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Abstract. Periodic shunted piezoelectric patches are employed for the design
of a tunable, one-dimensional metamaterial. The configuration considered
encompasses a beam undergoing longitudinal and transverse motion, and a
periodic array of piezoelectric patches with electrodes connected to a resonant
electric circuit. The resulting acousto-electrical system is characterized by an
internal resonant behavior that occurs at the tuning frequency of the shunting
circuits, and is analogous in its operation to other internally resonating systems
previously proposed, with the addition of its simple tunability. The performance
of the beam is characterized through the application of the transfer matrix
approach, which evaluates the occurrence of bandgaps at the tuning frequencies
and estimates wave attenuation within such bands. Moreover, a homogenization
study is conducted to illustrate the internal resonant characteristics of the system
within an analytical framework. Experiments performed on the considered beam
structure validate the theoretical predictions and illustrate its internal resonant
characteristics and the formation of the related bandgaps.
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1. Introduction

Piezoelectric shunt damping is an attractive technique that offers a simple and potentially
cost-effective solution for the attenuation of waves and vibrations in structures. The key
element is a passive electrical network directly connected to the electrodes of the piezoelectric
device mounted on the vibrating structure. In the configuration proposed by Hagood and von
Flotow (1991), a resistive-inductive (RL) shunting circuit is shown to be equivalent to a tuned
mechanical vibration absorber which can attenuate vibrations at frequencies in the vicinity of a
selected mode of the structure. Subsequent studies have investigated complex shunting circuits
capable of suppressing several structural modes through multiple resonating circuit branches or
the implementation of negative impedance circuits (Forward 1979, Hollkamp 1994, Wu 1996,
Preumont 1997, Behrens et al 2003). The approach proposed by Thorp et al (2001) involves
a periodic array of RL-shunted piezos mounted on the structure as a way to create bandgaps
centered at the tuning frequencies of the shunting circuits. The tunable characteristics of shunted
piezo patches allow the equivalent mechanical impedance to be tuned so that bandgaps are
generated over desired frequency ranges. Subsequently, the concept was applied to complex
structures such as fluid-loaded axisymmetric shells (Thorp et al 2005) and plates (Spadoni
et al 2009, Casadei et al 2010). These studies demonstrate how resonant piezoelectric shunts
can be utilized to affect the equivalent mechanical properties of an elastic waveguide and
therefore suggest their application for the development of metamaterials (Kushwaha et al 1993,
Sigalas 1998, Martinsson and Movchan 2003, Sheng et al 2003, Huang et al 2009, Lu
et al 2009). In fact, many proposed concepts for acoustic metamaterials consider configurations
that derive their unique properties from resonators contained within each unit cell. Typical
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designs feature inclusions with a phase velocity much lower than that of the matrix (Kushwaha
and Djafari-Rouhani 1998). This allows production of attenuation bands at frequencies which
are unrelated to scattering phenomena occurring at wavelengths of the order of the unit cell
size (Bragg scattering), and are instead associated with a resonance within a unit cell. The
opportunity is thus given to achieve low-frequency attenuation of waves, which has relevance,
for example, for the control of vibrations and noise transmission. Different types of local
resonators that have been proposed include the single degree of freedom mass-in-mass lattice
systems (Lazarov and Jensen 2007, Yao et al 2008, Huang et al 2009), the multi-degrees of
freedom resonators systems (presented in Huang and Sun 2010, Pai 2010, Sun et al 2010),
coated cylinders/spheres oscillating in an epoxy matrix (Sheng et al 2007, Gao et al 2008)
and Helmholtz resonators in parallel with an acoustic waveguide (Fang et al 2006, Cheng
et al 2008).

In this paper, we illustrate how the periodic array of piezoelectric patches bonded to a one-
dimensional (1D) waveguide previously investigated by Thorp et al (2001) can be interpreted
as a 1D metamaterial with internally resonating units. Such units are characterized by the
electrical resonances of the shunting circuits. Such resonant frequencies can be conveniently
tuned through proper selection of the electrical impedance connected to each patch, so that no
modification to the structure is necessary. Results are illustrated for a 1D waveguide consisting
of a beam undergoing longitudinal and transverse motion, coupled to an array of shunted
patches. The performance of the system in terms of dispersion characteristics, bandgaps and
wave attenuation is predicted through the application of the transfer matrix (TM) method, and
is subsequently verified experimentally. The experimental measurements are analyzed through
proper signal processing techniques that also allow the accurate estimation of attenuation
constants and dispersion in the neighborhood of the internal resonances, where the group
velocity becomes negative. Analytical estimation of the equivalent properties of the system are
also derived through a homogenization approach based on a long-wavelength approximation.

The paper is organized into six sections, including this introduction. Section 2 presents
the theoretical background required for the analysis of the considered periodic system, while
section 3 illustrates its dispersion characteristics. Section 4 presents the experimental procedures
and results, and section 5 describes the developed homogenization approach for the estimation
of the equivalent stiffness properties of the waveguide. Finally, section 6 summarizes the major
findings of this paper and provides recommendations for future investigation.

2. Theoretical background

2.1. Configuration

We consider the dynamic behavior of the beam with a periodic array of shunted piezoelectric
patches (figure 1(a)) obtained as the assembly of unit cells of the kind shown in figure 1(b). The
beam behaves as a 1D waveguide that supports the propagation of axial and transverse waves. In
the low-frequency range, the behavior of the waveguide can be conveniently described through
the Euler–Bernoulli theory, applied to a beam with piecewise elastic and mass properties, as
illustrated in the following section.

We refer to a coordinate system where ‘1’ and ‘3’, respectively, denote the axial and
thickness directions. According to Hagood and von Flotow (1991), shunting of the piezoelectric
patch with electrodes across the ‘3’ direction modifies Young’s modulus of the shunted patch
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(a) (b)

Figure 1. A periodic beam with an array of shunted piezo patches (a) and a unit
cell with shunting through an electrical impedance ZSU (b).

according to the following expression:

ESU
p (ω) = ED

p

(
1 −

k2
31

1 + iω Cε
p ZSU(ω)

)
, (1)

where ω is the frequency, i =
√

−1, Cε
p is the electrical capacitance of the piezo at constant

strain, and ZSU(ω) is the electrical impedance of the shunting circuit. Also in equation (1),
k31 denotes the electro-mechanical coupling coefficient, and ED

p is Young’s modulus of the
piezoelectric material when the shunting network is in an open-circuit configuration (ZSU(ω) →

∞). This quantity is related to the piezo Young’s modulus Ep through the expression ED
p =

Ep/(1 − k2
31) (Hagood and von Flotow 1991).

When a resistor-inductor shunt is applied to the piezoelectric material, ZSU(ω) = R + iωL ,
the piezo Young’s modulus features a resonant behavior at a frequency ωT that can be selected by
tuning the inductor L = 1/(ω2

T Cε
p) (Hagood and von Flotow 1991, Hollkamp 1994, Wu 1996).

2.2. Governing equations

The longitudinal u(x, t) and transverse w(x, t) motion of the beam of figure 1 is described by
the following set of partial differential equations:

∂2

∂x2

[
D(x)

∂2

∂x2
w(x, t)

]
+ m(x)

∂2

∂t2
w(x, t) = 0, (2)

∂

∂x

[
K (x)

∂

∂x
u(x, t)

]
− m(x)

∂2

∂t2
u(x, t) = 0, (3)

where D(x), K (x), respectively, denote the bending and axial stiffness of the beam, while m(x)

is the mass per unit area. Given the beam configuration, a generic physical property of the beam
P(x) can be expressed as a piecewise function of period p, i.e.

P(x) = P(x + p), (4)

which over a period centered at x = 0 can be expressed as

P(x) =

{
P1 −αp < x < 0,

P2 0 < x < (1 − α)p,
(5)

with α denoting the ratio between the length of the interval with property P1 and the length of
the period p.
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For the unit cell of figure 1, the linear mass of the beam is given by

m(x) =

{
ρb Ab, −αp < x < 0,

ρb Ab + 2ρp Ap, 0 < x < (1 − α)p,
(6)

while the axial and bending stiffnesses can, respectively, be expressed as

K (x) =

{
Eb Ab, −αp < x < 0,

Eb Ab + 2ESU
p (ω)Ap, 0 < x < (1 − α)p,

(7)

and

D(x) =


Ebbbh3

b

12
, −αp < x < 0,

Ebbbh3

12
+

ESU
p (ω)bp

[
(h + 2hp)

3
− h3

]
6

, 0 < x < (1 − α)p,

(8)

where ρb and Eb are the density and the Young’s modulus of the beam material, hb, bb define
the thickness and out-of-plane width of the base beam, and Ab = bbhb. Also, ρp is the density of
the piezoelectric material, hp, bp denote the thickness and out-of-plane width of the piezo patch
and Ap = bphp.

For harmonic motion at frequency ω, equations (2) and (3) reduce to two ODEs in the
spatial coordinate x , which can be combined in the following first-order system:

A(x)
d

dx
z(x) = B(x)z(x), (9)

where the state vector z contains displacement and stress resultants associated with axial and
transverse motion, and it is defined as

z(x) = [u, w, w,x , N , M, Q]T. (10)

In equation (10), N , Q and M are the axial stress resultant, the shear force and the bending
moment at location x . Also, in the equation above and in the remainder of the paper the notation
capital boldface letters denote matrices, and lower case boldface letters are vectors. The matrices
A, B in equation (9) are defined as

A(x) = diag([K (x), 1, D(x), 1, −1, 1]) (11)

and

B(x) =


0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0

−ω2 m(x) 0 0 0 0 0
0 0 0 0 0 1
0 −ω2 m(x) 0 0 0 0

 . (12)

Equation (9) can be rewritten as
d

dx
z(x) = C(x)z(x), (13)

where C = A−1 B is a periodic matrix which varies in a piecewise fashion over the period p, i.e.

C(x) =

{
C1, −αp < x < 0,

C2, 0 < x < (1 − α)p.
(14)
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3. Analysis of the dispersion properties

3.1. Transfer matrix

Equation (13) describes a system of ODEs with periodic coefficients. According to the Floquet
theorem, its solution can be expressed as

z(x + p) = λz(x), (15)

where λ = eiµ is the Floquet multiplier, with µ = kp denoting the propagation constant and k
the wavenumber. The Floquet multipliers are obtained by relating the solution of equation (13)
at a location x + p and x through a TM T :

z(x + p) = T z(x). (16)

For the case at hand, the formulation of the TM exploits the piecewise nature of the
periodicity, which allows close form expressions. With reference to a unit cell, equation (16)
can be expressed as

z[(1 − α)p] = T z(−αp), (17)

where T is given by

T = T 2T 1. (18)

In the equation above, the matrix T 1 relates the state vectors at x = −αp to the state vector
at x = 0, while the matrix T 2 relates the state vectors at x = 0 and at x = (1 − α)p. Matrices T 1

and T 2 can be formulated from the analytical solution of the governing equation over the first
and second portions of the unit cell, i.e.

d

dx
z(x) = C1z(x), x ∈ [−αp, 0] (19)

and
d

dx
z(x) = C2z(x), x ∈ [0, (1 − α)p], (20)

which give

z(0) = eαpC1 z(−αp), x ∈ [−αp, 0], (21)

z[(1 − α)p] = T 2z(0), x ∈ [0, (1 − α)p]. (22)

Therefore

T 1 = eαpC1 (23)

and

T 2 = e(1−α)pC2 . (24)

Continuity of displacements and stresses at the interface of the two portions of the materials
leads to

z[(1 − α)p] = e(1−α)pC2 eαpC1 z(−αp) = T 2T 1z(−αp) = T z(−αp). (25)
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Table 1. Unit cell geometry.

p α hb bb hp bp

(mm) (mm) (mm) (mm) (mm)

54 0.35 3.5 32 0.8 18

Table 2. Properties of piezoelectric material.

Ep ρp k31 εσ
33/ε0 ε0 Cε

p

(GPa) (kg m−3) (pF m−1) (nF)

63 7800 0.35 2500 8.854 15

(a) (b)

Figure 2. Sketch of the unit cell for the beam. (a) Side view. (b) Top view.

3.2. Beam configuration

The periodic beam is formed by the assembly of unit cells shown in figure 2. The geometrical
parameters of the unit cell are summarized in table 1. The beam is made of aluminum (Young’s
modulus Eb = 69 GPa and density ρb = 2700 kg m−3), while the piezoelectric patch has the
properties listed in table 2.

3.3. Numerical results

The dispersion relations associated with the longitudinal and transverse motion of the beam
are evaluated through the TM approach. The results for two different tuning frequencies are
reported here. The internal resonance of the circuit is selected at 5000 and 11 000 Hz. Such
tuning frequencies are obtained with inductance values for the shunting circuit, respectively,
equal to L = 33.4 mH and L = 6.7 mH. The results for different values of shunting resistance
are also reported. Figure 3 presents the dispersion relations for the said beam when the electric
circuit resonates at 5000 Hz (blue lines) and at 11 000 Hz (red line) for shunting resistances of
25 and 50 �. Specifically, figure 3(a) presents the branch associated with longitudinal motion,
while figure 3(b) shows the results for the transverse mode. The two modes can be studied
separately as completely decoupled by the beam model employed for the analysis. Both plots
feature the expected resonant behavior at the resonant (tuning) frequency of the shunting circuit,
which also defines the center of an attenuation band. Such an attenuation band is identified by
nonzero values of the imaginary part of the wavenumber, which characterizes the conditions of
propagation with attenuation. Of note is the fact that the resistive component in the shunting
LR circuit acts as a dissipation term, which has the effect of affecting the resonant behavior
of the circuit. Low dissipation with low resistance leads to a sharp resonant peak, and a
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Figure 3. Real and imaginary parts of the wavenumber for axial (a) and
bending (b) modes for different tunings of the piezo shunts ( fT = 5 kHz—blue
line, fT = 11 kHz—red line; R = 25 �—solid lines, R = 50 �—dashed lines).
(a) Longitudinal motion. (b) Bending motion.

correspondingly large attenuation, which, however, occurs over a narrower frequency band.
In contrast, high resistance values lead to a smoother resonant behavior, with lower attenuation
occurring over a broader frequency band. Hence, if the objective is the achievement of high
attenuation over a frequency band which is as large as possible, a compromise in terms of
resistance must be struck between bandwidth and attenuation, as defined by the magnitude of
the imaginary part of the wavenumber (Spadoni et al 2009).

Additional analysis of the dispersion branches for axial and transverse motion reveals
some interesting features. As expected, the wavenumber range identified by the TM analysis
is different for the two branches, and for the transverse mode it reaches the boundary of the
first Brillouin zone, which is located at k = π/p ≈ 58.2 m−1. At this value, the branch appears
as folding back, which is the result of the periodicity of the domain and the dual periodicity
in physical and wavenumber space (figure 3(b)). The wavenumber range for the axial mode
does not reach such a bound in the considered frequency range, and therefore no branch
folding is observed (figure 3(a)). Branch folding is a feature that is characteristic of all periodic
domains, so that their dispersion properties can be characterized solely through the analysis
of the first Brillouin zone. In general, however, and specifically when experimental studies are
conducted, it is important to keep track of the entire frequency/wavenumber spectrum, since
the branches beyond the first Brillouin zone may be measured and/or need to be properly
tracked. In fact, the spatial resolution of the measurements typically goes beyond the spatial
sampling corresponding to the limit of the first Brillouin zone, so that shorter wavelengths and
correspondingly higher frequencies can be detected. This discussion is of particular relevance
in light of the experimental results presented in the following sections.

4. Experimental results

Experimental investigations are performed on a beam with a periodic array of piezoelectric
patches. The beam is excited by a piezo patch, which induces a transient wave propagating
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(c)

(a) (b)

Figure 4. Sketch (a) and picture (b) of the experimental cantilever beam. A detail
(c) illustrates the connection between piezo electrodes and electric circuits.

along the beam. The motion of the beam is recorded by a scanning laser Doppler vibrometer
(SLDV). The SLDV records the velocity of a moving surface over a refined grid of measurement
points. It exploits the Doppler effect on an incident laser beam, through which the component
of motion of the surface parallel to the laser beam is recorded. The spatial refinement obtained
through the SLDV’s scanning mechanisms allows the detailed characterization of the recorded
wavefield. Specifically, the recorded data have fine temporal and spatial resolutions sufficient for
the estimation of the frequency/wavenumber content of the beam response, and the evaluation
of the dispersion properties of the beam. This is performed through the application of 1D and
2D FT of the recorded data. Tests are conducted for various tunings of the shunting circuits to
illustrate the occurrence of attenuation bands over selected frequency ranges.

The use of an SLDV as a sensor limits the investigations to the transverse motion of the
beam, since the sensitivity of the laser allows only the detection of the component of motion
perpendicular to the laser beam, which is normally incident to the beam surface.

4.1. The setup

Tests were conducted on the beam shown in figure 4. The beam is made of aluminum, is 1.6 m
long and features an array of 11 piezoelectric patches equally spaced over a portion of the length.
The unit cell configuration replicates the schematic of figure 2 and has the dimensions listed in
table 1.

The resonant shunted circuits are implemented through the application of a synthetic
inductor (Antoniou’s circuit) because of the high value of inductance needed for the desired
frequency tunings and for the flexibility in the circuit tuning procedure; see figure 5
(Riordan 1967, Casadei et al 2010).
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Table 3. Tuning settings for the experimental circuit (nominal values).

fT Z1 Z2 Z3 Z4 Z5 R
(Hz) (�) (�) (�) (nF) (�) (�)

5000 3300 2200 100 100 2229 33
11 000 680 1000 100 100 988 47

(a)

(b)

Figure 5. Experimental resonant circuit. (a) Sketch of Antoniou circuit.
(b) Picture of three resonant circuits.

In the configuration tested, each pair of co-located piezoelectric patches is connected in
series to a resonant shunting circuit (figure 4(c)). The electric networks were tuned at the
frequencies of 5000 and 11 000 Hz. The nominal values of the electric components Z i required
for these tunings are reported in table 3.

The beam is excited by the piezo actuator shown in figure 4, which is fed a pulse signal
of 40 µs duration and 50 V amplitude. The time duration is selected for broadband excitation
of the beam motion. The velocity of the beam is measured in 645 equally spaced points over
the entire length by the SLDV (Polytec model PSV-400M2). At each measurement point xi

(i = 1, . . . , 645), the recorded time record contains 1024 samples, acquired at a sampling
frequency of 256 kHz. Measurement noise is reduced through a low-pass digital filtering at
16 kHz, and by taking ten averages at each point with a repetition rate of 10 Hz.

4.2. Response in the space/time domain

The result of each experiment is the beam response, which is stored in a 2D array w(x, t) that
contains the time variation of the transverse velocity of the beam at location x . Figure 6(a) shows
an example recorded when all shunts are connected to open circuits. This represents a baseline
configuration against which the performance of various shunted strategies can be compared.
The space/time response clearly shows the propagation of two waves, which emanate from
the excitation location at approximately x = 1 m and subsequently reach the ends of the beam
where they are reflected. The recorded wavefield appears, as expected, highly dispersive, as the
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(a) (b)

Figure 6. Experimental space/time response w(x, t) of the beam in the
space–time domain, tuning at 5000 Hz and R = 33 �. (a) Open circuit.
(b) Closed circuit.

applied pulse becomes increasingly distorted as it propagates along the length of the beam. The
space/time response recorded with the shunts tuned at 5000 Hz and with a resistance value of
R = 33 � displayed in figure 6(b) shows a similar behavior. Careful observation of the plot,
however, unveils slightly stronger dispersion in comparison to the case with the open shunts.
The evaluation of the effects of the shunts on wave propagation requires further analysis, which
leads to the estimation of the dispersion relations for the beam from the recorded response.

4.3. Signal processing for the evaluation of dispersion

The estimation of the dispersion properties for the beam is performed by transforming the
recorded response w(x, t) into the frequency/wavenumber through a 2DFT:

W (k, ω) =

∫ +∞

−∞

∫ +∞

−∞

w(x, t)e−i(kx+ωt)dt dx . (26)

This operation, which can be simply performed through built-in FFT routines, does
however require preliminary post-processing of the data in order to obtain clear dispersion
representations. First, only the left-propagating wave is analyzed by windowing the response
in space in the x ∈ [0, 1] m interval. Time windowing is also performed for t = [0, 1.2] msec.
The next important step consists in the removal of the boundary reflections. Reflections lead to
the occurrence of dominant harmonic terms, which correspond to the resonant frequencies of
the beam and their associated wavenumber. The presence of such harmonic terms causes the
frequency/wavenumber domain representation to be discontinuous, with energies concentrated
at the frequency/wavenumber values corresponding to the frequency and wavenumber of the
resonant modes. As the objective here is to determine the occurrence of attenuation zones
in the frequency/wavenumber relations, a discontinuous frequency/wavenumber spectrum
would make the identification of such zones difficult and possibly ambiguous. Removal of the
boundary reflection simulates the response of an infinite domain, which is characterized by
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Figure 7. Warped and unwarped responses upon removal of the reflection at the
left boundary. (a) Warped. (b) Unwarped.

continuous dispersion characteristics, where the presence of a frequency gap corresponding to
an attenuation zone can be immediately identified.

The removal of the reflection from the boundary can be performed through proper time
windowing of the signal, but is significantly complicated by the dispersive nature of the wave.
In order to properly identify and then eliminate the reflection from the left boundary, dispersion
is compensated here through transformation into the space-warped time domain by applying
the warped frequency transform (WFT) proposed by De Marchi et al (2008). The WFT is a
linear transformation, which is based on the warping of the frequency domain according to the
dispersion properties of the medium of interest. This allows the representation of the signal in
the warped-time axis where it appears non-dispersive. The result of this operation is illustrated
in figure 7(a), where the warped-time axis is limited to the range preceding the left boundary
reflection through proper windowing. The application of the inverse WFT returns the signal
to the space/time domain where the boundary reflection from the left appears as completely
removed (see figure 7(b)).

The windowed response is finally analyzed through a 2DFT, whose amplitude |W (k, ω)|

can be represented as a surface in the frequency/wavenumber domain. The contour plot of
the 2DFT surface for a beam with open circuits is shown in figure 8(a), which shows how
the maxima of the contour plots outline the dispersion relation for the beam. The plot also
shows that the beam is excited in a frequency range spanning approximately an interval from
3000 Hz up to the selected cut-off frequency of 16 000 Hz. Within this range, a continuous
frequency/wavenumber relation can be observed. The results for shunts tuned at 5000 Hz
presented in figure 8(b) clearly show the presence of a gap in the frequency/wavenumber
spectrum at the tuning frequency.

These experimental results can be used for the analysis and validation of the numerical
predictions obtained through the TM approach. The dispersion relations computed numerically
can in fact be overlapped to the experimental frequency/wavenumber contours for a direct
comparison. The results are presented in figure 9, where plots for the two tunings considered
are presented. Numerical results presented as red lines extend to a wavenumber range that
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dispersion properties for the beam with open shunts and with shunts tuned
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Figure 9. Comparison of the dispersion relations of the experimental beam
and numerical results obtained with the TM formulation (red lines). The black
solid line corresponds to the analytical dispersion relation for a homogeneous
beam, with no periodic array of patches. (a) Tuning at 5000 Hz and R = 33 �.
(b) Tuning at 11000 Hz and R = 47 �.

exceeds the bounds of the first Brillouin zone, in order to match the range of the experimental
results. Several branches need to be included in order to follow the experimental observations,
which, however, are very well predicted by the numerical predictions. Of note is the fact that
the resonant properties of the beam predicted by the TM correspond to the frequency gap
observed experimentally at the tuning frequency. For comparison purposes, it is also interesting
to plot the dispersion branch for transverse wave in a homogeneous beam, presented here as a
black solid line. This dispersion branch follows very well the maximum ridge of the contour,
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which suggests that in the absence of shunting effects, and away from the tuning frequency,
the beam essentially behaves as a homogeneous, non-periodic medium. Only the presence of
the resonant piezos tuned at the selected frequencies affects the wave propagation properties
of the waveguide. In essence, the physical periodicity introduced by the periodic placement of
the piezos along the beam and the periodic modulation in the mechanical impedance due to the
added mass and stiffness of the bonded piezos is not sufficient to create any attenuation zone
through Bragg scattering, although the considered wavenumber range far exceeds the limit of the
first Brillouin zone. This behavior partially justifies the use of a long wavelength approximation
for the development of equivalent properties of the shunted waveguide as attempted in the next
section.

4.4. Wavenumber estimation from experimental measurements

The spatial resolution provided by the considered experimental setup allows the quantitative
estimation of the wavenumbers from experimental data. Both real and imaginary parts of the
wavenumber can be estimated as a function of frequency, so that attenuation frequency bands
can be quantified. The approach is based on the estimation of the spatial variation of the Fourier
transform of the response evaluated at each frequency of interest. The procedure can be outlined
by considering the measured response as the superposition of harmonic waves of the kind:

w(x, t) ≈

∑
ŵi(x, t), (27)

where

ŵ(x, t)i = ŵ0(ωi)e
i[k(ωi )x−ωi t] (28)

is the i th harmonic component, where k = k(ω) due to the dispersive nature of the medium. The
Fourier transform of ŵ(x, t)i at ωi is evaluated as follows:

W (x, ω) =

∫ +∞

−∞

ŵ(x, t)i e−iωt dt, (29)

which evaluated at ω = ωi is given approximately by

W (x, ωi) ≈ ŵ0(ωi)e
iki x , (30)

where ki = k(ωi). The wavenumber ki = kiR + iki I is generally a complex number, so that
equation (30) can be rewritten as

Ŵi(x, ωi) ≈ ŵ0(ωi)e
−ki I x eikiR x . (31)

Analysis of equation (31) reveals that the estimation of the FT of the recorded data and the
evaluation of the variation of the resulting expression along the spatial coordinate x allow for
the estimation of the spatial decay of the response amplitude and the phase evolution in space at
a given frequency. This in turn leads to estimation of the attenuation constant as defined by the
imaginary component of the wavenumber ki I , and of its real component, which are, respectively,
given by

ki I (xf − xi) = log[|W (x, ωi)|] (32)

and

kiR(xf − xi) = arg[W (x, ωi)|], (33)
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Figure 10. Experimentally estimated wavenumbers: open circuit (red dashed
line), shunted circuits with tuning at 5000 Hz and resistor R = 33 � (blue solid
line).
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Figure 11. Experimentally estimated wavenumbers: open circuit (red dashed
line), shunted circuits with tuning at 11 000 Hz and resistor R = 47 � (blue solid
line).

where x ∈ [xi xf], with xi, xf denoting the initial coordinate and final coordinate over which
the spatial decay and phase linear modulation are interpolated. Application of equations (32)
and (33) to the experimental results allows the quantification of the wavenumber variation over
the frequency range of interest and particularly the evaluation of the attenuation constant, which
was not possible through the application of the 2DFT illustrated previously.

Examples of the estimated wavenumber components (real and imaginary parts) are
presented in figures 10 and 11, where the red dashed lines correspond to the case of open circuits,
while the solid blue lines are the results for shunting at the tuning frequencies considered. Both
results clearly illustrate how shunting of the circuits at a given frequency creates an attenuation
frequency band centered at the tuning frequency. Such a band is defined by large nonzero values
of the imaginary part of the wavenumber, also known as the attenuation constant. In the same
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frequency range, the real part of the wavenumber defining the propagation component undergoes
a resonant behavior, which is consistent with that predicted numerically (see figure 9). The
behavior of the dispersion properties around the frequency of internal resonance is typical of
periodic systems with internal resonating properties as discussed in the introduction to this
paper. Of note is the fact that the case of open circuits does not lead to an absolute zero for the
attenuation constant, which may be affected by other sources of dissipation, which are inevitably
present in an experimental setup.

5. Equivalent properties: a metamaterial perspective

The analysis presented in the previous sections can be further elaborated by seeking analytical
expressions which provide insight into the behavior of the system when undergoing internal
resonance through the shunting circuits. The investigations developed herein aim at developing
equivalent models for the considered class of waveguides, which include the effects of the
shunting circuit as part of a set of equivalent mechanical properties.

The theory is developed for the case of the beam undergoing axial and transverse motion.
The results of the study are compared with the experimental measurements recorded for the
beam in bending. The developments require the assumption that the scale of periodicity is much
smaller than the wavelength considered. An interesting behavior is, however, observed, whereby
good agreement between the predictions of the equivalent model and experiments is found in
spite of the fact that the wavelengths corresponding to the frequency tunings are beyond the first
Brillouin zone. This confirms that the periodicity introduced by the spacing of the piezoelectric
patches does not affect the dynamic behavior of the system and therefore that the beam in the
absence of shunting behaves as a homogeneous, non-periodic system. Based on this observation,
one can interpret the considered system as the embodiment of a metamaterial concept, whereby
unusual wave mechanics is achieved in the considered waveguide through the coupling between
the primary structure and a resonating secondary system.

5.1. Long-wavelength approximation

The general formulation of equation (13) provides the basis for the analytical evaluation of
the effects of the shunting circuit parameters on the wave characteristics of the considered
waveguide. The study evaluates the resonant characteristics of the shunting circuit and their
effect on the equivalent mechanical properties of the beam. Such behavior can be analytically
investigated in the long wavelength limit or k → 0. For k → 0, it is convenient to introduce two
scales to describe the problem, as is customary in homogenization problems for systems with
periodically varying properties (Oleinik 1985, Hassani 1998, Ni and Cheng 2005). A second
scale y = x/ε describes the periodicity of the domain, in addition to the large-scale coordinate
x which governs the long-wavelength behavior of the system. Assuming that ε � 1, so that
y � x , leads to a two-scale expansion. Accordingly, equation (13) is expressed as

d

dx
z(x, y) = C(x, y)z(x, y). (34)

In the long wavelength, however, the properties of the beam can be considered as homogenous
and therefore

C(x, y) = C(x, x/ε) ≈ C(y). (35)
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Next, the state vector is expanded according to the two-scale expansion

z(x) = z(0)(x, y) + εz(1)(x, y) + ε2z(2)(x, y) + · · · (36)

and the spatial derivative in equation (34) is rewritten as

d

dx
=

∂

∂x
+

1

ε

∂

∂y
. (37)

Substituting equations (36) and (37) in equation (34) gives

∂

∂x
z(0) +

1

ε

∂

∂y
z(0) + ε

∂

∂x
z(1) +

∂

∂y
z(1) + · · · = C(y)(z(0) + εz(1) + · · ·), (38)

which leads to the following set of ordered equations:

ε−1 :
∂

∂y
z(0)

= 0, (39)

ε0 :
∂

∂x
z(0) +

∂

∂y
z(1)

= C(y)z(0), (40)

ε1 :
∂

∂x
z(1)

= C(y)z(1). (41)

Equation (39) implies that

z(0)(x, y) = z(0)(x), (42)

while equation (40) can be simplified by integrating both sides over a period p, which gives

p
∂

∂x
z(0)(x) =

∫ (1−α)p

−αp
C(y) dy z(0)(x). (43)

The result from equation (42) can be exploited along with the well-known fact that the
integral of the derivative of a periodic function over its period is equal to zero, i.e.∫ (1−α)p

−αp

∂

∂y
z(1) dy = 0. (44)

Equation (43) can be rewritten as

d

dx
z(0)(x) = Ceqz(0)(x), (45)

which represents the governing equation for a beam of the kind considered whose equivalent
homogeneous properties are given by

Ceq =
1

p

∫ (1−α)p

−αp
C(y) dy. (46)

Given the step-wise nature of the considered configuration, Ceq is given by

Ceq = αC1 + (1 − α)C2. (47)
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5.2. Equivalent mechanical properties

For the waveguide under study, the extended expression for Ceq is

Ceq =



0 0 0 1
Keq

0 0
0 0 1 0 0 0
0 0 0 0 1

Deq
0

−ω2meq 0 0 0 0 0
0 0 0 0 0 −1
0 −ω2meq 0 0 0 0

 , (48)

where meq, Keq and Deq are the equivalent linear mass, axial and bending stiffnesses of the
beam, which are, respectively, given by

meq = αm1 + (1 − α)m2, (49)

Keq =
K1K2

αK1 + (1 − α)K2
, (50)

Deq =
D1 D2

αD1 + (1 − α)D2
, (51)

where mi , Ki and Di with i = 1, 2 denote the linear mass, axial and bending stiffnesses in each
interval of the unit cell.

It is interesting to note how the results obtained within the considered long-wavelength
approximation correspond to the well-known relations obtained through the application of the
rule of mixture for composite materials. Of note is the fact that the variability of the piezoelectric
elastic modulus, equation (1), leads to a frequency-dependent axial stiffness K2(ω) and in turn
to an equivalent stiffness Keq(ω), which is also frequency dependent. Given the expressions for
the elastic modulus of the shunted piezo patch (equation (1)), Keq(ω) is given by

Keq(ω) =
Eb Ab

[
(1 + ḡ)

(
1 + ω2LCε

p + iωRCε
p

)
− ḡk2

31

]
[α + (1 − α) (1 + ḡ)]

(
1 + ω2LCε

p + iωRCε
p

)
− (1 − α) ḡ k2

31

, (52)

where gEb Ab = ESU
p Ap and ḡ = g/(1 − k2

31).
Similarly, the equivalent bending stiffness for the beam is given by

Deq(ω) =
Eb Ib

[
(1 + γ̄ )

(
1 + ω2LCε

p + iωRCε
p

)
− γ̄ k2

31

][
α + (1 − α) (1 + γ̄ )

] (
1 + ω2LCε

p + iωRCε
p

)
− (1 − α) γ̄ k2

31

, (53)

where Ib =
1

12bbh3
b, Ip =

1
12bp[2(1

2 hb + hp)
3
− h3

b], γ Eb Ib = ESU
p Ip and γ̄ = γ /(1 − k2

31).
Frequency variations of equivalent bending and axial stiffnesses are presented in figure 12

for different tunings of the shunt circuits. The resonant behavior of the shunts is reflected in
the equivalent mechanical behavior of the waveguide, which is a behavior observed for other
internally resonating metamaterials and has been interpreted as the result of an apparent negative
stiffness at the internal resonance (Huang et al 2009). The results of figure 12 are obtained for
tuning at 5000 and 11 000 Hz, and illustrate how the resonant characteristics of the waveguide
can be tuned at different frequencies without introducing any physical changes to the structure.
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Figure 12. Equivalent axial (a) and bending (b) stiffnesses for different tunings of
the piezo shunts (5000 Hz—blue lines; 11 000 Hz—red lines; R = 25 �—solid
lines; R = 50 �—dashed lines). Equivalent stiffnesses are normalized with
respect to the open circuits values (K D

eq and DD
eq).

The value of resistance R affects the magnitude of the resonance and its frequency bandwidth.
High values of resistance correspond to broader ranges of frequencies, and lower amplifications
at resonance for the equivalent elastic properties of the beam.

5.3. Dispersion relations

The equivalent properties found through the derivations above are used for the estimation
of the dispersion properties of the waveguide. For a beam of equivalent properties given in
equation (51), the dispersion relation relating frequency and wavenumber of axial waves is
given by the well-known expression (Graff 1975):

k(0)
u = ω

√
meq

Keq
, (54)

where k(0)
u denotes the approximation for λ � p for the wavenumber of longitudinal waves in

the beam. Similarly, the dispersion relation for transverse waves is also given by a well-known
expression (Graff 1975):

k(0)
w =

(
ω2 meq

Deq

)1/4
, (55)

where k(0)
w denotes the approximation for λ � p for the wavenumber of transverse waves in the

beam.
The dispersion relations predicted through the equivalent properties of the beam are

compared with the experimental ones visualized through the contour of the magnitude of the
2DFT. Results for the two values of frequency tuning are shown in figure 13. It is interesting
to note how the equivalent properties formulation is able to identify the attenuation bands in
the approximate ranges of frequency 4850–5150 Hz and 10 500–11 500 Hz. These accurate
predictions are obtained in spite of the apparent inconsistency of analytical developments
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Figure 13. Experimental dispersion relations compared to the analytical
predictions from the equivalent properties of the beam: open-circuit—red dashed
line; closed-circuit—blue solid line. (a) Tuning at 5000 Hz and R = 33 �.
(b) Tuning at 11000 Hz and R = 47 �.

formulated on the basis of the long-wavelength approximation, and the fact that the periodicity
of the beam in this case is such that this assumption does not appear to be valid. However,
the considered periodic addition of the piezoelectric patches does not affect the behavior of
the beam in terms of added mass and stiffness, at least in the range of frequency considered
here, and therefore the selection of a Brillouin zone on the basis of this periodicity appears
to be arbitrary and inappropriate. This suggests that for the case at hand, the extension of the
equivalent properties estimation for the approximation of the dispersion relations can provide
an accurate evaluation of the equivalent properties of the beam, and a good model for the effect
of piezoelectric shunting on the equivalent mechanical behavior of the beam.

6. Conclusions

This paper describes the analysis of wave propagation in a periodic beam with shunted
piezoelectric patches. The beam is as example of a 1D waveguide connected to a secondary
system of periodic resonators. The resonating properties are due to the properties of the shunting
circuits, whose impedance can be easily tuned to selected frequency values.

The wave propagation characteristics of the piezoelectric waveguide are first predicted
through the application of the TM approach, which is conveniently derived for a structure
with piecewise coefficients. The dispersion analysis highlights the occurrence of an internal
resonance and the associated generation of an attenuation band at the tuning frequency of
the shunts. Such a behavior is found for both axial and bending wave motion. Experimental
evidence of the internal resonant behavior of the waveguide is provided through measurements
carried out on a beam with a periodic array of 11 patches. The experimental results, analyzed
through the application of 1D and 2D FT, effectively confirm the numerical predictions and
illustrate the internal resonant characteristics of the waveguide. This behavior is achieved
through the multifield coupling between the structural beam and the electrical circuits shunting
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the piezo patches. Further insight into the wave mechanics of the waveguide is gained
through the development of analytical models of its equivalent mechanical properties. The
dispersion relations predicted using this approach illustrate once again the internal resonant
behavior of the beam, and capture with good accuracy the trends measured experimentally. The
analytical results also suggest that the physical periodicity corresponding to the spacing between
the piezo patches may not be an appropriate measure of the periodicity of the waveguide,
which effectively behaves as a homogeneous structure with frequency-dependent, resonating
mechanical properties.
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