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Abstract. Inferring the network topology from dynamical observations is a
fundamental problem pervading research on complex systems. Here, we present
a simple, direct method for inferring the structural connection topology of
a network, given an observation of one collective dynamical trajectory. The
general theoretical framework is applicable to arbitrary network dynamical
systems described by ordinary differential equations. No interference (external
driving) is required and the type of dynamics is hardly restricted in any way.
In particular, the observed dynamics may be arbitrarily complex; stationary,
invariant or transient; synchronous or asynchronous and chaotic or periodic.
Presupposing a knowledge of the functional form of the dynamical units and
of the coupling functions between them, we present an analytical solution to the
inverse problem of finding the network topology from observing a time series of
state variables only. Robust reconstruction is achieved in any sufficiently long
generic observation of the system. We extend our method to simultaneously
reconstructing both the entire network topology and all parameters appearing
linear in the system’s equations of motion. Reconstruction of network topology
and system parameters is viable even in the presence of external noise that
distorts the original dynamics substantially. The method provides a conceptually
new step towards reconstructing a variety of real-world networks, including gene
and protein interaction networks and neuronal circuits.
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1. Background

Understanding the relationships between network topology and its collective dynamics is at
the heart of current interdisciplinary research on networked systems [1]. Often it is possible to
observe the dynamics of the individual units of the network, whereas the coupling strengths
between them and the underlying network topology cannot be directly measured. Examples
range from neuronal circuits in the brain and protein and gene interaction networks in the cell
to the spreading of diseases on human travel networks and food webs [2–6]. Hence, various
methods have been proposed to solve the inverse problem of inferring the network structure
from observation and control of dynamics.

Perturbing a fixed point of a network dynamical system constitutes the simplest controlled
intervention of a system. The method of Tegnér et al [7] perturbs the steady-state expression
levels of selected genes. Their iterative algorithm can reveal the structure of an underlying gene
regulatory network by analysing resultant dynamical changes in the pattern of gene expression
levels. A similar iterative method based on multiple regression, coupled with transcriptional
perturbations to the fixed points of a genetic network, has been used to successfully identify a
nine-gene sub-network [8]. Faith et al [9] have extended and validated specific machine learning
algorithms to infer interactions in large transcriptional regulator networks in Escherichia
coli, leading to the prediction of several new links in the network. A method introduced by
Timme [10] extends dynamical system reconstruction to networks of smoothly coupled limit-
cycle oscillators with periodic collective dynamics. The underlying idea is that the asymptotic
response dynamics of a network to different externally induced driving conditions are a
function of its topology and of the (external) driving signals. Thus, measuring the response
to suitable driving signals in different experiments restricts the set of network topologies that
are consistent with the driving–response pairs, yielding the network’s topology for sufficiently
many experiments.

Can one reconstruct a network displaying collective dynamics richer than simple fixed
points or limit-cycles? Yu et al [11] introduced a synchronization method to identify networks
of chaotic Lorenz oscillators up to N = 17 units. Assuming full knowledge of all model
parameters, the network topology of a clone of the system is varied progressively via error
minimization until it synchronizes with the original system. The topology of the clone is then
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recognized as that of the original network. An extension of this synchronization method [12]
involves additional ‘control signals’ to externally drive the system to steady states, allowing the
inference of interaction topology for sparse, symmetric networks.

In this paper, we introduce a simple, direct and intervention-free method for reconstructing
networks of arbitrary topology from the mere observation of generic collective dynamics. Here,
a dynamical state is considered generic if it generates observations of state variables that imply
linearly independent constraints (cf equation (2) below). Thus, reconstruction is possible for
arbitrarily complex collective dynamics (for instance, high-dimensional and chaotic) but may
not be possible for overly simple dynamical states. For instance, the interactions between
coupled identical oscillators in an unperturbed, identically synchronized state cannot be
reconstructed, because there are no effective interactions in the perfectly synchronized state.
Given the functional form of the intrinsic and interaction dynamics, we show that all other
factors of the network dynamical system, such as network topology and coupling strengths (and
even typical parameters), can be reliably and efficiently reconstructed.

2. Theory of direct reconstruction from dynamical trajectories

Given an observation of the collective trajectory of a dynamical network, how can we infer
its underlying topology? We consider a dynamical system consisting of N units, where the
dynamics of each unit are specified by an arbitrary set of dynamical equations, and the
interactions between the units take place via edges in the network. The units of the dynamical
system are coupled on a directed graph of unknown connectivity with their dynamics satisfying

d

dt
xi = fi(xi) +

N∑
j=1

Ji j gi j(xi,x j), (1)

where i, j ∈ {1, 2, . . . , N }, and xi = [x (1)

i , x (2)

i , . . . , x (D)

i ] ∈ RD describes the state of the ith
unit and the functions fi , gi : RD

→ RD mediate intrinsic and interaction dynamics of the
D-dimensional unit, and are known. Methods based on copy-synchronization [11, 12] rely
on the construction of a new network, with dynamics governed by equation (1) and network
parameters J ′

i j that are tuned to that of the real network by an error minimization procedure.
Here, we reduce the same reconstruction problem by evaluating the time series of state variables
directly, recognizing that the only remaining unknowns in equation (1) are the time derivatives
ẋ (d)

i as well as the coupling strengths, which are to be determined. A concise recipe for network
reconstruction is provided in section 4.

The dynamics of the dth dimension of the ith unit is given by

ẋ (d)

i (τm) = f (d)

i (xi(τm)) +
N∑

j=1

Jijg
(d)

ij (xi(τm), xj(τm)), (2)

where τm ∈ R, m ∈ {1, . . . , M}, are the times we evaluate equation (1). We now write ż for
the rate of change d

dt z of a scalar variable z. To obtain the data necessary for reconstruction, we
sample the time series of state variables x (d)

i (tm) at discrete times tm and take τm := (tm−1 + tm)/2.
We linearly interpolate according to

x (d)

i (τm) :=
x (d)

i (tm−1) + x (d)

i (tm)

2
(3)
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and linearly estimate the time derivatives by

ẋ (d)

i (τm) :=
x (d)

i (tm) − x (d)

i (tm−1)

tm − tm−1
, (4)

assuming that the sampling intervals tm − tm−1 are sufficiently small. From (2), we thus obtain
M equations of the form

ẋ (d)

i,m = f (d)

i,m +
N∑

j=1

Ji j g
(d)

i jm (5)

for each dimension d of the local dynamical systems f (d)

i separately. As the equations (5) are
uncoupled for any two different dimensions d and d ′, we treat these separately and drop the
index (d) from now on.

Repeated evaluations of the equations of motion (2) of the system at different times τm

thus comprise a simple and implicit restriction on the network topology Ji j as follows: writing
X i,m = ẋi,m − fi,m , these equations constitute the matrix equation

X i = Ji G i , (6)

where X i ∈ R1×M , Ji ∈ R1×N and G i ∈ RN×M . Here, the elements of the ith row of J are given
by Ji and comprise the sequence (Ji j) j∈{1,...,N } of all input coupling strengths to unit i.

Can we rewrite this equation explicitly for Ji ? Generically, M > N , and we wish to solve
this overdetermined problem by minimizing the error function given by

Ei( Ĵ i) =

M∑
m=1

(
xim −

N∑
k=1

Ĵ ikgikm

)2

(7)

for the best (in Euclidean (`2) norm) solution Ĵ i . Here Ĵ ik represents the reconstructed value of
the real coupling strength Jik . Equating to zero the derivatives of the error function with respect

to the matrix elements, ∂

∂ Jik
Ei( Ĵ i)

!
= 0, yields an analytical solution to `2 error-minimization

given by

Ĵ i = XGT
i

(
G i G

T
i

)−1
(8)

and thus the set of input coupling strengths (and input connectivity) of unit i . Evaluating such
equations for all i ∈ {1, . . . , N} yields the complete reconstructed network Ĵ . This form of
minimum `2-norm solution is implemented in many mathematical software packages (e.g. as
the mrdivide function in MATLAB [13]).

Other weighted linear forms of determining states and derivatives work equally well,
substituting (3) and (4). For instance, one might take τm = tm , directly evaluate the states at
the sampled times, x (d)

i (τm) = x (d)

i (tm), and estimate the derivatives as ẋ (d)

i (τm) = (x (d)

i (tm) −

x (d)

i (tm−1))/(tm − tm−1). This approach is used in estimating derivatives in reconstructions in
figure 4.

3. Performance for different collective dynamics

How does this theoretical method perform in applications on data? To illustrate the performance
of the method and its insensitivity to the type of dynamics, we apply it to four distinct collective
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Figure 1. Reconstruction of networks is possible for various types of collective
dynamics. A 32-unit random network of Rössler oscillators (9) with fixed
connection probability p = 0.5 exhibiting (a) a synchronous periodic state
(ai ≡ 0.2, bi ≡ 1.7 and ci ≡ 4.0 for all units); (b) a synchronous chaotic state
(ai ≡ 0.2, bi ≡ 1.7 and ci ≡ 13.0 for all units); (c) an asynchronous periodic
state (parameters randomly drawn independently from ai ∈ [0.10, 0.101], bi ∈

[0.10, 0.101] and ci ∈ {4, 6, 12}); (d) an asynchronous chaotic state (parameters
randomly drawn independently from ai ∈ [0.0, 0.38], bi ∈ [0.0, 2.0] and ci ∈

[13, 16]). The x-values of three out of N = 32 oscillators are shown. Close to
perfect reconstructions from all these distinct dynamics are shown in figure 2.

dynamical states ranging from simple periodic synchronous dynamics to very complex, highly
chaotic asynchronous states. We choose networks of Rössler oscillators that can exhibit a
rich repertoire of collective dynamics from multi-dimensional chaos to periodicity and from
global synchrony to asynchrony (see figure 1), depending on local unit parameters and
coupling functions. Unless otherwise stated, simulations were performed with Euler first-order
integration at a fixed time step of δt = 10−5, and observations were sampled at fixed time
intervals separated by tm+1 − tm = 1t = 10−3.

3.1. Successful reconstruction from different dynamics

The dynamics of each Rössler oscillator [14] is given by the three ordinary differential equations

ẋi = −yi − zi +
N∑

j=1

Ji j f (xi , x j),

ẏi = xi + ai yi ,

żi = bi + zi(xi − ci),

(9)
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Figure 2. Successful reconstruction of the topology of networks from very
different dynamics. Each panel (a)–(d) shows a reconstruction of the network’s
topology from the dynamics shown in the respective panels (a)–(d) of figure 1.
The smaller panels show absolute differences (c, d magnified by a factor
of 103) from the actual network (picked randomly from an ensemble of
networks with connection probability p = 0.5). The reconstructions (a)–(d) used
trajectories from very different dynamical states, as shown in figures 1(a)–(d).
Reconstructions in panels (c) and (d) have lower errors as they utilize whole
dynamical trajectories, instead of transients towards synchronous states, as in
panels (a) and (b).

where ai , bi and ci are local parameters. The coupling function was set to f (xi , x j) = x j − xi

to induce synchronization and to f (xi , x j) = sin(x j) to prevent it. The local unit parameters ai ,
bi and ci of the Rössler oscillators are chosen to induce either chaotic or periodic dynamics.
The parameters were treated as unknown and are not needed for the reconstruction of the
network topology. This is the case in this example, since the equations where the parameters
of network topology occur (in the x-dimension) do not contain any other (unknown) parameter.
We now demonstrate a reconstruction of the network in all four dynamical paradigms illustrated
in figure 1: periodic synchronous, chaotic synchronous, periodic asynchronous and chaotic
asynchronous collective states.

Reconstruction in praxis works as follows: for networks exhibiting synchronized dynamics,
the coupling function f (xi , x j) = x j − xi is uniformly zero for all units in the synchronized
state, revealing no information about the network topology. Nevertheless, the network can
still be reconstructed from its transient dynamics towards the synchronous state. In general,
by substituting X i,m = ẋi (τm) + yi (τm) + zi (τm) and G i j,m = f (xi(τm), x j(τm)) in (6), we find
the least-squares reconstructed network according to (8). Since each unit has at most N − 1
incoming links of unknown weights, the diagonals in the reconstructed Ĵ are zero. A reliable
reconstruction of the network from trajectories (as shown in figure 1) is illustrated in figure 2,
for all four dynamical paradigms considered.
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Figure 3. Quality of reconstruction (Q0.95) as a function of sampling rate ω

and observation time T . Good-quality reconstruction can be achieved even at
low sampling rates. The underlying system dynamics used for reconstruction
in panels (a)–(d) are shown in figures 1(a)–(d). The lengths of observations are
T = 1 (M), T = 5 (+), T = 10 (�) and T = 20 (◦). Each point is the result of
averaging over 50 networks.

3.2. Quality of reconstruction

How accurate is such a reconstruction? The quality of reconstruction

Qα :=
1

N 2

∑
i, j

H((1 − α) − 1Ji j) ∈ [0, 1] (10)

is defined as the fraction of coupling strengths that are considered correct. Here α 6 1 is the
required accuracy of the coupling strengths and H is the Heaviside step function, H(x) = 1
for x > 0 and H(x) = 0 otherwise. The normalized element-wise difference between the
reconstructed and real networks is

1Ji j := | Ĵ i j − Ji j |/ (2Jmax) , (11)

where Jmax = maxi ′, j ′{|Ji ′, j ′|, | Ĵ i ′, j ′|}. Typically, the quality of reconstruction increases with both
the sampling rate and the length of trajectory observed, becoming close to 1 even at lower
sampling rates for longer times (see figure 3).

3.3. Required observation time

What is the minimum length of observation required to reconstruct a network? Assuming fixed
sampling rate ω = (tm − tm−1)

−1, we define

Tq,α,ω := min {T |Qα (T )> q} (12)
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Figure 4. Sublinear scaling of reconstruction time with system size.
(a) The minimum required time of observation for reconstruction (q =0.98,

α = 0.95 and ω = 200) grows sublinearly (presumably algebraically) with
system size N for networks with various fixed indegrees K = 10 (•), K = 50
(O) and K = 100 (M). The fit suggests that Tq,α,ω ∝ N γ , where the exponent
of scaling γ ≈ 0.5. (b) An algebraic scaling (black) fits the data (K = 100,M)
best. Data plotted on a bilogarithmic scale. Linear best-fits (green dashes)
overestimate and logarithmic fits (red dots) underestimate reconstruction time.
All fits to data from N = 100 to N = 2000. δt = 1t = 0.005.

to be the minimum length of time of observation required for accurate reconstruction at quality
level q at accuracy α. A general observation is that with increasing sampling rate ω or increasing
observation time T , the quality increases, due to more accurate information that is obtained
about the system’s states. In general, however, it is not only the total number T × ω of restricting
equations (per node and per dimension) that controls the quality. For instance, at a given
observation time, high quality close to Q0.95 = 1 is reached even at lower sampling frequency
if the collective dynamics are more irregular, cf figures 3(a) and (b) versus figures 3(c) and (d).
We ascribe this to the lower degree of correlation among observations at different times that is
required for accurate reconstruction numerics in (8), e.g. for irregular dynamics, sample points
more distant in time provide more relevant information increase about the system as they are
less correlated than closer-by points.

How does the minimum required observation time scale with system size? Figure 4 shows
T0.98,0.95,200, the minimum length of time of observation required to have at least q = 98% of the
links accurate in strength to an accuracy of at least α = 0.95, sampled at a rate of ω = 200, as
a function of N. The numerics suggest that, at fixed ω, Tq,α,ω scales sublinearly with network
size N for reasonably small 0 < 1 − α � 1 and 0 < 1 − q � 1 (reasonably large α and q). This
implies that the cost of observation does not grow prohibitively quickly, and that even large
networks can be reconstructed by a single observation of the collective dynamics.

3.4. Robustness: substantial noise and unknown parameters

Is reconstruction still feasible in the presence of substantial noise? Is it possible to find
unknown parameters of the local unit systems? In the preceding examples, none of the unknown
parameters appeared in the dimension of coupling, making the problem of reconstructing
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network topology distinct from that of inferring dynamical parameters. In the following
example, we illustrate reconstructing networks with intrinsic unit dynamics that are governed
by arbitrary functions with K unknown parameters and where the dynamics are influenced
by substantial additive noise ξ

(d)

i . Assuming that all ξ
(d)

i have a finite variance, we note that
an observation of the dynamics of the system yields a system of equations linear in the
K + N unknowns, which we can solve as before. A simple example is a network of Lorenz
oscillators [15], where the dynamics of each oscillator is given by

ẋi = σi (yi − xi) +
N∑

j=1

Ji j(x j − xi) + ξ
(x)

i (t),

ẏi = xi (ρi − zi) − yi + ξ
(y)

i (t), (13)

żi = xi yi − βi zi + ξ
(z)
i (t),

where the parameters σi , ρi and βi are unknown, and chosen randomly from intervals where
the Lorenz system is known to be chaotic: σi ∈ [9, 11], ρi ∈ [20, 35], βi ∈ [2, 3]. The ξ

(d)

i (t)
represent external Gaussian white noise components, independent of all d ∈ {x, y, z} and all
i ∈ {1, . . . , N }, without bias, 〈ξ

(d)

i (t)〉 = 0, and with correlation 〈ξ
(d)

i (t)ξ (d ′)

j (t ′)〉 = 2λδ(t −

t ′)δi, jδd,d ′; here λ is the noise strength. In our discrete time simulations of the continuous
time dynamics, we take the first-order Euler method with time steps δt = 0.001 and λ = 5.
The network topology and all parameters of the system can be reconstructed and the
reconstruction method works despite substantial interference from noise. Figure 5 shows a
successful reconstruction of the network and of all dynamical parameters for a network of
heterogeneous Lorenz oscillators, where the noise amplitude is chosen such that it drastically
alters the dynamics from its deterministic counterpart (black versus blue curve in figure 5(a)).
This illustrates by example that the theory is insensitive to additive noise and capable of
successful reconstruction, as desired for generic real-world systems.

4. Recipe for network reconstruction

Here, we briefly outline the method for reconstructing network connection topology from
observed collective time series of state variables:

(i) Observe the collective dynamical trajectory xi(t) of all units of the network at times
t ∈ {t0, t1, . . . , tM}.

(ii) Estimate states x (d)

i and derivatives ẋ (d)

i at times τm = {τ1, τ2, . . . , τM} where τm := (tm−1 +
tm)/2 by approximating to first-order (3)–(4).

(iii) Use the observed state variables xi(τm) and the estimated derivatives ẋi(τm) to compute
f (d)

i (xi(τm)) and g(d)

i j (xi(τm), x j(τm)) and set up the matrix equation (6).

(iv) Using `2 optimization, solve for unknown coupling strengths (and, if applicable, for
unknown parameters appearing linear in the system) according to (8).

(v) If desired, threshold the resultant weighted adjacency matrix, as appropriate for the
question under consideration.
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Figure 5. Reconstructing a network and unknown parameters for a system in
the presence of substantial external noise λ = 5. (a) The dynamics of a unit in a
network of 32 Lorenz oscillators in the noise-free (blue) and noise-driven (black)
regimes. The network was a realization from an ensemble of networks with
edge connection probability p = 0.5. Starting from the same initial condition,
the noise-driven trajectory quickly deviates due to the chaotic nature of the
system. Reconstruction of the network topology (d) and parameters (f) with
corresponding absolute errors (e), (g). Panel (b) shows the actual network,
and (c) shows the receiver operating characteristics (ROC) of reconstruction
from noiseless (blue) and noisy (black, λ = 5) observations, as the detection
threshold is varied. For the three red curves, the noise amplitude λ ∈ {0.1, 1, 10}.
Simulation time step δt = 0.001, sampling interval 1t = 0.01.

5. Conclusion

In summary, we have introduced a simple robust method for inferring the connection topology
from observations of deterministic and noisy network dynamical systems, where the functional
form of the evolution equations is known.

Our method is unique in the following ways. A simple sufficiently long observation of
the system dynamics suffices to reconstruct the network topology and coupling strengths.
In many cases, experimental access to the system, say to introduce ‘control signals’, as in
[10, 12] may not be possible, and the method proposed here does not require any form of
system intervention. Furthermore, the type of collective dynamics is not restricted to, e.g., fixed
points, periodic orbits, synchronous states or any other specific type of motion (cf [8, 10]).
Using entire dynamical trajectories, including transients, for the reconstruction, we demonstrate
robust reconstruction for a wide range of observed dynamical states, from asynchronous chaotic
states to transient states towards global synchrony. Moreover, we treated the system as a
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‘grey box’, where we know some general principles of the system (such as the coupling
functions) but lack the details, such as network structure or intrinsic parameters. Given (e.g.
experimental) dynamical observation data, our theory provides an explicit analytic solution to
the inverse problem of finding the network structure. This solution is a direct restatement of the
differential equations governing the dynamics of the system, and is thus conceptually simple.
This simplicity may suggest high attainable quality for such inverse problems.

The method scales sublinearly with network size, seems robust against substantial addition
of noise and thus provides a promising complement to existing reconstruction methods.
Thus, our method offers a conceptual simplification over other methods that make the same
assumptions we do, but rely on more complex techniques such as copy-synchronization (called
auto-synchronization in [12]) or the use of topology estimating clone models or control
signals [11]. Further, the method suggested here is capable of reconstructing the network
structure from a simple observation of the system’s dynamics, without resorting to any external
intervention to drive the system into or from some canonical state, as in [10].

Efforts to understand the general interplay of network structure and dynamics have
yielded several promising approaches, mainly applicable to smaller systems. Notable among the
forward methods, i.e. methods that predict dynamical features from the knowledge of network
topology, are those that study the propagation of a harmonic perturbation through a network
of coupled phase oscillators [16, 17] and methods for predicting disordered dynamics from
the structures of strongly connected components in the network [18]. Cimponeriu et al [19]
introduced two methods for estimating the interaction delay in weak coupling between two self-
sustained oscillators from observed dynamical time series. Arenas et al [20] show that times
of synchronization can reveal the hierarchical structure of a network, revealing a connection
between synchronization dynamics and topological clustering. In an alternative approach,
Memmesheimer and Timme [21, 22] present an analytical method for designing networks of
spiking neurons that display a required spike pattern. Other inverse methods have relied on
stochastic optimization [23] to fit a model of a network of spiking neurons to an observation
of a real network to infer its topological parameters. Reconstructing gene regulatory networks
has been shown to be useful in identifying targets of drugs from secondary responders [3].
For systems where good proxy models for the dynamics of single units and their interactions
already exist, e.g. for interacting genes and proteins, for neural circuits and for generic systems
of coupled oscillators (e.g. pacemaker networks), the new, simpler method developed here may
be implemented in a straightforward way.

Several avenues for further research present themselves. As suggested by previous work
[7, 10], minimizing the `1 norm, instead of the `2 norm as used here, may result in more efficient
reconstruction of sparse networks [24]. In addition, our preliminary studies suggest that this
highly overdetermined inverse problem can be reduced to an exactly determined problem by
selectively choosing points on the time series to ensure that the resultant system of equations is
maximally linearly independent. This reduction significantly reduces the cost of computation to
reconstruct large networks. Furthermore, it is straightforward to extend this method to coupled
map networks and to systems with delay. Finally, recent studies show that a method analogous
to the one presented here for smoothly coupled systems is capable of reconstructing networks
of pulse-coupled systems such as integrate-and-fire neurons [25].
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