving field amplitudes without suffering from the concomitant noise due to
amplitude fluctuations.

7. Summary

We have introduced the concept of CCD and implemented it experimentally. Using an NV center
in diamond we demonstrated the superior performance of concatenated continuous dynamical
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decoupling compared to single driving fields in extending coherence times of a dressed qubit.
A qubit encoded in the concatenated dressed states is robust against both environmental
dephasing noise and intensity fluctuation of driving fields. Our schemes can be applied to a wide
variety of quantum systems where they may find applications in the construction of nanoscale
magnetometry and imaging, e.g. with the NV center in diamond, and in the construction of
fault-tolerant quantum gates that are protected against noise and control errors.
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Appendix

A.1. Driving fields for general concatenated continuous dynamical decoupling

In our concatenated scheme, in general we can apply nth order continuous driving fields on
the condition that two subsequent drivings describe rotations about orthogonal axes in the
interaction picture (see the example for second order driving fields for illustration). The original
system Hamiltonian is

H0 =
h̄ω

2
σz +

h̄δb(t)

2
σz, (A.1)

where σz = (|↑〉 〈↑| − |↓〉 〈↓|) and we have explicitly written the magnetic noise term δb(t). The
first-order driving field (in the lab frame) is

Hd1 = h̄�1[1 + δ1(t)] cos (ωt)σx , (A.2)

where δ1(t) represents the amplitude fluctuation of the first order driving field. In the interaction
picture with respect to H (1)

0 =
h̄ω
2 σz, we have the following effective Hamiltonian as

H (1)
I =

h̄�1

2
[1 + δ1(t)]σx +

h̄δb(t)

2
σz. (A.3)

The first-order dressed states are the eigenstates of σx : |↑〉x =
1

√
2
(|↑〉 + |↓〉) and |↓〉x =

1
√

2
(|↑〉 − |↓〉). The effect of the magnetic noise term h̄δb(t)

2 σz will induce transitions between
the dressed states |↑〉x and |↓〉x , whose rate can be estimated by the noise spectrum of δb(t)
at the transition frequency h̄�1. The microwave fluctuation δ1(t) causes the dephasing of the
dressed states. To suppress the effect of fluctuations in the amplitude of the first-order driving,
we apply a second-order driving field (in the labe frame) as

Hd2 = 2h̄�2[1 + δ2(t)] cos
(
ωt +

π

2

)
cos(�1t)σx . (A.4)

With such an additional driving field, the effective Hamiltonian with respect to H (1)
0 =

h̄ω
2 σz (as

in equation (A.2)) becomes

H (1)
I =

h̄�1

2
[1 + δ1(t)]σx + h̄�2[1 + δ2(t)] cos(�1t)σy +

h̄δb(t)

2
σz. (A.5)
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In the second-order interaction picture with respect to H (2)
0 =

h̄�1
2 σx we have

H (2)
I =

h̄�2

2
[1 + δ2(t)]σy +

h̄�1

2
δ1(t)σx , (A.6)

where σy = −i |↑〉 〈↓| + i |↓〉 〈↑| and the second-order dressed states are |↑〉y =

√
1
2 (|↑〉 + i |↓〉)

and |↓〉y =

√
1
2 (|↑〉 − i |↓〉). For simplicity, here we only explicitly write the noise terms of

δ1(t) and δ2(t) in equation (A.6), nevertheless we stress that we do take it into account in our
numerical simulations. Similarly, the fluctuation of the first driving field h̄�1

2 δ1(t)σx induces the
transitions between the second-order dressed states |↑〉y and |↓〉y . Its effect can be characterized
by the power spectrum of δ1(t) at the transition frequency h̄�2. In the above derivations,
we have adopted the rotating wave approximations which hold when �2 ��1 � ω, which
are fulfilled in the present context. In a similar way, one can find the required driving fields
for higher-order decoupling. For example, the third- and fourth-order driving fields can be
provided by

Hd3 = 2h̄�3 cos(ωt) cos(�2t)σx and Hd4 = 4h̄�4 cos(�1t) cos(�3t) cos
(
ωt +

π

2

)
σx .

(A.7)

The general higher-order driving fields can be written in a similar way as in equations (4) and
(5) of the main text.

A.2. Numerical simulations of persistent Rabi oscillation

In our experiment, we apply a simplified second-order field as Hd2 = h̄�2 cos [(ω +�1) t +ϕ]σx ,
which leads to the second-order effective Hamiltonian as

H (2)
I =

h̄�2

4

(
sinϕσy − cosϕσz

)
. (A.8)

We initially prepare NV spin in the state |↓〉 ≡ |ms = 0〉, which is one of the second-order
dressed states if the relative phase ϕ = 0. As we point out in the main text, the fluctuation
of the first driving field would induce transitions of second-order dressed states, which can
be suppressed due to the energy penalty induced by the second-order driving field. This is
the working principle of CCD scheme. In figure 2(a) of the main text, our experimental
data demonstrates this principle by the observation of the persistent oscillation of the state
|↓〉 ≡ |ms = 0〉 population. It represents the long lifetime of the second-order dressed states,
which is dependent on the relaxation time T1 of the bare spin states and the residual
effect of the first driving field fluctuation. Our experimental data thus demonstrates that
the effect of the first driving field fluctuation can be significantly suppressed by a second-
order driving field. We have performed numerical simulation, as shown in figure A.1, with
a second-order driving field using the estimated parameters. We note that in the numerical
simulation we fixed the relative phase, thus the contrast of Rabi oscillation is twice of
figure 2(b) in the main text. Nevertheless, the essential feature of the results from our numerical
simulation, namely the slow decay of Rabi oscillation, agrees well with the experimental
data.
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Figure A.1. Numerical simulation of persistent Rabi oscillation by adding a
second-order driving field, the intensity of which is ten times weaker than the
first driving (�1 = 20 MHz). The plot shows that Rabi oscillation can sustain for
much longer time than one single driving field. The four panels show the very
slow decay of the Rabi oscillation beyond 300µs. The decay is mainly due to the
relaxation of NV center itself, we use the value of the relaxation time T1 = 1.5 ms
in the numerical simulations. The relative phase is fixed as ϕ = 0.

A.3. Numerical simulation of system dynamics with concatenated driving

We model the magnetic noise and the microwave fluctuation by Ornstein–Uhlenbeck
processes [28]. The system dynamics is described by the following quantum master equation:

d

dt
ρ = −i[H(t), ρ] +

0

2

∑
a=σ±

(2a†ρa − ρaa†
− aa†ρ), (A.9)

where H(t) is the total Hamiltonian including both the magnetic noise and the driving
fields with fluctuations. The Lindblad operators represent the relaxation process with the
rate 0 corresponding to T1 = 1.5 ms which is close to the value of the diamond used in
our experiment. The relaxation in the above master equation takes the high temperature,
which is valid for our experiment at room temperature. We generate 2000 realizations of
Ornstein–Uhlenbeck processes with the exact simulation algorithm [45] for the magnetic noise
δb(t) and the microwave fluctuations δi(t). We choose the correlation time for the spin bath as
τc = 25µs. The fluctuation of microwave filed amplitude is usually much slower and we use
the value of correlation time τm = 1 ms. We first simulated numerically the experimental data
in figure A.2(a) for the case of Rabi oscillation with one single driving field. The numerical
result agrees well with the experimental data and the Gaussian fit of the decay envelope (arising
from slow noise [36]) S1(τ )= exp (−b2

1τ
2/2) (see figure 2(a) of the main text). This supports

that an Ornstein–Uhlenbeck process serves as a good model for the driving field fluctuation.
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Figure A.2. Extrapolation curves from numerical simulations for the decay
of coherence f (τ ) with the first- (a), second- (b), third- (c) and fourth-order
(d) continuous dynamical decoupling. The Rabi frequency is �1 = 40 MHz and
�K =�K−1/30 for K = 2, 3, 4, and the parameter 0 is chosen for T1 = 1.5 ms.

We estimate that the relative amplitude fluctuation of the driving field is about 2.4 × 10−3. We
use these estimated parameters for the numerical simulations of higher-order driving schemes
by solving the master equation in equation (A.9). In figure A.2, we plot the coherence decay of
the dressed qubit quantified by

f (τ )= |〈ψI(0)|ψI(τ )〉| , (A.10)

with |ψI(0)〉 = |↓〉, which is a coherent superposition of the dressed qubit (|↑〉x/y and |↓〉x/y),
and |ψI(τ )〉 is the state of the dressed qubit after time τ . The results in figure A.2 (see also
figure 3(d) in the main text) shows the scaling of the coherence time with high-order driving and
the possibility to approach T1. We remark that for the first- and second-order drivings, the decay
envelop is more like Gaussian, while for third- and fourth-order drivings the decay envelope
becomes exponential (arising from the relaxation) as the effect of microwave fluctuations is
increasingly suppressed.
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[43] Álvarez G A and Suter D 2011 Measuring the spectrum of colored noise by dynamical decoupling Phys. Rev.
Lett. 107 230501

[44] Cai J-M, Jelezko F, Katz N, Retzker A and Plenio M B 2012 Long-Lived driven solid-state quantum memory
New J. Phys. 14 093030

[45] Daniel T Gillespie 1996 Exact numerical simulation of the Ornstein–Uhlenbeck process and its integral Phys.
Rev. E 54 2084

New Journal of Physics 14 (2012) 113023 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.93.130501
http://dx.doi.org/10.1126/science.1176496
http://dx.doi.org/10.1038/nphys1536
http://dx.doi.org/10.1088/0953-8984/18/21/S08
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nphys1075
http://dx.doi.org/10.1103/PhysRev.128.2042
http://dx.doi.org/10.1103/PhysRevA.65.040301
http://dx.doi.org/10.1016/j.physleta.2007.03.068
http://dx.doi.org/10.1038/nphys1994
http://dx.doi.org/10.1103/PhysRevLett.107.170504
http://dx.doi.org/10.1103/PhysRevLett.107.230501
http://dx.doi.org/10.1088/1367-2630/14/9/093030
http://dx.doi.org/10.1103/PhysRevE.54.2084
http://www.njp.org/

	1. Introduction
	2. Concatenated continuous dynamical decoupling
	3. Experimental demonstration of the concatenated continuous decoupling (CCD) scheme
	4. Coherent manipulation of a dressed qubit within the CCD scheme
	5. Coherent coupling between CCD dressed qubits
	6. Potential applications of CCD schemes
	7. Summary
	Acknowledgments
	Appendix
	A.1. Driving fields for general concatenated continuous dynamical decoupling
	A.2. Numerical simulations of persistent Rabi oscillation
	A.3. Numerical simulation of system dynamics with concatenated driving

	References

