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Abstract. In a recent publication (Wang and Clerk 2012 Phys. Rev. Lett.
108 153603), we demonstrated that one can use interference to significantly
increase the fidelity of state transfer between two electromagnetic cavities
coupled to a common mechanical resonator over a naive sequential-transfer
scheme based on two swap operations. This involved making use of a delocalized
electromagnetic mode which is decoupled from the mechanical resonator, a
so-called ‘mechanically dark’ mode. Here, we demonstrate the existence of a
new ‘hybrid’ state transfer scheme that incorporates the best elements of the
dark-mode scheme (protection against mechanical dissipation) and the double-
swap scheme (fast operation time). Importantly, this new scheme also does not
require the mechanical resonator to be prepared initially in its ground state.
We also provide additional details of the previously described interference-
enhanced transfer schemes, and provide an enhanced discussion of how the
interference physics here is intimately related to the optomechanical analogue of
electromagnetically induced transparency. We also compare the various transfer
schemes over a wide range of relevant experimental parameters, producing a
‘phase diagram’ showing the optimal transfer scheme for different points in
parameter space.
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1. Introduction

The fields of optomechanics and electromechanics are interested in the physics of systems
where a mechanical resonator is coupled to either a driven optical cavity or a driven electronic
circuit. The interaction of an optical cavity and mechanical oscillation due to radiation pressure
or photon thermal effect has been studied in early experiments (see, e.g., [1, 2]). Over the
last few years, these fields have achieved significant progress—ground state cooling and
many-photon strong coupling have been realized in experiments on both optomechanical and
electromechanical systems [3–7]. As mechanical resonators can achieve strong coupling with
both microwave and optical cavities, this recent experimental progress may soon enable a new
powerful application of these systems: the ability to transfer quantum states or traveling photons
between optical cavities and microwave-frequency electrical systems. Such optomechanically
enabled state transfer could allow one to combine the complimentary advantages of both
microwaves and optics. For example, one could imagine using a superconducting qubit to
prepare a highly non-classical state of a microwave cavity (as recently demonstrated in [8]),
and then transfer this state to an optical cavity, which provides an interface for long-distance
information propagation via photons. Optomechanical state transfer could also serve as a key
component in quantum information processing networks which combine a variety of different
elements over long distances (see, e.g., [9]).
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In such schemes, one would be interested in the ability to transfer intra-cavity states, as
well as the states of itinerant photons incident on one cavity. To be explicit, by intra-cavity state
transfer we mean that the state to be transferred is the initial (t = 0) state of the first cavity; this
could even be a non-classical state prepared by, e.g., having cavity 1 interacting with a qubit at
t < 0. The goal now is to design a protocol so that cavity 2 ends by being in this same state.
In contrast, for itinerant photon transfer schemes, the goal is to have a wave packet incident on
cavity 1 be faithfully reproduced at the output of cavity 2. The bandwidth of this wave packet
could be very much smaller than the damping rates of the cavities. Such conversion of itinerant
photons of completely different wavelengths has various intriguing applications and has been
discussed in several recent works [15, 17, 18]. In this paper, we will analyze both of the two
transfer tasks.

The problem of transferring quantum states between a mechanical resonator and cavity
photons was the subject of several early studies [10, 11], utilizing strategies well known in the
field of cavity QED [12]. While the systems considered there involve only two resonators (an
optical cavity and a mechanical resonator), similar approaches could be used in a three-resonator
system where, e.g., both a microwave and an optical cavity are jointly coupled to a mechanical
resonator; this is the subject of more recent studies [13–15]. For the problem of transferring
intra-cavity states, these works consider the use of two successive ‘swap’ operations in a two-
cavity optomechanical system (figure 1). One pulses the optomechanical interactions such that,
initially, only the first cavity and the mechanical resonator are coupled. The coupling is then left
on for just long enough to exchange the states of the first cavity and the mechanical resonator.
This is then repeated to exchange the mechanical and the second cavity states (i.e. cavity 1—
mechanical resonator coupling is turned off; cavity 2—mechanical resonator coupling is turned
on) [13, 14]. Note that single-swap operations between an optical cavity and mechanical
resonator have recently been demonstrated experimentally [5, 16]. While straightforward, the
‘double-swap’ scheme for intra-cavity state transfer has the drawback that as the state to be
transferred occupies the mechanical resonator during the transfer protocol, it will be strongly
degraded by any thermal noise driving the mechanical resonator. This remains true even if one
first prepares the mechanical resonator in the ground state.

In a recent work [17], we addressed the above problem by now looking at the two-cavity
optomechanical system as a true three-mode system, as opposed to only considering two modes
(i.e. one cavity mode and the mechanical resonance) at a time. One finds that there exists, in
general, a delocalized cavity eigenmode of the coherent optomechanical Hamiltonian which is
decoupled from the mechanical resonator, the so-called ‘mechanically dark’ mode. Using this
mode enables high-fidelity state transfer even in the presence of strong mechanical dissipation;
similar ideas were also studied in [18]. In this paper, we provide additional technical details
of the transfer protocols discussed in [17], in particular details of the analytic calculation of
transfer fidelities, as well as a thorough discussion of the dependence of the transfer fidelity on
the initial state of the mechanical resonator. Further, we introduce a new scheme to deal with
one of the key difficulties of the adiabatic transfer scheme discussed in [17], namely that to
adiabatically use the dark mode for state transfer, the transfer protocol must be very slow, and
hence is extremely susceptible to degradation from cavity losses. The new scheme we describe is
a so-called ‘hybrid’ scheme, as it only partially involves the dark-mode described above. While
this means that it is not completely immune to mechanical heating effects, we show that it allows
for a much faster transfer time, and is hence less susceptible to cavity losses. The hybrid scheme
also has the surprising advantage that it does not require the mechanical resonator to be initially
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prepared in its ground state; we provide a heuristic explanation for this insensitivity in the text.
As we analyze in detail in this paper, the hybrid scheme works best for the typical experimental
parameters where both cavity dissipation and mechanical noise are equally relevant. We make
a comparison between the different features of each intra-cavity state transfer scheme. We also
discuss the transfer of itinerant photons and the underlying optomechanical electromagnetically
induced transparency (EIT) mechanism.

The remainder of this paper is organized as follows. The basic system Hamiltonian and the
definition of the dark mode are discussed in section 2. In section 3, we introduce and describe
three basic schemes to implement intra-cavity state transfer: the double-swap scheme of [13]
(which does not use the dark mode), the adiabatic passage scheme of [17, 18] (which entirely
uses the dark mode) and the new hybrid scheme (which only partially uses the dark mode).
The fidelity and features of each scheme are analyzed. We also compare the three schemes
and provide a ‘phase diagram’ showing the optimal transfer scheme for various choices of
experimental parameters (optomechanical coupling dissipation, temperature, etc). In section 4,
we change the focus to now consider the state transfer of itinerant photons, that is, wave packets
incident on one of the two cavities; this expands upon the analysis given in [17]. Particular
attention is given to clarifying the connection between the high fidelities possible here and
the optomechanical analogue of EIT [19–21]. The conclusions and remarks are presented in
section 5.

2. Basics of the two-cavity optomechanical setup

2.1. The setup and Hamiltonian

For concreteness, we consider an optomechanical system where a single mechanical resonator
is simultaneously coupled to both an optical cavity and a microwave cavity via dispersive
couplings (see figure 1(a)); particular experimental realizations are discussed in [14, 15]. The
cavities interact with the mechanical resonator through the standard radiation pressure coupling
(h̄ = 1)

Ĥ int,i = gi b̂
†
i b̂i(â + â†), (1)

where b̂i is the annihilation operator of cavity i (i = 1, 2), â is the annihilation operator of the
mechanical resonator, gi is the single-photon optomechanical coupling strength to cavity i and
the mechanical frequency is ωM. Note that to date, almost all experimentally studied devices
are firmly in the limit of a weak single-photon optomechanical coupling, gi � κi , the exception
being experiments where the collective motion of cold atoms in a cavity acts as the effective
mechanical degree of freedom [22].

We further specialize to the standard situation where each cavity is strongly driven,
resulting in a large average photon number which serves to enhance the effective cavity-
mechanical resonator coupling. It is useful to separate the cavity state into a classical amplitude
b̃i plus a deviation d̂ i which accounts for the effects of noise and the interaction with the
mechanics:

b̂i = e−iωd,i t(b̃i + d̂ i), (2)

where ωd,i is the drive frequency of cavity i . The classical amplitude b̃i is simply proportional
to the amplitude of the laser drive applied to cavity i ; without loss of generality, we take it to be
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(a) (b) 

Figure 1. (a) The two-cavity optomechanical system where a mechanical
resonator (red bar in the middle) is coupled simultaneously to an optical cavity
(the Fabry–Perot cavity in blue) and a microwave cavity (the LC circuit in
green). Possible experimental realizations of this setup have been described
in detail in [14, 15]. (b) The energy diagram of the three eigenmodes of the
system for G i = 0 (left) and G i 6= 0 (right). G i is the driven coupling strength
of the mechanical resonator to the two cavities which is tunable with the drives
(see equation (3) and the following text for more details). The middle red line
corresponds to the mechanically dark mode, whose frequency is independent of
the coupling.

√
G2

1 + G2
2 is the energy difference between the dark mode and the

two mixed modes.

real and positive. d̂ i can be interpreted as the cavity i annihilation operator in a frame displaced
by the classical amplitude. For a large drive b̃i � 1 and small single-photon optomechanical
couplings, we can safely neglect terms in the displaced frame which are quadratic in the
displaced cavity operators, resulting in purely linear coupling between each cavity and the
mechanical resonator (see, e.g., [23, 24]). Finally, we work in an interaction picture with respect
to the two cavity drives. The resulting Hamiltonian in this displaced interaction picture (in the
absence of any dissipation) reads

Ĥ 0 = ωMâ†â −

∑
i=1,2

[
1i d̂

†
i d̂ i − G i

(
â†d̂ i + d̂†

i â
)]
. (3)

Here, 1i = ωd,i −�i is the detuning of the drive applied to cavity i and �i is the cavity
resonance frequency; we have assumed detunings near the red-detuned mechanical sideband
of each cavity (i.e. 1i ∼ −ωM) and anticipated taking the good cavity limit κi � ωM (κi is the
energy damping rate of cavity i), which allows us to make a rotating-wave approximation in
writing the optomechanical interaction. The driven (or many-photon) optomechanical coupling
between the mechanical resonator and the cavity i is denoted by G i = b̃i gi (we let G i > 0
throughout the paper); note that b̃i is proportional to the drive amplitude applied to cavity i
and thus can be controlled in time.

We can see quite clearly from equation (3) that in our displaced frame, the optomechanical
Hamiltonian has exactly the form we need for state transfer: the optomechanical interaction
can move quanta from each cavity to the mechanical resonator, and vice versa. We will thus be
interested in quantum state transfer in the displaced frame of each cavity. Throughout this paper,
the quantum state to be transferred is represented by d̂ i . This state of interest thus sits atop a
large classical coherent state |b̃i〉 which is used to generate a large effective optomechanical
coupling. Equivalently put, if we want to transfer a given state |ψ〉 from cavity 1 to cavity 2,
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cavity 1 should be initially prepared in a state |ψ ′
〉 which is just the state |ψ〉 displaced an

amount b̃i in phase space. The role of this phase-space displacement is solely to achieve a large
effective optomechanical coupling. Note that these two parts of the cavity state will be spectrally
separated: the background coherent-state part of the cavity field used to generate a coupling is
concentrated at the red-detuned sideband (i.e. �i −ωM), whereas the state to be transferred is
located roughly within a cavity bandwidth κ of the cavity resonance frequency �i .

We now turn to including dissipation in our system. The two cavities and the mechanical
resonator are assumed to be coupled to independent Ohmic baths that describe both internal
loss and the couplings to the extra-cavity modes used to drive each cavity. For simplicity,
we take each cavity to be single sided (i.e. each cavity has a single input–output port). The
master equation for the reduced density matrix ρ̂ (t) describing both cavities and the mechanical
resonator takes the form

˙̂ρ (t)= −i [Ĥ , ρ̂ (t)] +LCρ̂ (t)+LMρ̂ (t) , (4)

where the dissipation can be described by the Lindblad-type dissipator

LCρ̂ (t)=

∑
i=1,2

κi (Ni + 1)D(d̂ i)ρ̂ (t)+
∑
i=1,2

κi (Ni)D(d̂†
i )ρ̂ (t) , (5)

LMρ̂ (t)= γ (NM + 1)D
(
â
)
ρ̂ (t)+ γ (NM)D

(
â†
)
ρ̂ (t) . (6)

Here γ (κi ) denote the energy decay rate of the mechanical resonator (cavity i), and NM (Ni )
denote the bath temperature, expressed as the number of thermal quanta, of the bath coupled to
the mechanical resonator (cavity i). The super-operator D( Â) is defined as

D( Â)ρ̂ (t)≡ Âρ̂ (t) Â†
−

1
2{ Â† Â, ρ̂ (t) }+. (7)

Finally, note that we are assuming throughout the paper that there is negligible phase noise in
the large driving amplitudes on each cavity used to generate the optomechanical couplings G i .
The effect of such noise on coherent transfer was studied in [25, 26]; the resulting requirements
are similar to those needed for cavity cooling [26], and are thus within the reach of experiment.

2.2. Mechanically dark mode

To understand how interference could be used to enhance mechanically mediated state transfer
in our system, we first note that the mechanical resonator only couples to a particular linear
combination of the cavity modes. Defining new canonical mode operators

ĉbr(t)≡
1√

G2
1(t)+ G2

2(t)
(G1(t)d̂1 + G2(t)d̂2) (8)

and

ĉdk(t)≡
1√

G2
1(t)+ G2

2(t)
(−G2(t)d̂1 + G1(t)d̂2), (9)

the Hamiltonian equation (3) can be rewritten as

Ĥ 0 = ωM(â
†â + ĉ†

brĉbr + ĉ†
dkĉdk)+

√
G2

1 + G2
2(â

†ĉbr + ĉ†
brâ), (10)

where we have assumed that the two cavities are each driven at the red-detuned sideband
1i =1= −ωM. We see that the ‘mechanically bright’ mode described by ĉbr is coupled with
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the mechanics, whereas the ‘mechanically dark’ mode described by ĉdk is decoupled from the
mechanics.

The above Hamiltonian is trivially diagonalized as

Ĥ 0 =

∑
j=+,−,dk

h̄ω j ĉ
†
j ĉ j , (11)

where

ĉ±(t)≡
1

√
2

(
ĉbr (t)± â

)
(12)

describes hybridized modes formed from the mechanical resonator â, and the mechanically
bright cavity mode ĉbr (t), and the mode eigenfrequencies are given by

ω± = ωM ±

√
G2

1 + G2
2, (13)

ωdk = ωM. (14)

The energy structure of the three modes is shown in figure 1(b).
As the dark mode ĉdk(t) of the two cavities does not couple to the mechanical resonator

(see equation (10)), one would expect it to have immunity against the effects of mechanical
dissipation (see equation (6)). This simple fact will provide the foundation for several state
transfer schemes that are robust against mechanical dissipation. However, it is worth noting that
this protection is not exact when one considers the case of asymmetric cavity dissipation, that
is, κ1 6= κ2. One can easily understand this by just looking at the damping effects of the cavity
dissipation. The Heisenberg–Langevin equation of motion for each cavity mode operator will
have a damping term of the form

d

dt
d̂ i = (−iωM − κi/2) d̂ i + · · · . (15)

Some simple algebra now shows that if we re-write these expressions in the eigenmode basis,
then for κ1 6= κ2, the damping terms in the equation of motion will mix the dark cavity mode
and the bright cavity mode. The result is that the mechanical noise can now corrupt the dark
mode: mechanical noise will heat the coupled bright mode, and this noise will then drive the
cavity dark mode via the cavity damping terms. We can see this more explicitly by writing the
super-operator of cavity dissipation in the eigenmode basis:

LCρ̂ (t)=
κ1 (N1 + 1)+ κ2 (N2 + 1)

2
(D(ĉbr)ρ̂(t)+D(ĉdk)ρ̂(t))

+
κ1 N1 + κ2 N2

4
(D(ĉ†

br)ρ̂ (t)+D(ĉ†
dk)ρ̂ (t))

+
κ1 (N1 + 1)− κ2 (N2 + 1)

2
F(ĉbr, ĉ†

dk)ρ̂ (t)

+
κ1 N1 − κ2 N2

2
F(ĉ†

dk, ĉbr)ρ̂ (t) (16)

with the super-operator defined as

F( Â, B̂)ρ̂ (t)≡ Âρ̂ (t) B̂ −
1
2{B̂ Â, ρ̂ (t) }+. (17)
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The last two lines of equation (16) represent the mixing of the bright and dark modes; these
terms vanish when both κ1 = κ2 and N1 = N2. This mixing effect leads to effective heating of
the dark mode which is a factor ∼ (κ1 − κ2)/G smaller than the heating of the mechanically
bright cavity mode. While the mechanically dark mode is only completely immune from the
mechanical noise for completely symmetric dissipation, we will show that schemes utilizing it
can still be highly effective even when there are deviations from this perfect symmetry condition.
Note that a definition of the dark mode for κ1 6= κ2 based on a perturbative treatment of the cavity
damping asymmetry was discussed in [18].

3. Intra-cavity state transfer

We first consider protocols that allow the two-cavity optomechanical system in figure 1 to be
used to transfer intra-cavity states. The initial state of interest is prepared in cavity 1, and the goal
is to have this state end up in cavity 2 at the end of the transfer protocol with a maximal fidelity.
We will discuss three different schemes to implement such a transfer process: the double-swap
protocol (which does not use the dark mode), the adiabatic passage protocol (entirely based on
the dark mode) and the hybrid swap protocol (which only partially uses the dark mode). In the
absence of any cavity or mechanical dissipation, all these schemes allow transfer with perfect
fidelity. However, in the presence of dissipation, this is not so; moreover, each scheme has its
own relative merits and disadvantages versus the different kinds of system dissipation. We will
discuss this in what follows, with the goal of providing insight into what is the optimal strategy
given a certain set of system parameters.

In order to quantify the performance of a transfer protocol, we consider the Ulhmann
fidelity F [27],

F ≡

(
Tr[(

√
ρ̂iρ̂f

√
ρ̂i)

1/2]
)2
, (18)

where ρ̂i (ρ̂f) denote the density matrix of initial state to be transferred (the final state in cavity
2). Note that we will optimize the fidelity over simple rotations in phase space (so that if ρ̂f is a
rotated version of ρ̂i, F = 1).

We will begin by considering the simple case of transferring a pure Gaussian state between
the two cavities (i.e. a pure state whose Wigner function is Gaussian). For such states, simple
analytic expressions can be derived for the transfer fidelity [17, 28], allowing quantitative insight
into the various physical processes that degrade transfer. Starting with an initial pure Gaussian
state in cavity 1, the transfer fidelity F takes the general form (for details, see appendix A)

F =
1

1 + n̄h
exp

(
−

λ2

1 + n̄h

)
. (19)

F depends on just two positive-definite parameters n̄h and λ. n̄h can be regarded as an effective
number of thermal quanta which quantifies the heating of the state during the transfer protocol.
This heating can arise both from the noise emanating from the cavity and mechanical dissipative
baths and from any initial thermal population in the mechanical resonator. In contrast, λ
characterizes the deleterious effects of amplitude decay during the state transfer protocol, i.e.
the decay of the average of 〈d̂〉. Efficient transfer requires minimizing both effects.

The values of n̄h and λ depend on both the nature of the initial Gaussian state and the
precise nature of the time evolution associated with the transfer protocol. The three possible
protocols correspond to different time dependences of the optomechanical couplings G1(t) and
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1st 2nd 

(a) double swap (c) hybrid scheme (b) adiabatic passage 

G1 (t)
G1,max

G2,max

G2 (t)

0 0 0t t t

Figure 2. Schematics for the three intra-cavity state transfer schemes considered
in this paper. Top panel: the curves in the boxes show the required time depen-
dences of the two optomechanical couplings in each scheme: (a) double-swap,
(b) adiabatic passage and (c) hybrid scheme. G i (i = 1, 2) is the optomechanical
coupling to cavity i . The brown dashed line denotes the maximum value of the
coupling strength G i,max. Lower panel: schematics illustrating how the transfer
works in each scheme. Here the blue, red and green dots represent (respectively)
cavity 1, the mechanical resonator and cavity 2; the wave packet in cavity 1 rep-
resents the state to be transferred. Arrows indicate the optomechanical couplings,
with the size indicating their magnitude.

G2(t), as shown in figure 2. In the following subsections, we will discuss the behavior of n̄h, λ

and the fidelity F for each of the three intra-cavity transfer schemes.

3.1. Double-swap protocol

As already discussed in the introduction, the most straightforward manner of exploiting
equation (3) for state transfer is via two sequential swap operations (see figure 2(a)). As
this scheme only involves at most two modes interacting simultaneously, the mechanically
dark mode introduced earlier plays no role in its physics. In order to provide a basis for the
comparison of the dark-mode schemes that follow, we both derive the fidelity for this scheme
and discuss why this scheme requires the mechanical resonator to be initially prepared in its
ground state.

Using the Hamiltonian in equation (3), the double-swap protocol requires that we first only
turn on the interaction between cavity 1 and the mechanical resonator (i.e. G1 (t)= G1,max and
G2 (t)= 0 as shown in figure 2(a)). In the absence of dissipation, the time evolution of cavity 1
and the mechanical mode reads

â(t)= e−iωMt(â (0) cos(G1,maxt)− i d̂1 (0) sin(G1,maxt)),

d̂1(t)= e−iωMt(d̂1 (0) cos(G1,maxt)− i â (0) sin(G1,maxt)).
(20)
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It thus follows that at a time t1 s = π/(2G1,max), cavity 1 and the mechanical resonator will have
perfectly exchanged their states (up to trivial phase factors) [10]:

â (t1 s)= e−iθ(t1 s)d̂1 (0) , d̂1 (t1 s)= e−iθ(t1 s)â (0) (21)

with θ(t)= ωMt +π/2. As the initial cavity-1 state is now in the mechanical resonator, one next
turns off G1 and turns on G2 = G2,max for a time t2 s = π/2G2,max to similarly exchange the
mechanical and cavity-2 states (see figure 2(a)). At the end of the operation,

d̂1(t1 s + t2 s)= e−iθ(t1 s+t2 s)d̂2(0), d̂2(t1 s + t2 s)= e−iθ(t1 s+t2 s)d̂1(0). (22)

Thus, without dissipation, one can perfectly transfer an arbitrary cavity-1 state to cavity 2.
In the presence of dissipation, one might expect that high-fidelity transfer is still possible

if the total transfer time t1 s + t2 s is much shorter than the relevant dissipative time scales. This
expectation can be easily quantified in the case of Gaussian state transfer, using the general
expression for the transfer fidelity F given in equation (19). Not surprisingly, one finds that
each cavity must achieve the many-photon strong coupling condition κi � G i,max; otherwise,
the decay of the state in the two cavities during the transfer makes high fidelity impossible.
In this strong coupling regime, the heating parameter n̄h and amplitude-decay parameter λ
that determine the fidelity take particularly simple forms. The full expression for an arbitrary
squeezed state (along with calculation details) is presented in appendix B.1. Here, we present
the results for the strong coupling case with a coherent state |α〉 as the initial state. We also
assume that the mechanical resonator has initially been prepared in the ground state. One finds
that to leading order in (κ + γ )/G:

n̄h =

∑
i

γ NM + κi Ni

2
tis ≈ γ NM

π

2G
,

λ= |α|

∑
i

κi + γ

4
tis ≈ |α|

κ

2

π

2G
.

(23)

The effective number of thermal quanta n̄h generated during each time interval tis is simply
given by the duration of the interval times the average heating rate (γ NM + κi Ni) /2. Similarly,
the amplitude decay λ in each interval is just the duration of the interval, times the amplitude
of the initial state, times the average amplitude decay rate (κi + γ )/4. The last approximation
in each equation above corresponds to the limit of symmetric cavity parameters κi = κ � γ ,
G i = G and Ni ≈ 0.

The above result implies that for mechanical heating to not be a problem, one needs the
optomechanical couplings G to not only be larger than κ , but also be larger than the mechanical
thermal decoherence rate γ NM. This regime was recently realized in experiment [5]. Plotted
in figure 3 are transfer fidelities corresponding to the transfer of a coherent state between a
microwave cavity and an optical cavity, using numbers appropriate for a kind of setup envisaged
in [14]; the behavior of the parameters n̄h and λ is also shown over a range of parameters.
We have taken a relatively high bath temperature of 1.5 K, as from an experimental point of
view, it would be highly advantageous to not have to cool the optical cavity to tens of mK. We
note that such a high operating temperature is compatible with the use of a superconducting
microwave resonator fabricated from niobium. For such a high temperature, one clearly sees
that the double-swap scheme is only able to yield good fidelities at extremely strong values of
the optomechanical coupling G.
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Figure 3. The performance of the double-swap scheme versus coupling strength
G = G1,max = G2,max, for the transfer of a coherent state having amplitude
α = 1. Shown are (a) transfer fidelity, (b) heating parameter n̄h (note that a
logarithmic scale is used) and (c) damping parameter λ. n̄h and λ are defined after
equation (19). We have fixed the bath temperature to T = 1.5 K (which would
be compatible with the use of a superconducting microwave cavity fabricated
from niobium), and taken κ = (κ1 + κ2)/2 = 2π × 50 kHz (which is appropriate
for the system envisaged in [14]). The blue solid lines correspond to κ1 = κ2

and a mechanical resonator that is initially prepared in its ground state; the
red dashed lines correspond to κ1 = κ2 but without any mechanical precooling
(i.e. the mechanical resonator is initially in thermal equilibrium at the bath
temperature). The green dashed-dotted line corresponds to the case when the
mechanical resonator is precooled, but κ2 = 4κ1. Note that all lines coincide in
plot (c), as the amplitude decay parameter λ is insensitive to asymmetry in the
cavity damping, and to mechanical precooling. The other parameters are γ =

2π × 1 kHz, ωM = −1i = 2π × 10 MHz. Cavity 1 (2) is a microwave (optical)
cavity: �1/2π = 10 GHz (�2/2π = 100 THz). The transfer time is taken to be
the optimal time ts as defined in the text.

Degradation due to mechanical heating is even more severe when considering the transfer
of squeezed states (see equation (B.16)): this enhanced sensitivity is due to the state having
narrower features in phase space. As shown in equation (B.18), when transferring a squeezed
vacuum state, the general expression of equation (19) for the fidelity still holds, but the heating
factor n̄h is enhanced exponentially compared to the coherent-state case. This is a direct
consequence of the initial state having extremely narrow features in phase space; it suggests that
the double-swap scheme will be especially poor in transferring such states (in comparison with
schemes that attempt to suppress mechanical heating). A similar conclusion can be expected
when considering the transfer of non-classical states (e.g. a Fock state), which also have fine
structures in phase space.

We thus see that while the double-swap protocol works well at extremely low temperatures,
it is already problematic at moderate values of mechanical bath temperature. Given the
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experimental advantages of being able to use such temperatures, there is ample motivation to
consider alternative transfer protocols that are more robust against the effects of mechanical
thermal noise; we do this in the following subsections.

Before proceeding, we consider the importance of precooling for the double-swap scheme.
In equation (23), we have assumed the optimal situation where the mechanical resonator is
initially in its ground state [13, 14, 17], which could be achieved by initially swapping a cavity
ground state into the mechanics or by using conventional cavity cooling [23]. If, in contrast, one
does not initially cool the mechanics to the ground state, its initial thermal population NM,0 will
make a significant additional contribution to the heating parameter n̄h. One finds that

n̄h =

∑
i

γ NM + κi Ni

2
tis +

(
κ1 − γ

G1

)
NM,0. (24)

One might naively think that the initial thermal population of the mechanical resonator should
be irrelevant, as it will just be swapped to cavity 1 in the initial swap operation of the protocol.
However, this is not the case due to cavity dissipation. We can obtain a simple understanding
of this by making an analogy between our system and the evolution of a quantum two-level
system (TLS) in a magnetic field. Including only the damping effects of dissipation, and

letting Ev =

(
â(t), d̂1(t)

)
, the Heisenberg equation of motion for cavity 1 and mechanical mode

operators during the first swap pulse takes the form

d

dt
Ev = −iωMEv−

κ1 + γ

2
Ev− i G1,max

(
0 1
1 0

)
Ev−

(κ1 − γ )

2

(
1 0
0 −1

)
Ev. (25)

If we now interpret Ev as a spinor describing a quantum TLS written in a basis of σz

eigenstates, then for κ1 = γ = 0, the above equation corresponds to the precession of the TLS in
a magnetic field of strength ∝ G1,max oriented in the x-direction. The perfect swap of the cavity
and mechanical states occurring at a time t = t1 s (see equation (21)) thus corresponds directly
to a π rotation of the effective TLS in the Bloch sphere, as sketched in figure 4(a) with the blue
circle. Turning now to the dissipative terms in equation (25), we see that there are two effects.
The first is an overall exponential decay induced by the average damping rate (κ1 + γ )/2; this
corresponds to the second term on the rhs of equation (25). This decay on its own would still
allow for a perfect swap, in that â(t1 s) would only depend on d̂1(0) and not â(0). In contrast, the
last term on the rhs of equation (25) (proportional to (κ1 − γ )/2) is like an effective z-magnetic
field acting on the TLS (albeit with an imaginary magnitude). This term makes a perfect swap
impossible, as the effective magnetic field acting on our TLS is no longer purely transverse,
i.e. in figure 4(a), the rotation axis is changed from

−→
Be to

−→
B ′

e . It is this term that makes the
double-swap protocol extremely susceptible to any initial thermal population in the mechanics:
this population is not fully swapped away in the first swap operation, and thus ends up being
transferred to the final state of cavity 2. As shown in figure 3 by the dashed line, if one does not
precool, the transfer fidelity of the double-swap scheme is greatly suppressed. As we will see in
section 3.3, there does exist a transfer scheme (the hybrid scheme) which does not require any
initial precooling of the mechanical resonator.

3.2. Adiabatic passage

The double-swap scheme of the previous section only involves two modes interacting with
one another at any given time, and hence could not take advantage of the full structure of our
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(a) (b) 

Figure 4. (a) Bloch sphere representation of a two-cavity swap operation. Each
swap operation in the double-swap transfer scheme (see section 3.1) can be
understood in analogy to the evolution of a TLS in a magnetic field; one takes
the mechanical mode operator â and cavity mode operator d̂1 to correspond to
the σz eigenstates of the TLS. Without dissipation, each swap operation then
corresponds to a π rotation (as indicated by the blue circle on the sphere)
around the effective magnetic field

−→
Be , which is oriented along the x-axis and

is proportional to the optomechanical coupling G i,max. As discussed in the
text, including dissipation changes this picture. The large asymmetry between
the cavity damping κ and mechanical damping γ tilts the effective magnetic
field toward the z-direction to

−→
B ′

e . A rotation about this tilted field now cannot
perfectly rotate â into d̂1 (as shown by the brown circle on the sphere): a perfect
swap is thus not possible. This explains why the double-swap scheme is so
susceptible to an initial mechanical thermal population. (b) A similar Bloch
sphere representation can be used to understand the hybrid transfer scheme of
section 3.3; now however, the σz eigenstates of our effective TLS correspond to
the mechanical mode and the ‘bright’ cavity mode ĉbr (see equation (8)), and
the effective rotation that is needed is a 2π rotation (see the discussion after
equation (29)). As such a rotation can be performed even with a magnetic field
that is not in the equatorial plane, the hybrid scheme is insensitive to the initial
mechanical population.

three-mode (two cavities, one mechanical resonator) system. Here, we consider an alternative
scheme (first discussed in [17, 18]) which explicitly makes use of the ‘mechanically dark’
mode ĉdk introduced in section 2.2 (see equation (9)), a mode that is not coupled directly to
the mechanical resonator and hence protected against mechanical dissipation. The basic idea
is to use this dark mode to perform the state transfer from cavity 1 to 2 entirely via the dark
mode. This is done by adiabatically modulating the optomechanical couplings G1, G2 in time,
so that at t = 0 the dark mode is equal to the cavity-1 mode, and at the end of the protocol t = tf

it is equal to the cavity-2 mode. This involves using a pulse sequence where G1 and G2 are
modulated in time as shown in figure 2(b). G1 (t) is increased from 0 to G1,max, while G2 (t)
is simultaneously decreased from G2,max to 0. For the transfer to be perfectly adiabatic, one
requires that the transfer speed be slow compared to the energetic gap separating the dark mode
and the two coupled modes ĉ± defined in equation (12). This energetic gap is given by

√
G2

1 + G2
2

(see equation (13)). If one is indeed adiabatic, the dark mode will evolve during this protocol
from being −d̂1 at t = 0 to d̂2 at the end of the protocol at a time t = tf.
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The adiabatic passage scheme described here is analogous to the well-known stimulated
Raman adiabatic passage (STIRAP) scheme employed in atomic physics (see [29] and
references therein). In STIRAP schemes, one employs a dark state of a three-level atom, and
also uses a similar ‘counter-intuitive’ pulse sequence to transfer an atomic population between
two states. In contrast, here we have an entire manifold of dark states (i.e. any states in the
subspace generated by ĉ†

dk), and thus the potential to transfer an arbitrary cavity state using the
adiabatic protocol.

To quantify the effectiveness and fidelity of this scheme, we again consider the transfer for
a Gaussian state; the fidelity F thus takes the general form described by equation (19). While
there are many possible ways to implement the adiabatic passage scheme, for simplicity, we use
throughout the simple pulse shapes

G1 (t)= G sin
(π

2
tanhβt

)
, G2 (t)= G cos

(π
2

tanhβt
)
. (26)

This form keeps the energy splitting between the dark and coupled modes constant (i.e.
G2

1 (t)+ G2
2 (t)= G2), a feature that has been argued to be optimal [30]. The parameter β

represents the overall speed of the modulation; one would require β � G to be in the purely
adiabatic limit.

Shown in figure 5 are results for fidelity, heating parameter n̄h and amplitude decay
parameter λ for the adiabatic passage scheme, using parameters identical to figure 3 (in
particular, a bath temperature of 1.5 K). For each data point, we numerically found the optimal
values of the transfer speed β and transfer time tf, and use these to obtain the fidelity. As
expected, using the dark mode leads to a dramatically suppressed n̄h compared to the double-
swap scheme (i.e. compare solid curves in figures 3(b) and 5(b)). If the mechanical bath
temperature is sufficiently high, the adiabatic transfer scheme yields far higher fidelities than
the double-swap scheme. This behavior is shown explicitly in figure 6, where the transfer
fidelity versus temperature for both these schemes is plotted. We will quantify this advantage
in more detail in section 3.4, where we compare and contrast the performance of all transfer
schemes.

One might be puzzled by the results of figure 5(b), which shows that the effective heating
parameter n̄h is never exactly zero, even in the case κ1 = κ2, where the dark mode is completely
isolated from the mechanical resonator. The reason is simple to understand: because of the
effects of cavity damping, the optimal pulse speed β in the adiabatic transfer protocol can never
be zero, and hence for realistic cavity parameters, one will never be in the perfectly adiabatic
limit. The result is some mixing into the non-adiabatic subspace, and hence some mechanically
induced heating. If one were in the adiabatic limit β � G, mechanical noise would indeed not
be a problem, but the slow transfer time would mean that the decay of the state in the two cavities
would greatly degrade the fidelity. Thus, the two conflicting requirements of better adiabaticity
(to suppress mechanical heating) and faster operation time (to suppress cavity damping effects)
result in an optimal, non-zero value of βopt and an optimal transfer time topt. High-fidelity
transfer is only possible when G � β � κ , as it is only in this regime where one can be both
reasonably adiabatic and reasonably fast compared to the cavity damping rate κ . One also finds
that the optimal value βopt has a marked dependence on temperature, as the relative importance
of being adiabatic increases as the mechanical thermal noise increases. The fact that one is not
in the perfectly adiabatic limit also leads to the requirement that the mechanical resonator has
to initially start in the ground state, as shown by the marked difference between the red dashed
and blue solid lines in figures 5(a) and (b).
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Figure 5. The performance of the adiabatic passage scheme versus the maximum
coupling strength G = G1,max = G2,max for the transfer of a coherent state |α =

1〉, using parameters is identical to figure 3. Shown are: (a) fidelity, (b) the
heating parameter n̄h (note that a logarithmic scale is used in this plot) and
(c) the damping parameter λ. The blue solid lines correspond to κ1 = κ2 and
a mechanical resonator that is initially in the ground state; the red dashed line
corresponds to the same without precooling. The green dashed-dotted lines
correspond to a precooled mechanical resonator but unequal cavity damping κ2 =

4κ1 and κ1 + κ2 = 2κ . Even though asymmetrical cavity damping destroys the
perfect protection of the mechanically dark mode from mechanical dissipation,
it only results in a small decrease of the fidelity of the adiabatic transfer protocol;
see text for details. For each value of the coupling, we have optimized the speed
β and the final time tf of the protocol to obtain a maximum fidelity (see the main
text).

The above discussion also explains why, for realistic parameters, there is no stringent
requirement that the cavity damping be symmetric, i.e. κ1 = κ2; even highly asymmetric
damping only slightly reduces the transfer fidelity (see the green dash-dot line in figure 5).
As discussed in section 2.2, asymmetric cavity damping mixes the cavity dark and bright
modes, thus opening up the dark mode to mechanical noise. However, as the optimal transfer
speed never corresponds to being in the perfectly adiabatic limit, the additional exposure to the
mechanical noise caused by unequal κ has a rather small contribution to the heating parameter
n̄h above that stemming from non-adiabatic transitions. The upshot is that the adiabatic transfer
scheme can be useful even if one has rather dissimilar cavity dissipation rates.

Finally, we note that in the perfectly adiabatic limit, the parameters n̄h and λ can be
calculated analytically [18]. However, for moderate G/κ ratios, the optimal pulse shapes are
not perfectly adiabatic, and hence these expressions are not particularly relevant.

3.3. Hybrid transfer scheme

So far in this section, we have considered two very different approaches to state transfer, each
effective in a very different limit. The double-swap scheme of section 3.1 does not involve the
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Figure 6. Comparison of the performance of the three intra-cavity transfer
schemes for the transfer of a coherent state of amplitude α = 1, as a function
of bath temperature. We have taken G1,max = G2,max = 2π × 2 MHz; the other
parameters are identical to figure 3(a). Shown are (a) fidelity and (b) the heating
parameter nh. The blue dashed curve is the adiabatic transfer protocol, the green
solid curve the hybrid scheme and the red dash-dotted curve the double-swap
scheme. As expected, the use of the mechanically dark mode in the hybrid and
adiabatic transfer schemes affords a much stronger resilience against the effects
of mechanical heating.

mechanically dark mode in any way and is hence more susceptible to mechanical thermal noise;
however, it is relatively fast (the transfer time t ∝ 1/G) and hence less susceptible to degradation
due to cavity damping. In contrast, the adiabatic passage scheme of section 3.2 attempts to only
use the dark mode for state transfer. The result is a strong resilience against mechanical noise.
However, the constraint of being near-adiabatic means that this scheme is slow (i.e. the transfer
time t � 1/G), and hence more susceptible (relative to the double-swap scheme) to the effects
of cavity damping.

Given that both schemes have their relative merits, one might be tempted to develop a
strategy that incorporates the best features of both. We present such a scheme here, the so-
called ‘hybrid’ scheme, which utilizes equally the mechanically dark mode (see equation (9))
and mechanically coupled cavity modes (see equation (12)) for a state transfer between the two
cavities. As we will see, the fact that half the transfer is done using the dark mode reduces the
effects of mechanical thermal noise by a factor of two over the double-swap scheme. However,
unlike the adiabatic passage scheme, this protocol is relatively fast (i.e. the transfer time is
∼ 1/G), and hence the effects of cavity damping are similar to what one would expect in the
double-swap scheme. As an added bonus, we also find that this hybrid scheme does not require
any precooling of the mechanics: high transfer fidelities are possible without having to initially
cool the mechanical resonator to its ground state. For typical experimental situations where both
cavity damping and mechanical heating are of equal importance, this hybrid scheme will, in
general, yield the highest transfer fidelities (something we will make more clear in section 3.4,
where we compare the various intra-cavity state transfer protocols).
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The hybrid scheme we have in mind is realized in an extremely simple fashion: one simply
turns on simultaneously both optomechanical couplings G1 and G2 to equal magnitude, as
shown in figure 2(c). It is simplest to consider the physics using the basis of dark and bright
modes to describe the two cavities (see equations (8) and (9)). Taking G1,max = G2,max = G, one
finds that

d̂1 =
1

√
2

(
ĉbr + ĉdk

)
, (27)

d̂2 =
1

√
2

(
ĉbr − ĉdk

)
. (28)

The dark mode is uncoupled to the mechanical resonator, whereas the bright cavity mode and
mechanical resonator evolve according to the Heisenberg equation of motion:

d

dt
Ew =

(
−iωM −

κ + γ

2

)
Ew− i

√
2G

(
0 1
1 0

)
Ew−

(κ − γ )

2

(
1 0
0 −1

)
Ew, (29)

where Ew = (ĉbr, â), and we have taken κi = κ and neglected noise terms for simplicity. Note the
similarity between this equation and equation (25) which describes the first step of the double-
swap scheme.

Without dissipation (i.e. κi = γ = 0), the situation here is analogous to the double-swap
scheme: the evolution of the two interacting modes is equivalent to that of a TLS in a transverse
magnetic field. In this case, however, the σz-eigenstates of the effective TLS corresponds to
the cavity bright mode and the mechanical mode. From equations (27) and (28), it follows that
to swap the states of the two cavities, we simply need to change the sign of the bright mode
relative to the dark mode. This is easily achieved by performing a 2π rotation of our effective
TLS. Thus, after a time t = ths = π/(

√
2G), we find that

d̂1(ths)= e−iθ d̂2 (0) , d̂2(ths)= e−iθ d̂1 (0) (30)

with θ = ωMths +π . Thus, similar to the double-swap scheme, the state of the two cavities is
swapped.

Unlike the double-swap process, this hybrid scheme involves both cavities being
simultaneously coupled; this will have implications in terms of how the transfer is now affected
by dissipation. On a heuristic level, the initial state in cavity 1 corresponds to having an equal
initial population of the cavity bright and dark modes. Thus, half of the transfer is performed
via the dark state, and we expect a better resilience against mechanical thermal noise than the
double-swap scheme. To quantify this, we again consider using the hybrid scheme to transfer
a Gaussian state, including the full effects of cavity and mechanical dissipation. The fidelity
F thus takes the general form given in equation (19) (see appendix B.2 for details), with the
heating and amplitude decay parameters in the strong coupling regime:

n̄h =
γ Nm + 3κNc

4
ths ≈

γ Nm

2
√

2

π

2G
,

λ= |α|
γ + 3κ

8
ths ≈ |α|

3κ

4
√

2

π

2G
.

(31)

For simplicity, we have taken the two cavities to be identical: κ1 = κ2 = κ , N1 = N2 = Nc.
The last approximation in each equation corresponds to the usual case where the mechanics
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Figure 7. The performance of the hybrid scheme versus coupling strength
G = G1,max = G2,max for the transfer of a coherent state of amplitude α = 1, at a
bath temperature T = 1.5 K; parameters are the same as figures 3 and 5. Shown
are: (a) fidelity, (b) the heating parameter n̄h and (c) the damping parameter
λ. The blue solid line corresponds to κ1 = κ2 = κ and a mechanical resonator
initially prepared in the ground state; the red dashed line corresponds to the
same, but without any mechanical precooling (the mechanics starts from a
thermal equilibrium state). As discussed in the main text, the hybrid scheme is
almost completely insensitive to any initial thermal population in the mechanical
resonator. The green dashed-dotted lines correspond to the case with precooling
but unequal cavity damping κ2 = 4κ1. The transfer time is taken to be the optimal
time ths as defined in the text.

dominates the heating, whereas the cavity dominates the amplitude decay. Comparing the
expression for n̄h with that of the double-swap case in equation (23), we find that the effect
of mechanical thermal decoherence is reduced here by a factor of 2

√
2. This comes from the

fact that half of the input state is transferred via the dark mode, and from the shorter transfer
time in the hybrid scheme, i.e. π/(

√
2G) versus π/G. The effect of cavity damping is only

slightly stronger than that in the double-swap case (by a factor 3
√

2/4 ≈ 1.06). Figure 6 shows
the transfer fidelity of a α = 1 coherent state versus temperature for both the hybrid and double-
swap schemes, whereas figure 7 shows how the hybrid-scheme fidelity varies with coupling;
both demonstrate the greater resilience against thermal heating of the hybrid scheme over the
double-swap scheme.

As already mentioned, an additional (and surprising) advantage of the hybrid scheme over
both the adiabatic and double-swap schemes is that it does not require the mechanical resonator
to start in the ground state. We can understand this heuristically by again using our analogy
to the precession of a TLS. As we have explained, both the double-swap and hybrid schemes
correspond to effective rotations in the Bloch sphere around a magnetic field Be (see figure 4).
In the absence of dissipation, this magnetic field is aligned along the x-axis and can be used
to perform a perfect π rotation (in the double-swap scheme) or perfect 2π rotation (in the
hybrid scheme). Including mechanical and cavity dissipation induces new terms in the equations
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of motions, which can be interpreted as an additional (unwanted) magnetic field along the
z-direction (see equations (25) and (29)). As discussed, this misalignment of the magnetic field
means that a perfect π pulse is no longer possible, and hence in the double-swap scheme, one
is sensitive to the initial mechanical state. In contrast, in the hybrid scheme, we need to perform
a 2π rotation. This is possible even if the dissipation causes the effective magnetic field to be
misaligned and not purely transverse. The result is that even with dissipation, the final cavity-2
state will remain completely independent of the initial mechanical thermal population. That is
the reason why the performance with precooling (blue solid line) and without precooling (red
dashed line) overlap as shown in figure 7.

Finally, from figure 7, we also see that the hybrid scheme is insensitive to the asymmetry
of cavity damping (the green dashed line only deviates from the blue solid line slightly). This is
because the thermal heating here is dominated by the use of the coupled cavity modes; the small
heating of the dark mode that occurs when κ1 6= κ2 is only a small correction to this, especially
given the relatively short transfer time of the scheme (it is the fastest of the three schemes we
consider).

3.4. Comparison of intra-cavity state transfer protocols

Having described the three different schemes for intra-cavity state transfer sketched in figure 2,
we can now turn to comparing them and discussing their relative merits. We stress that in the
absence of any cavity or mechanical dissipation, all three schemes are able to achieve perfect
state transfer of an arbitrary state. However, in the presence of dissipation, this will not be
the case; moreover, the fidelity of each scheme will depend on the particulars of the dominant
dissipation as well as the magnitude of coupling strengths.

To allow for an easy visual assessment of this competition, we have plotted in figures 8(a)
and (b) ‘phase diagrams’ which indicate the optimal scheme for transferring a |α = 1〉 coherent
state, as a function of both the environmental temperature (taken to be the same for cavity and
mechanical baths) and the cavity damping rate κ . These two axes characterize the dominant
dissipation mechanics: heating from the mechanical bath, and amplitude decay due to the
cavity damping. A different color (as indicated in the figure) is used to represent each of
the three schemes; for each point, the color corresponding to the highest-fidelity scheme is
plotted, with an intensity proportional to the difference of the highest fidelity between the
average fidelities of all three schemes. For simplicity, we have used symmetric cavity parameters
G1,max = G2,max = G and κ1 = κ2 = κ .

The bottom left corner of both figures 8(a) and (b) corresponds to the limit where
dissipative effects are minimal (i.e. low bath temperature and low cavity damping); as expected,
all three schemes have almost equal performance. As we move away from the origin, dissipation
is increased, and the near equivalence of all three schemes in terms of fidelity is lost. As
dissipation is increased, the fidelity of all the schemes considered will decrease, as shown in
figures 8(c) and (d). Note that all the schemes considered here take a time at least of the order
of 1/G to complete, and hence require the many-photon strong coupling condition G > κ to
achieve a good fidelity. However, within this strong coupling regime, the performance of each
scheme varies due to their different sensitivity to dissipation mechanisms:

• The double-swap scheme (red dots in figure 8) is fast but it swaps the entire state into the
mechanical mode as an intermediate step. Thus, it is the scheme most fragile to the effects
of mechanical heating, but the most robust against the effects of cavity damping. For an
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Figure 8. (a) A ‘phase diagram’ showing the transfer protocol which yields
the highest fidelity for the transfer of a coherent state of amplitude α = 1,
as a function of environmental temperature and cavity damping, for a fixed
optomechanical coupling G1,max = G2,max = 2π × 2 MHz and for γ = 2π ×

100 Hz. Red points denote the double-swap protocol, green points the hybrid
scheme and blue points the adiabatic passage scheme. The saturation of each
color is proportional to the fidelity difference between the optimal scheme and
the remaining two schemes. We only show the points where the transfer fidelity
F > 0.60. We also take ωM/2π = 10 MHz, �1/2π = 10 GHz and �2/2π =

100 THz. (c) Contour plot showing fidelity of the optimal schemes, the same
parameters as in (a). (b) and (d) The same as (a) and (c), except that now the
mechanical damping is increased to γ = 2π × 1 kHz.

experimental setup that is able to achieve extremely low temperatures but cannot go deep
into the strong coupling regime G � κ , the double-swap protocol will be the most suitable
protocol to follow, as shown in the upper left region of figure 8. Note from equation (23)
that the importance of amplitude decay increases as one increases the average amplitude of
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the state to be transferred; this suggests that the double-swap scheme would also have an
advantage for the transfer of such states. On the other hand, the importance of mechanical
heating becomes even stronger for squeezed states; we expect this to be also true for non-
classical states having fine features in phase space. Thus, the double-swap scheme will be
less advantageous for transferring such states.

• In contrast, the adiabatic scheme (blue dots in figure 8) is largely immune to mechanical
thermal noise; this protection is due to its use of the mechanically dark mode. It is, however,
easily degraded by cavity damping due to its necessarily slow transfer time (� 1/G). It is
the best strategy when the effects of mechanical heating completely dominate the effects
of cavity decay, as shown in the lower right region of figure 8. As discussed above, the
heating effect becomes even more deleterious if transferring states with fine structure in
phase space (such as squeezed states); the adiabatic scheme can thus be expected to be
more optimal than the double-swap scheme for transferring such states.

• The hybrid scheme (green dots in figure 8) utilizes both the mechanically dark mode
and the coupled-cavity modes for state transfer. The resulting fast transfer time and
partial immunity to mechanical thermal noise make it the optimal scheme when both
temperature and cavity damping are equally problematic, as shown in the intermediate
region of figure 8. In addition, the hybrid scheme does not require one to initially prepare
the mechanical resonator in the ground state; this could also present a strong practical
advantage.

4. Itinerant state transfer

The previous section was entirely devoted to three schemes for transferring an intra-cavity state
between two cavities. The state to be transferred is first prepared in one cavity, and then (via
the interaction with the mechanical resonator) is transferred to the state of the second cavity.
While this could have many useful applications (as already discussed), we have shown that
all the intra-cavity transfer schemes require one to at least approach the many-photon strong-
coupling condition, G > κ . In this section, we now switch gears and consider a state-transfer
task that is possible even if one is not in this strong-coupling regime. This alternative task is
the transfer of itinerant photons, i.e. converting an incoming wave packet on cavity 1 into an
outgoing wave packet leaving cavity 2. Such a conversion of itinerant photons is also something
that could be of extreme utility, and has been discussed in several recent works [15, 17, 18].
An experimental demonstration based on a mechanical resonator and a single optical cavity was
carried out recently [31]. Here we expand on the discussion in [17], providing additional details
and heuristic explanations for the phenomena that make itinerant state transfer possible in the
two-cavity optomechanical system under consideration.

We start by noting that the basic physics of transferring a narrow-bandwidth pulse is very
different from that involved in transferring an intra-cavity state. As the input state is centered
around a single frequency, the transfer can essentially be viewed as a stationary scattering
process from cavity-1 input to cavity-2 output. As first noted in [15], high-fidelity transfer thus
just becomes a set of requirements on the scattering matrix characterizing our system at a single
frequency. The result is that high fidelity can be achieved with a more modest set of parameters.
One does not need to have many-photon strong coupling for each cavity (i.e. G i � κ), but (as
we show) the more modest requirement of a large optomechanical cooperativity: Ci � 1 for
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each cavity, where

Ci ≡
G2

i

κiγ
. (32)

In what follows, we solve for the scattering matrix describing our system, and use it to
understand how and why one can achieve high-fidelity transfer of itinerant states. In particular,
we demonstrate that the mechanically dark mode introduced in section 2.2 also plays a crucial
role in itinerant state transfer, allowing it to be effective in both regimes of strong and weak
optomechanical coupling. We consider both the transfer of Gaussian wavepackets, where again
the simple form of equation (19) for the transfer fidelity holds, and the transfer of arbitrary
non-classical states.

4.1. The Langevin–Heisenberg equation and scattering matrix

The itinerant state transfer can be conveniently studied using the Heisenberg–Langevin
equations of the whole system. Working as always in an interaction picture with respect to
the main cavity drive frequencies, these take the form [32, 33]

˙̂a = −iωMâ −
γ

2
â − i

∑
G i d̂ i −

√
γ âin,

˙̂d i = i1i d̂ i −
κi

2
d̂ i − i G i â −

√
κi d̂ i,in −

√
κ ′

i d̂
′

i,in

(33)

with d̂ i,in representing both input noise (taken to be white) and signals driving each cavity. In
particular, the itinerant pulse incident on cavity 1 that we wish to transfer will be described by
the operator d̂1,in. κi is the damping rate of cavity i arising from its coupling to the waveguide
used to drive it and to extract signals from it. In contrast, κ ′

i is the damping rate of cavity i due
to intrinsic losses, and d̂ ′

i,in represents the corresponding noise. Finally, âin describes the thermal
and quantum noise driving the mechanical resonator from its intrinsic dissipative bath.

Solving equation (33) and using standard input–output relations [32] yield the relation
between input and output fields

ÊAout[ω] = s[ω] ÊAin[ω] + s′ [ω] ÊA′

in[ω] (34)

with the vector of operators ÊA defined as

ÊA =

(
d̂1[ω], d̂2[ω], â[ω]

)
, (35)

ÊA′
=

(
d̂ ′

1[ω], d̂ ′

2[ω]
)
. (36)

Here, s is the 3 × 3 [ωM] matrix describing scattering between the cavity-1 waveguide, the
cavity-2 waveguide and the thermal bath responsible for the mechanical dissipation. Note that
in the general case where we have internal cavity losses, s will not be unitary. In contrast, s′ is
a 3 × 2 matrix which describes how noise from the sources of internal cavity loss can appear in
the waveguides and in the mechanical bath.

Both the above matrices can be found using equation (33) and the standard input–output
relations

ÊAout[ω] = ÊAin[ω] +
(√
κ1,

√
κ2,

√
γ
)
· ÊA. (37)
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Figure 9. The complex modulus of the scattering matrix |s21[ω]| (equation (39)
with no internal cavity losses, i.e. ri = 1) when cavities are in resonance with the
mechanics 1i = −ωM; s21[ω] describes the transmission of a signal incident on
cavity 1 to a signal leaving cavity 2 (and vice versa). The two curves are plotted
with the same mechanical damping rate γ . The solid/blue curve is obtained with
κ/G = 0.1 and G/γ = 103. The red dashed curve is obtained with κ/G = 2 and
G/γ = 102.

The elements are given by (i = 1, 2 denotes the two cavities)

si i [ω] = 1 − 2µi [ω] + Ciζ [ω]µ2
i [ω] , (38)

s12 [ω] = s21 [ω] =

√
C1C2µ1 [ω]µ2 [ω] ζ [ω] , (39)

s3i [ω] = si3 [ω] =
i

2

√
Ciµi [ω] ζ [ω] , (40)

s33 [ω] = 1 −
1
4ζ [ω] , (41)

with

ζ [ω] =

(
1

8µM [ω]
+

1

2

∑
i

Ciµi [ω]

)−1

(42)

and µ [ω] is the susceptibility

µi [ω] =

κi
2

κi +κ ′

i
2 − i (ω +1i)

, µM [ω] =

γ

2
γ

2 − i (ω−ωM)
(43)

and Ci is the cooperativity of cavity i defined in equation (32).
The intrinsic noise scattering matrix s′ [ω] can also be calculated in the same way,

s ′

i j [ω] = si j [ω]

√
κ ′

j

κ j
. (44)

Assuming as always that the large drives applied to each cavity (which yields the driven
optomechanical couplings) are at the red-detuned sideband, i.e. 1i = −ωM, the configuration
of the scattering matrix is shown in figure 9. As one can see, for both strong coupling (solid)
and weak coupling (dashed), there is a transmission window peaked around frequency ωM. Note
that the equations are in the rotating frame with respect to the drive frequency. Hence ω = ωM
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corresponds in the laboratory frame to signals at the resonant frequency of each cavity. At this
frequency, the scattering elements become

si i [ωM] = 1 − ri

(
2 −

8Ci

C̃
ri

)
, (45)

s12 [ωM] = s21 [ωM] =
8
√

C1C2

C̃
r1r2, (46)

s3i [ωM] = si3 [ωM] =
4i

√
Ci

C̃
ri , (47)

s33 [ωM] = 1 −
2

C
, (48)

with

ri = κi/
(
κi + κ ′

i

)
(49)

and

C̃ = 1 + 4C1r1 + 4C2r2. (50)

In the limit of symmetric cavities (i.e. ri = r and C1 = C2 = C) and high cooperativity
C � 1, the scattering matrix reduces to

s11 [ωM] = s22 [ωM] ≈ 1 − r, s33 [ωM] = 1 −
r

4C
, (51)

s12 [ωM] = s21 [ωM] ≈ r, (52)

s31 [ωM] = s13 [ωM] = s23 [ωM] = s32 [ωM] =
i

2
√

C
. (53)

We thus see that transmission at the cavity frequency becomes perfect in the limit of no internal
loss (i.e. r → 1); in this limit, the above scattering matrix reduces to the results of [17]. In
our following discussions of itinerant transfer, unless otherwise specified, we take this limit for
simplicity.

High-fidelity transfer from d̂1,in to d̂2,out requires that over the input signal bandwidth, the
transmission coefficient |s21[ω]|2 ∼ 1, as well as that |s23[ω]|2 ∼ 0 (i.e. negligible transmission
of mechanical noise). Of course, if there is no internal loss, the scattering matrix s is unitary, and
hence the former condition implies the latter condition. We see from the above results that in the
limit of low internal cavity losses, these ideal scattering conditions are satisfied when the input
signal is centered at ωM and the system parameters Ci = C � 1. In the following subsection,
we give physical explanations of these perfect transmission conditions.

4.2. Dark-mode transfer due to the optomechanical electromagnetically induced transparency
mechanism

While the basic results for itinerant photon transfer follow immediately from the elementary
calculation of the scattering matrix presented in the previous subsection, these calculations
do not necessarily yield a good intuitive feel for why such ideal scattering conditions can be
realized. Such a heuristic understanding is the goal of this subsection; in particular, we show
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that the mechanically dark mode plays an essential role in achieving a high-fidelity itinerant
state transfer.

To have protection against mechanical dissipation, one would ideally like the input state
incident on cavity 1 to only excite the dark mode. Without dissipation, the dark mode ĉdk defined
in equation (9) is energetically separated from the mixed modes ĉ± defined in equation (12). If
the input signal is closely centered at frequency ωM in the displaced frame, only the dark mode
is excited and hence protection against mechanical thermal noise is achieved.

Including dissipation (and the consequent lifetime broadening), the input signal incident on
cavity 1 will also excite the bright cavity mode ĉbr (see equation (8)) as well as the mechanical
mode â. This is not an issue in the strong coupling regime, as the transmission channel of the
dark mode (central peak of the solid line in figure 9) is well separated from the bright modes
transmission (two side peaks of the solid line in figure 9). However, a problem arises in the weak
coupling limit κ > G: the broadening of each mode is larger than their separation, and thus they
are not resolvable from one another (see red dashed line in figure 9). Thus, for weak coupling,
one cannot selectively drive only the dark mode by simply tuning the frequency of the input
signal to be ωM.

Fortunately, as we show below, in the weak-coupling regime, the unwanted excitation is
irrelevant as long as the cooperativity of each cavity Ci � 1. In this limit, the bright mode
amplitude 〈ĉbr〉 arising from the signal incident on cavity 1 is a factor ∼ 1/C smaller than the
dark-mode amplitude, due to a destructive interference akin to the optomechanical analogue of
electromagnetic-induced transparency [19–21].

In order to understand this, it is useful to introduce a ‘mixed’ 3 × 3 susceptibility matrix
χ [ω] which describes how the input modes incident on each resonator drive the non-local

system modes ÊC[ω] = {ĉdk[ω], ĉbr[ω], â[ω]}:

ÊC[ω] = χ [ω]k ÊAin[ω], (54)

where k = diag{
√
κ1,

√
κ2,

√
γ } is a diagonal matrix, and the vector ÊAin is defined in

equation (35).
There are two main inputs driving this system: the signal from cavity 1 and the thermal

noise from the mechanics. Hence the elements of particular interest are χ j,1 and χ j,a ( j =

{dk, br, a}). The matrix χ [ω] can be found directly from equation (33). While the full expression
is rather lengthy, at frequency ω = ωM, it can be written as (assuming no internal cavity losses)

χ [ω] =
2

4C1 + 4C2 + 1


−G̃2 M2 −G̃1 M1 −2i κ1−κ2√

G2
1+G2

2

√
C1C2

G̃1
κ1

G̃2
κ2

−2i C1+C2√
G2

1+G2
2

−2i G1
γ κ1

−2i G2
γ κ2

1
γ

 (55)

with

G̃ i ≡
G i√

G2
1 + G2

2

, Mi = 4

(
C1

κ2
+

C2

κ1

)
+

1

κi
. (56)

Consider first the excitation of the ‘bright’ mode ĉbr relative to the dark mode ĉdk by a
signal incident on cavity 1 at frequency ω = ωM. In the ideal limit where C1 = C2 ≡ C � 1, we
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find that

χbr,1 [ωM]

χdk,1 [ωM]
≈ −

1

4C

√
κ1κ2

(κ1 + κ2)
. (57)

Thus, the relative amplitude of the bright mode is suppressed by a large factor C compared
to the dark mode, even if one does not have G � κ and hence a strong spectral separation of
these modes. Physically, this is due to an EIT-like destructive interference. In the absence of any
optomechanical coupling (i.e. G = 0), an input signal incident on cavity 1 would excite both the
dark mode and the bright mode equally. However, when G 6= 0, the coupling between the bright
mode and mechanics strongly modifies its susceptibility (this is the essence of optomechanical
EIT). Heuristically, an excitation on the bright mode will be swapped multiple times between
the bright mode and the mechanical mode, resulting in destructive interference. In the case
of two symmetrical cavities, the modified susceptibility due to these ‘multiple swaps’ can be
represented by a Dyson series:

χbr,1 = χ
(0)
br,1

(
1 + G2χ

(0)
br χ

(0)
a +

(
G2χ

(0)
br χ

(0)
a

)2
+ · · ·

)
=

χ
(0)
br,1

1 − G2χ
(0)
br χ

(0)
a

=
χ
(0)
br,1

1 + C
, (58)

which have a focus on the ideal frequency ω = ωM. Here, χ (0)br,1 ≈ −
√

2/κ1 is the susceptibility of
the bright (dark) mode to the input of cavity 1 when G ≈ 0, and χ (0)a = −i/γ is the susceptibility
of the mechanical mode, χ (0)br = −i/κ is the susceptibility of the bright mode to the mechanical
mode in resonance. As we see, the coupling of the dark mode to the mechanical modes
results in the suppression factor 1/ (1 + C) in equation (58). This phenomenon is identical to
optomechanical EIT, where the coupling of the optical mode with the mechanical mode prevents
the cavity from being excited by an incident signal. The cancellation is valid as long as the
cooperativity is large, and independent of the strong coupling condition.

On the other hand, the input signal on cavity 1 will also excite the mechanical mode â.
Again using our mixed susceptibility, one finds that

χa,1 [ωM]

χdk,1 [ωM]
≈

i

2
√
γC

√
κ1κ2

κ1 + κ2
∝
κ

G
. (59)

Thus, if one is in the regime of weak coupling G i/κi < 1, the excitation of the mechanical mode
can be appreciable. However, due to the relatively weak coupling γ between the mechanical
resonator and its dissipative bath, the overall contribution from this excitation of â to âout scales
as

√
γ â; this follows from the input–output relation âout = âin +

√
γ â. The net result is that only

a small amount of the input signal is lost to the mechanical bath: the scattering matrix element
s31 describing this process is small as 1/

√
C (see equation (53)). Therefore, the transfer of the

input signal thus occurs almost entirely via the dark mode in this limit.
Good fidelity also requires that the dark mode, once excited by the input state, only leaks

out via cavity 2, ensuring that |s21[ωM]| ≈ 1. In other words, the input signal has little leakage
through the output of cavity 1. This requires a destructive interference between the promptly
reflected input signal and the wave leaving the dark mode via cavity 1. That is, the signal
reflected directly out of cavity 1 and the signal scattered into cavity-1 output cancels. For Ci �

1, this interference cancellation results in the simple impedance matching condition [15, 17]
Ci ≡ C , i.e.

G2
1/κ1 = G2

2/κ2. (60)
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We have thus shown how the incident signal primarily excites the mechanically dark
mode of the two-cavity optomechanical system, and how the dark mode then leaks out to
cavity 2. It remains to be shown that we also have a suppression of noise originating from
the mechanical bath in the output of cavity 2. Equation (53) shows that for C � 1, s23 [ωM] is
suppressed by a small factor 1/

√
C ; this directly results in the small value of the output heating

parameter n̄h discussed in the main text (see equation (9)). This suppression is most easily
understood in the case when κ1 = κ2. In this case, the dark mode is completely decoupled from
the mechanical mode. The bright mode is, however, driven by the mechanical noise, and thus
provides a route for mechanical noise to corrupt the output from cavity 2. This process yields
a contribution ∼

√
κχbr,a [ωM]

√
γ to s23 [ωM]. The relevant susceptibility χbr,a [ωM] ∼ 1/G,

yielding the result s23 [ωM] ∼ 1/
√

C .
The situation is only slightly more complicated when κ1 6= κ2. In this case, the cavity

decay terms in equation (33) can effectively mix the bright and dark cavity modes. As a
result, mechanical noise can first excite the bright mode, then be mixed into dark mode and
then find its way into the cavity-2 output field. This additional process is not problematic, as
it also scales the same way with C as the κ1 = κ2 process. This follows from the fact that
χdk,a[ωM] ∼ ((κ1 − κ2)/κ̃) χbr,a[ωM], where κ̃ = 2κ1κ2/(κ1 + κ2) (i.e. excitation of the dark mode
by mechanical noise involves first exciting the bright mode). The net result is equation (53):
s23[ωM] scales as 1/

√
C irrespective of κ1/κ2.

4.3. Transfer fidelity for Gaussian states

To quantify the transfer fidelity of the itinerant photon transfer scheme, we consider a Gaussian
input state in a temporal mode (see, e.g., [33]) defined by

D̂1,in = (2π)−1/2

∫
dω f [ω] d̂1,in [ω] , (61)

where f [ω] describes a wave packet incident on cavity 1 which is localized in both frequency
and time;

∫
dω| f [ω]|2 = 1 to ensure that D̂1,in is a canonical bosonic annihilation operator. d̂1,in

corresponds to an input mode with a fixed frequency, but completely delocalized in time. The
fidelity of transferring this itinerant Gaussian state takes the same form as equation (19). In the
case of an itinerant coherent state input |ψin〉 ∝ exp(α D̂†

1,in)|0〉, the heating n̄h and the damping
λ can be explicitly written as (for details of the input temporal mode, see appendix C)

n̄h =

∑
i=1,2,M

∫
dω | f [ω] s2i [ω]|2 Ni ,

λ= |α| min
τ

(
1 −

∣∣∣∣∫ dωe−iωτ s21 [ω] | f [ω]|2
∣∣∣∣) . (62)

We have optimized the final state ρ̂f in equation (18) over a time translation τ , so that if the
output pulse is simply a time-delayed copy of the input pulse, F = 1.

Taking our input mode | f [ω]|2 to have mean frequency ωM and a Gaussian profile with
variance 1ω2, and assuming C1 = C2 = C � 1, we find to leading order in 1ω:

n̄h ≈
NM

4C

(
1 +

(
1ω

G

)2 (
1 −

κ2

16G2

))
, (63)
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Figure 10. Fidelity F (red) and heating n̄h (blue) versus input bandwidth for
transferring |α =

√
3〉 coherent state. The red dash-dot line denotes the fidelity

in the weak coupling case, where G/2π = 0.1 MHz, κ = 2π × 0.5 kHz and γ =

2π × 10 Hz. The red solid line and the blue dashed line are both for the strong
coupling case where G/2π = 0.6 MHz, κ = 2π × 50 kHz and γ = 2π × 1 kHz.
The temperature is T = 2 K and the cavity frequencies are�1/2π = 10 GHz and
�2/2π = 100 THz.

λ≈ |α|

[
1

8C
+

(
21ω

κ

)2
(

1 +

(
κ2

8G2

)2
)]

. (64)

Good fidelity requires a high cooperativity C �|α|, NM. In the weak-coupling regime G<κ ,
one also needs

√
|α|1ω� (G2/κ), which reflects the width of the s21[ω] transmission

resonance. In the opposite regime G � κ , one needs 1ω 6 κ/
√

|α| as shown in figure 10.
In the limit 1ω→ 0, equations (63) and (64) reduce to

n̄h ≈
NM

4C
, λ≈

|α|

8C
(65)

which shows that the fidelity of itinerant state transfer depends solely on the cooperativity in
the case of zero bandwidth. Further, we see that in comparison with the double-swap scheme,
the mechanical-heating effect described by n̄h is reduced by a factor κ/G. The expression of
n̄h is the usual mechanical temperature expression of the cavity cooling in the weak coupling
regime [23, 24]; unlike cavity cooling, it describes n̄h in both the weak and strong coupling
regimes.

4.4. Transfer of non-classical itinerant states

Given the advantages of the itinerant transfer scheme, it is also interesting to consider how
well it is able to transfer non-classical states. While, in general, it is difficult to obtain analytic
expressions for the evolution of non-Gaussian states, we show that here, one can obtain useful
and reliable analytic approximations.

We again consider an input mode in a given temporal mode D̂1,in; we take this mode to be
centered on ωM, and for simplicity, to have a vanishingly small bandwidth 1ω. Suppose now
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the input state incident on cavity 1 is

ρ̂in,1 =

∑
mn

c∗

ncm |m〉1,in 〈n| , (66)

where |n〉1,in is a Fock state of this mode |n〉1,in ∝ (D̂†
1,in)

n
|0〉. We also take the noise driving both

cavities to be zero temperature (N1 = N2 = 0), but allow the mechanical resonator to be driven
by thermal noise. Letting pth(q, Nm) be the probability of having q thermal quanta incident on
the mechanical resonator, the fidelity can be decomposed as (see appendix D for more details)

F =

∞∑
q,r=0

pth(q, Nm)
∑
mn

q−r∑
d=−n

c∗

m+dcn+dc∗

ncm f r,m+d,q−r−d
m,0,q

(
f r,n+d,q−r−d
n,0,q

)∗

, (67)

with

f r,n+d,q−r−d
n,0,q =

√
r !n!q! (n + d)!

(q − r − d)!
(s21)

n (s33)
q

(
s13

s33

)r (s23

s33

)d

×

min[n,r ]∑
j=0

2 F1

(
j − n, d + r − q; 1 + d + j; s31s23

s33s21

)
j! ( j + d)! (n − j)! (r − j)!

(
s11s23

s21s13

)k

, (68)

where 2 F1 is the hyper-geometric function and s ≡ s [ωM]. f r,n+d,q−r−d
n,0,q is the amplitude for an

input state |n, 0, q〉in scattering into an output |r, n + d, q − r − d〉out. Note that |n, 0, q〉 denotes
the state with n photons in cavity 1, 0 photon in cavity 2 and q phonons in the mechanics. Note
that the scattering matrix conserves the total excitation; therefore the amplitudes between states
with different excitation numbers vanish.

In the case of a Fock state input |n〉, cm = δm,n, the above result is reduced to

F =

∞∑
r=0

P(r, n)=

∞∑
r=0

∞∑
q=0

pth(q, Nm)
∣∣ f (r,n)q

∣∣2 , (69)

where P (r, n) is the probability of having r outgoing photons leaving cavity 1 and n photons
leaving cavity 2, and

f (r,n)q =

√(
q
r

)
(s21)

n (s33)
q

r∑
j=0

(
s13

s33

)r (
n
j

)(
r
j

)(
s11s23

s21s13

) j

2 F1

(
j − n, r − q; 1 + j;

s31s23

s21s33

)
.

(70)

Note that in the regime of optimal state transfer C1 = C2 ≡ C � 1, the probability of
having photons leave cavity 1 is small: the dark state effectively prevents mechanical photons
from contributing, and equation (60) ensures minimal reflection of signal photons. One can thus
obtain a good approximation by simply retaining the r = 0 and 1 term in equation (69): F is
approximately the probability of obtaining n photons in cavity-2 output mode and at most one
photon leaving cavity 1. This is a rigorous lower bound on the exact fidelity, and is exact to
order 1/C .

In the limit C � 1, one finds that to the leading order in 1/C the fidelity for transferring
the n-photon itinerant Fock state is F ' 1 − [NM (3 + 2n)+ n] /4C . For NM � 1, the condition
for a near-unity fidelity is thus C � NMn; for a large-n Fock state, this is more stringent
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Figure 11. Fidelity versus cooperativity C = G2/κγ in the narrow-bandwidth
limit. The input states are |α =

√
3〉 (green, dash-dot), |n = 3〉 Fock state (blue,

dashed), |n = 1〉 Fock state (magenta, dashed) and (|1〉 + |3〉)/
√

2 (red, solid).
The coupling strength is G/2π = 0.6 MHz. Unless otherwise specified, the
parameters are the same as in the right column of figure 8.

than the condition for having a large fidelity transfer of a coherent state with |α| ∼
√

n
(see equations (63) and (64)).

The transfer fidelity of different non-Gaussian states together with a coherent state (for
realistic parameters) is shown in figure 11. The figure shows high-fidelity transfer of non-
Gaussian states is possible if the cooperativity is sufficiently large. For the same cooperativity,
the fidelity of transferring a Fock state (the blue dashed line) is lower than that of transferring
a coherent state of the same average energy (the green dash-dot line). The difficulty probably
arises from the non-trivial quantum nature and complicated phase space structure of the Fock
state.

5. Conclusion

In this paper, we have studied quantum state transfer from an optical cavity to a microwave
cavity via a jointly coupled mechanical resonator. We have introduced the notion of a
mechanically dark mode which is insensitive to the mechanical thermal noise. We have proposed
different approaches to utilize the dark mode for state transfer and compared their advantages
and disadvantages, in particular:

(1) For the transfer of an intra-cavity state, we find that a hybrid scheme which uses both the
dark mode and the bright mode can achieve high transfer fidelity, even without precooling
the mechanical resonator to the ground state. We also provide a ‘phase diagram’ to help
experimentalists identify the best transfer scheme for their particular system.

(2) In the transfer of itinerant photon states, the dark mode can be used through a mechanism
similar to the optomechanical electromagnetic transparency (EIT). Both Gaussian and non-
Gaussian states can be transferred with high fidelity if the cooperativity is sufficiently high.
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In the short term, experiments are racing toward the transfer of coherent states and wave
packets; we also expect that the improvement due to dark modes can be demonstrated. In the
long term, hopefully non-classical state transfer can be realized experimentally. This will open
up new possibilities in hybrid quantum information network.
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Appendix A. Gaussian state fidelity

Since the state to be transferred is mostly a pure state, we consider the case when at least one of
the states ρ̂i, ρ̂f is a pure state. Then the general definition of the transfer fidelity in equation (18)
reduces to the simple overlap F = Tr

(
ρ̂iρ̂f

)
. In terms of the Wigner representation Wi(Eξ) and

Wf(Eξ) of each density matrix:

F = Tr
(
ρ̂iρ̂f

)
= π

∫ +∞

−∞

d Eξ Wi(Eξ)Wf(Eξ). (A.1)

Here, Eξ is the vector formed by the quadratures of the N modes of our system (N = 1 here): Eξ =

{x1, p1, x, p2, . . . , xN , pN } and Êξ =
{

x̂1, p̂1, x̂2, p̂2, . . . , x̂ N , p̂N

}
. We define the quadratures of

each mode as x̂i = (d̂ i + d̂†
i )/2 and p̂i = −i(d̂ i − d̂†

i )/2, where d̂i is the canonical annihilation
operator of the mode.

As our system is described by a quadratic Hamiltonian, an initial Gaussian state will remain
Gaussian at all times. The Wigner function of a Gaussian state can be written, in general, in
terms of the means and covariances of the mode quadratures:

W (Eξ)=
1

(2π)N
√

det V
exp

{
−

1

2
(Eξ − 〈Êξ〉) · V−1(Eξ − 〈Êξ〉)

}
, (A.2)

where V is the symmetrized covariance matrix, defined via V j j ′ =
1
2〈1ξ̂ j1ξ̂ j ′ +1ξ̂ j ′1ξ̂ j〉, with

1ξ̂ j = ξ̂ j − 〈ξ̂ j〉.
Plugging equation (A.2) into equation (A.1), we obtain

F =
π

(2π)N √
det (Vi + Vf)

exp

[
−

1

2
(〈Êξ i〉 − 〈Êξ f〉) ·

1

Vi + Vf
(〈Êξ i〉 − 〈Êξ f〉)

]
. (A.3)

If we now define

n̄h = 2
√

det (Vi + Vf)− 1, (A.4)

λ2
= (〈Êξ i〉 − 〈Êξ f〉) ·

√
det (Vi + Vf)

Vi + Vf
(〈Êξ i〉 − 〈Êξ f〉), (A.5)

then equation (A.3) becomes the simple expression for the fidelity given in the main text,
equation (19). Note that throughout the paper, we optimize the fidelity over simple rotations
in phase space (so that if ρ̂f is a rotated version of ρ̂i, F = 1).
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Appendix B. Analytical solutions for intra-cavity state transfer

For Gaussian states, we can rewrite the effective master equation in a general form characteristic
of bilinear Hamiltonians

˙̂ρ (t)= −i
[
Êξ · HÊξ, ρ̂ (t)

]
+
∑

k

γk

2
D
(

LT
k
Êξ
)
ρ̂ (t) , (B.1)

where H is a matrix form of the Hamiltonian, and the second term describes the effects of
dissipation. We have three dissipative baths (one for each cavity, and the mechanical bath), and
each can either absorb or emit energy, hence the index k runs from 1 to 6. For each term, γk

describes the rate of either energy absorption or emission by one of the baths, and LT
k
Êξ is the

corresponding ‘jump’ operator (which is linear in the system quadrature operators). D denotes
a standard Lindblad superoperator:

D
(

LT
k
Êξ
)
ρ̂ (t)≡ 2

(
LT

k
Êξ
)
ρ̂ (t)

(
LT

k
Êξ
)†

−

{ (
LT

k
Êξ
)† (

LT
k
Êξ
)
, ρ̂ (t)

}
. (B.2)

Using equation (B.1), one can obtain the time evolution of the average values 〈ξ〉 and the
covariance matrix V:

d〈Êξ (t)〉

dt
≡ Q〈Êξ (t)〉,

dV
dt

= QV + VQT + N (B.3)

with

Q = 2σH + 2σ (Im 0) , N = 2σ (Re 0) σ T (B.4)

and the elements of σ and 0 are defined as

σi j = −i [ξ̂i , ξ̂ j ], 0mn =

∑
k

γk

2
L∗

k,m Lk,n. (B.5)

Solving equation (B.3), the solutions are

〈Êξ (t)〉 = eQt
〈Êξ (0)〉,

V (t) = eQt V (0) eQTt +
∫ t

0
dτ eQ(t−τ)NeQT(t−τ). (B.6)

Using these results, one can calculate n̄h and λ in equation (A.5) and the fidelity of state transfer.
In the following, we show the result for the double-swap scheme, hybrid scheme and itinerant
state transfer. As for the adiabatic passage scheme, high-fidelity transfer requires a trade-off
between the adiabaticity and the fast operation. The optimal evolution is thus not purely in the
adiabatic limit; as a result, simple analytic expressions are difficult to obtain.

B.1. Double-swap scheme

For the double-swap scheme, the interaction is switched on sequentially. At each swap process,
the relevant evolution and noise matrix can be derived from equation (B.4) to be

Qi = G i S −
κi + γ

4
1 +

κi − γ

4
Y, N =

γ̄ + κ̄i

8
1 +

γ̄ − κ̄i

8
Y, (B.7)
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with γ̄ = γ (2Nm + 1), κ̄i = κi (2Ni + 1) and

S =


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

 , Y =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (B.8)

Here the subspace is the direct product of two systems under swap, i.e. in the first swap, the
subspace is the direct product of the cavity 1 and the mechanical resonator, while the subspace
of the second swap is the direct product of the mechanical resonator and the cavity 2.

The initial state in cavity 1 to be transferred is assumed to be a squeezed state

|α, r〉 = D̂ [α] Ŝ [r ] |0〉 (B.9)

with

Ŝ [r ] ≡ exp
[r

2
d̂2

1 −
r

2
d̂†2

1

]
, (B.10)

where r is taken to be real, and

D̂ [α] = exp[αd̂†
1 −α∗d̂1]. (B.11)

Then the initial mean value and covariance matrix are〈
Êξ i

〉
= −

(
Reα
Imα

)
, Vi =

1

4

(
e−2r 0

0 e2r

)
. (B.12)

The initial state of the mechanical resonator is assumed to be precooled into the ground state
and cavity 2 is also assumed to be in ground state initially. The swap time tis = π/ (2G i). Then
the time evolution at ts ≡

∑
i tis (i = 1, 2) is given by equation (B.6) as〈

Êξ f (ts)
〉
= −

(
(Reα) e−

∑
i ~i tis

(Imα) e−
∑

i ~i tis

)
, (B.13)

Vf (ts)=
e−2

∑
i ~i tis

4

(
e−2r 0

0 e2r

)
+

B + e−2~2t2s
(
ν2

2 + e−2~1t1sν2
1 + A

)
4

1 (B.14)

with ~i = (κi + γ ) /4, νi = (κi − γ ) / (4G i), A = κ̄1µ1 + γ̄ α1, B = κ̄2β2 + γ̄ µ2 and

αi ≈

∫ tis

0
dτ (cos G iτ + νi sin G iτ)

2 e−~i τ ,

βi ≈

∫ tis

0
dτ (cos G iτ − νi sin G iτ)

2 e−~i τ , (B.15)

µi ≈

∫ tis

0
dτ sin2 G iτe−κi τ ,

where we have assumed the strong coupling limit and hence approximate
√

G2−(κ−γ )2/4≈G.
Note that if precooling is not performed, in equation (B.14) ν2

1 → ν2
1

(
2NM,0 + 1

)
, with NM,0

being the initial phonon number of the mechanics.
Plugging equations (B.12)–(B.14)) into equations (A.3)–(A.5), we obtain the full fidelity

for transferring a coherent state. In the relevant strong-coupling limit where κi , γ � G, this
results in equations (23) and (24) in the main text.
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The calculation of the fidelity is only slightly more complicated in the case of a displaced,
squeezed state, where now the parameter r > 0 (see equation (B.12)). Keeping the phase of the
displacement (i.e. α = |α|eiφ), the two parameters determining F become (keep until the leading
order of (κi + γ ) /G, also keep the higher-order terms of (κi Ni + γ Nm) /G as Nm can be large)

n̄h[r ] ≈

√
1 + 2n̄h [0] cosh 2r + n̄2

h [0] + 2 (cosh 2r − 1)
∑

i

~i tis − 1, (B.16)

λ[r ] ≈ λ[0]

√
cos2 φ

e−2r + n̄h[0]
+

sin2 φ

e2r + n̄h[0]
, (B.17)

where n̄h[0], λ[0] are heating and amplitude-decay parameters for a coherent state
(see equation (23)). Consider a squeezed ground state (i.e. α = 0) in the strong squeezing limit
r → ∞. In this case, there is no amplitude-decay contribution to the fidelity λ[r ] = 0, and

n̄h[r ] → er

√
n̄h +

∑
i

~i tis. (B.18)

We see that the effects of mechanical heating are exponentially enhanced. Thus, for highly
squeezed states (or other states with fine structures in phase space), a state transfer scheme that
attempts to suppress these effects by using the mechanically dark mode will be much better than
the double-swap scheme.

B.2. Hybrid scheme

Both coupling G1 and G2 are switched on at the same time in the hybrid scheme. The relevant
evolution and noise matrix can be derived from equation (B.4) to be

Q ≈ GS −

(
κ + γ

4
1 +

κ − γ

4
Y
)
,

N =
κ̄

8
(1 + Y)+

γ̄

8
(1 − Y) ,

(B.19)

where we have taken G1 = G2 = G, κ1 = κ2 = κ , γ̄ = γ (2Nm + 1), κ̄i ≈ κ̄ , 1 is a 6 × 6 unity
matrix and the definitions of S and Y are similar to equation (B.8) except that the dimension is
increased to 6 × 6:

S =


0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 1

−1 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0

 , Y =


1

1
−1

−1
1

1

 . (B.20)

Then starting from a squeezed state as described by equation (B.12), the time evolution at
ths ≡ π/v (with ν =

√
2G2 − (κ − γ )2 /16 ) is given by equation (B.6) as

〈Êξ f (ths)〉 = −
e−

κ+γ
4 ths

2

(
1 + e−

κ−γ
4 ths

)(Reα
Imα

)
, (B.21)

New Journal of Physics 14 (2012) 105010 (http://www.njp.org/)

http://www.njp.org/


35

Vf (ths)=
1

4

(
e−

κ+γ
2 ths

4

(
1 − e−

κ−γ
4 ths

)2
+ δ

G2

ν2
γ̄ +

(
δκ2

16ν2
−
ξκ

2ν
+χ + η

)
κ̄

2

)
1

+
e−

κ+γ
2 ths

16

(
1 + e−

κ−γ
4 ths

)2
(

e−2r 0
0 e2r

)
, (B.22)

with

δ =

∫ ths

0
dτe−

κ+γ
2 τ sin2 ντ, η =

∫ ths

0
dτe−κτ ,

ξ =

∫ ths

0
dτe−

κ+γ
2 τ sin ντ cos ντ, χ =

∫ ths

0
dτe−

κ+γ
2 τ cos2 ντ. (B.23)

In the strong coupling limit κ � G, and considering a coherent state r = 0, the heating and
damping can be simplified to equation (31) in the main text.

Appendix C. Transfer fidelity of the itinerant Gaussian state

In order to calculate the transfer fidelity for the itinerant Gaussian state, we first define the input
state to be generated by the mode creation operator D̂in (D̂in can be D̂1,in, D̂2,in) which represents
a time mode which spreads over a frequency interval1ω around frequency ωM and localized in
time around t = 0 :

D̂in = (2π)−1/2

∫
dω f [ω] d̂ in [ω] (C.1)

with d̂ in [ω] being the Fourier transform of the input operator which satisfies [d̂ in[ω1], d̂†
in[ω2]] =

2πδ(ω1 −ω2), and f (ω) is the normalized function which is localized in both frequency and
time.

We define a smoothed operator d̂ ′

in[ω j ] with discrete frequencies ω j = jδω ( j ∈ Z) [33]

d̂ ′

in

[
ω j

]
=

1
√

2πδω

∫ ω j+1

ω j

dωd̂ in [ω] . (C.2)

Here δω is a small frequency interval on which f [ω] is approximately constant, and d̂ ′

in

[
ω j

]
satisfies the normal bosonic commutation relation[

d̂ ′

in

[
ω j

]
, d̂ ′†

in [ωk]
]

= δ jk. (C.3)

The integral of equation (C.1) is then changed into the summation

D̂in ≡

√
2πδω

∑
j

f
[
ω j

]
d̂ ′

in

[
ω j

]
. (C.4)

The output operator can be defined as

D̂out = (2π)−1/2

∫
dω f [ω] e−i(ω−ωM)τ d̂out [ω] (C.5)

with τ being the time delay of the wave packet and a discretized summation can also be defined
in a similar fashion as equation (C.4).
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Suppose that the initial state is prepared in a coherent state

ρ̂ = |α〉1 〈α| ⊗ |0〉2 〈0| ⊗ ρ̂a,th (C.6)

with

|α〉1 = exp
[
α D̂†

1,in −α∗ D̂1,in

]
|0〉 . (C.7)

The output state in the Heisenberg picture is the same as equation (C.6), but the operators are
changed from ‘in’ to ‘out’ according to the scattering matrix

d̂2,out [ω] = s21 [ω] d̂1,in [ω] + s22 [ω] d̂2,in [ω] + s23 [ω] âin [ω] . (C.8)

Using equations (C.1), (C.5), and taking the limit δω → 0 and changing the summation
back to integral, we obtain the average value of quadrature in state equation (C.6) as〈

Êξ 1,in

〉
=

(
Reα
Imα

)
,

〈
Êξ 2,out

〉
=

(
Reαζ1

Imαζ1

)
, (C.9)

where

ζ1 =

(
2π
∫

dω e−iωτ s21 [ω] | f [ω]|2
)
ωM=0

. (C.10)

And the covariance matrices are

V1,in =
1

4

(
1 0
0 1

)
, V2,out =

1

4
(2n̄h + 1)

(
1 0
0 1

)
. (C.11)

Using equations (A.4) and (A.5), we obtain the heating and amplitude damping parameters as
shown in equation (62) of the main text.

Appendix D. Transfer fidelity of the itinerant non-Gaussian state

A Fock state input of cavity 1 is defined as

ρ̂1,in =
1

n!

(
D̂†

1,in

)n
|0〉1 〈0|

(
D̂1,in

)n
, (D.1)

where |0〉1 is the vacuum state of the input mode and we only consider the input pulse with zero
bandwidth for simplicity. We also assume the state of the cavity 2 is vacuum ρ̂2,in = |0〉2 〈0| ,

while the mechanical resonator is in a thermal state

ρ̂a,in =

∑
q

pq
1

n!

(
â†

in

)q
|0〉a 〈0|

(
âin

)q
(D.2)

with pq =
(
1 − e−β h̄ω

)
e−β h̄ωq . In terms of output operator, the output state is

ρ̂out = ρ̂in =

∑
q

pq

∣∣ψq

〉 〈
ψq

∣∣ (D.3)

with∣∣ψq

〉
=

1
√

n!q!

(
u11 D̂†

1,out + u12 D̂†
2,out + u13â†

out

)n (
u31 D̂†

1,out + u32 D̂†
2,out + u33â†

out

)q
|0〉 (D.4)
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and u = s−1 is the inverse of the scattering matrix. Hence the fidelity can be written as

F =

∑
q

pq

(∑
n1,qa

∣∣〈ψq |n1, n2, qa

〉∣∣2) . (D.5)

According to equation (D.4), both u11 (o(1/C)) and u31 (o(1/
√

C)) are small, i.e. all the
processes to generate photon (reflecting) in cavity 1 are perturbations. One can therefore expand
the state in terms of the photon numbers from the output of cavity 1. Hence if we expand the
fidelity as the summation of the probability of having r (r = 0, 1, 2, . . .) photons in the cavity-1
output, the series will converge quickly for large cooperativity.

After some lengthy but simple algebraic calculations, we obtain the probability to have 0
photon in cavity-1 output

F (0)
=

∑
q

pq |u12|
2n

|u33|
2q

∣∣∣∣2 F1

(
−n,−q; 1;

u13u32

u12u33

)∣∣∣∣2 , (D.6)

F (1)
=

∑
q

pqq |u33|
2q−2

|u12|
2n

∣∣∣∣∣∣n
u11u32

u12
2 F1

(
1 − n, 1 − q; 2;

u13u32
u12u33

)
+u31 2 F1

(
−n, 1 − q; 1;

u13u32
u12u33

) ∣∣∣∣∣∣ , (D.7)

where F(2,1) is the hypergeometric function. F (0) is a lower bound of the exact fidelity, which
physically corresponds to the case that the two cavities swap their states, so this fidelity
represents a ‘swapping fidelity’. Expansion of F (0) in terms of ε gives a contribution in the
fidelity which is precise up to o(1/C2),

F (0)
≈

∑
q

pq

(
1 −

(n

2
+ q + nq

)
ε2
)2
. (D.8)

The probability to have one photon in cavity-1 output is

F (1)
=

∑
q

pqq |u33|
2q−2

|u12|
2n

∣∣∣∣∣∣
n u11u32

u12
2 F1

(
1 − n, 1 − q; 2;

u13u32
u12u33

)
+u31 2 F1

(
−n, 1 − q; 1;

u13u32
u12u33

)
∣∣∣∣∣∣
2

. (D.9)

F (0) + F (1) is a better lower bound of the actual fidelity. Physically, it represents the fidelity of
state transfer if the photon reflected from cavity 1 is measured to be 0 or 1.

Generally, to have r photons in the output of cavity 1, the corresponding probability is

F (r)
=

∑
q

pq |u12|
2n

|u33|
2q

(
q
r

)

×

∣∣∣∣ r∑
j=0

(
n
j

)(
r
j

)(
u31

u33

)r− j (u11u32

u12u31

) j

2 F1

(
j − n, r − q; 1 + j;

u13u32

u12u33

) ∣∣∣∣2.
(D.10)

The total fidelity is a summation of all the probabilities F =
∑

r F (r). In terms of the scattering
matrix, we obtain equation (69) in the main text.

Furthermore, if the input state is a more general state ρ̂in,1 =
∑

mn c∗

ncm |m〉 〈n|, following
a similar analysis, we can obtain equation (67) in the main text.
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[25] Diósi L 2008 Phys. Rev. A 78 021801
[26] Rabl P, Genes C, Hammerer K and Aspelmeyer M 2009 Phys. Rev. A 80 063819
[27] Uhlmann A 1976 Rep. Math. Phys. 9 273
[28] Wallquist M, Hammerer K, Zoller P, Genes C, Ludwig M, Marquardt F, Treutlein P, Ye J and Kimble H J

2010 Phys. Rev. A 81 023816
[29] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[30] Vasilev G S, Kuhn A and Vasilev N V 2009 Phys. Rev. A 80 013417
[31] Dong C, Fiore V, Kuzyk M C, Tian L and Wang H 2012 arXiv:1205.2360
[32] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin: Springer)
[33] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

New Journal of Physics 14 (2012) 105010 (http://www.njp.org/)

http://dx.doi.org/10.1038/nature03118
http://dx.doi.org/10.1103/PhysRevLett.94.223902
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1038/nature10461
http://dx.doi.org/10.1038/nature10787
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1038/nature09898
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1088/1464-4266/1/4/323
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1103/PhysRevA.50.R3589
http://dx.doi.org/10.1103/PhysRevA.82.053806
http://dx.doi.org/10.1088/1742-6596/264/1/012025
http://dx.doi.org/10.1088/1367-2630/13/1/013017
http://dx.doi.org/10.1103/PhysRevLett.107.133601
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://dx.doi.org/10.1103/PhysRevLett.108.153604
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1103/PhysRevLett.99.213601
http://dx.doi.org/10.1103/PhysRevLett.99.093902
http://dx.doi.org/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/PhysRevA.78.021801
http://dx.doi.org/10.1103/PhysRevA.80.063819
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1103/PhysRevA.81.023816
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/PhysRevA.80.013417
http://arxiv.org/abs/1205.2360
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://www.njp.org/

	1. Introduction
	2. Basics of the two-cavity optomechanical setup
	2.1. The setup and Hamiltonian
	2.2. Mechanically dark mode

	3. Intra-cavity state transfer
	3.1. Double-swap protocol
	3.2. Adiabatic passage
	3.3. Hybrid transfer scheme
	3.4. Comparison of intra-cavity state transfer protocols

	4. Itinerant state transfer
	4.1. The Langevin--Heisenberg equation and scattering matrix
	4.2. Dark-mode transfer due to the optomechanical electromagnetically induced transparency mechanism
	4.3. Transfer fidelity for Gaussian states
	4.4. Transfer of non-classical itinerant states

	5. Conclusion
	Acknowledgments
	Appendix A.  Gaussian state fidelity 
	Appendix B.  Analytical solutions for intra-cavity state transfer 
	B.1.  Double-swap scheme 
	B.2.  Hybrid scheme 

	Appendix C.  Transfer fidelity of the itinerant Gaussian state 
	Appendix D.  Transfer fidelity of the itinerant non-Gaussian state 
	References

