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Abstract. NOON states, states between two modes of light of the form
|N , 0〉 + eiφ

|0, N 〉, are highly nonclassical entangled states with applications in
super-resolution interferometry. We show how NOON states can be efficiently
produced in circuit quantum electrodynamics using superconducting phase
qubits and resonators. We propose a protocol where only one interaction between
the two modes is required, creating all the necessary entanglement at the start of
the procedure. This protocol makes active use of the first three states of the phase
qubits. Additionally, we show how to efficiently verify the success of such an
experiment, even for large NOON states, using randomly sampled measurements
and semidefinite programming techniques.
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1. Introduction

The particle–wave duality of quantum physics has striking consequences on the physics of
electromagnetic radiation, necessitating a photonics description of electromagnetic radiation,
spanning frequencies from γ quanta via visible light to microwave fields. The phenomena of
classical optics are fully characterized by only a tiny fraction of the wealth of states attainable
in the quantum world. Creating and quantifying these others, the nonclassical states of light,
has defined the field of quantum optics [1, 2].

Recently, this quantum-optical paradigm has been extended to the field of circuit quantum
electrodynamics (cQED) [3, 4] where nonlinear superconducting circuits [5] are used to
manipulate the quantum state of microwaves in waveguides in much the same way as atoms
are used to manipulate optical fields in traditional quantum optics. Unlike atoms, however,
superconducting circuits can be tuned over a broader range of parameters, allowing for highly
flexible control. The current state of the art allows for the full control of quantum states up
to 12 photons [6] as well as violations of locality in a Bell experiment [7, 8]. Small quantum
information algorithms have also been successfully demonstrated [9].

A new frontier in this program is the realization of nonclassical states that are entangled
between modes in distinct waveguides. A prominent example is the NOON state [10]–[12]

|ψ〉 =
1

√
2

(
|N , 0〉 + eiφ

|0, N 〉
)
, (1)

i.e. an equal coherent superposition of N photons in the first mode and vacuum in the second
mode with the reverse, vacuum in the first mode and N photons in the second mode. NOON
states were introduced in quantum metrology as a means of surpassing the shot noise limit for
phase sensitivity achievable by classical light by a factor of 1/

√
N , which instead saturates the

Heisenberg bound. At optical frequencies, NOON states up to N = 4 have been realized to date,
relying on cascaded pair sources and postselection [13, 14]. Schrödinger cat states interpreted

New Journal of Physics 12 (2010) 093036 (http://www.njp.org/)

http://www.njp.org/


3

cavities

Phase qubit Phase qubit

Coupling cavity

Data

Figure 1. Schematic diagram of an experimental setup for generating NOON
states consisting of two phase qubits, a coupling cavity and two data cavities. The
NOON state will be between the data cavities, which in the end are disentangled
from the rest of the system. The boxed ×’s label Josephson junctions and the
small circles label external ports to which driving fields can be applied.

as NOON states up to N = 10 have been realized in spin systems, along with an enhanced
sensitivity to the magnetic field [15]. Such states can be viewed as a benchmark for multi-mode
state preparation and coherent control capabilities.

We propose a scheme to create NOON sates in cQED. In cQED, sources that create pairs of
photons independent of the number of photons already in the mode are currently not available.
These would be needed for direct implementation of schemes developed at optical frequencies.
Recently, Strauch et al [16] proposed a method to deal with this by utilizing state-dependent
Stark shifts. We will circumvent this restriction by utilizing an additional energy level in the
superconducting qubit we are considering for our artificial atom. We also place bounds on
the size of NOON state that can be achieved and propose a scheme on how to verify the
preparation of a NOON state using single-qubit measurements. A related protocol has been
presented in [16].

2. The system and the Hamiltonian

The system under consideration consists of two microwave cavities, each coupled to its
respective phase qubit. The qubits are also coupled to each other, either directly [17]–[19] or by
a coupling cavity [20, 21]. This being a nonessential difference, we are going to focus on the
case of cavity-mediated interaction, where by programming the frequency in phase qubits one
achieves tunability. A schematic diagram of this system is given in figure 1 and is described by
the Hamiltonian

Ĥ(t)= Ĥ 0 + Ĥ c
Q1(t)+ Ĥ c

Q2(t)+ Ĥ c
C1(t)+ Ĥ c

C2(t). (2)
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The static (or ‘drift’) part of the Hamiltonian can be decomposed as

Ĥ 0 =

∑
i=1,2

Ĥ Qi +
∑

j=1,2,C

Ĥ C j +
∑
i, j

Ĥ QiC j . (3)

Here, Ĥ Qi = E1i |1〉i〈1|i + E2i |2〉i〈2|i is the Hamiltonian for the phase qubit truncated to its three
lowest energy levels |0〉, |1〉 and |2〉. Higher states will never be resonant during the whole
protocol. The relevant cavity modes are described by Ĥ C j = ω j â

†
j â j with j = 1, 2,C and â†

j and
â j being the photon-raising and -lowering operators, respectively. With the same index space,
the qubit–cavity couplings can be written in rotating wave approximation (RWA), assuming
g(k)ij � ω j , E1i as

Ĥ QiC j =

(
g(1)i j |1〉i 〈0|i + g(2)i j |2〉i 〈1|i

)
â j + h.c., (4)

which is a straightforward three-level generalization of the Jaynes–Cummings (JC)
interaction [22].

The system is primarily manipulated by controlling the phase qubits. Driving one of the
qubits with an external field results in a control of the form, Ĥ c

Qi(t)=
�i (t)

2 (|0〉i〈1|i + λ|1〉i〈2|i +

h.c.). Here, λ≈
√

2 is a constant whose precise value depends on the details of the qubit.
Generally,�(t)will be a resonant microwave drive�(t)=�0 cos(ωdt). Additionally, changing
the bias current gives a time-dependent E1i and E2i approximately following E1i = pE2i with
a fixed p < 2. Changing the energy of the qubit will primarily be used as a switch to move
interactions in and out of resonance. Finally, the cavities themselves can be driven externally by
microwave sources H (c)

Ci = λi(t)(â
†
i + âi).

3. NOON state preparation

3.1. Coupling and decoupling

In order to understand the coupling Hamiltonian, it is helpful to transform it to the interaction
representation with respect to the Ĥ Qi and Ĥ C j . In that frame

Ĥ I
QiC j =

(
g(1)i j |1〉i 〈0|i ei1(1)i j t + g(2)i j |2〉i 〈1|i ei1(2)i j t

)
â j + h.c. (5)

with the detuning 1(k)
i j = E (k)

i (t)− E (k−1)
i (t)−ω j . If 1(k)

i j (t)� g(k)i j

√
n j + 1, a standard rotating

wave argument allows us to neglect the terms that couple |k〉i |n〉 j ↔ |k − 1〉i |n + 1〉 j . The
implication is that by rapidly tuning E (k)

i , one can switch the coupling between the cavity
and the qubit on or off. This has been successfully demonstrated in a multitude of
experiments [6, 20, 23]. The two regimes of interest for the following protocol are the case
when both detunings are large, leading to uncoupled systems, and the case when 1(1)

i j = 0 and

1
(2)
i j � g(2)i j

√
2, which reduces to the standard resonant JC interaction between states |0〉i , |1〉i

and the qubit only; see figure 2 (lower right).

Ĥ I
QiC j = g(1)i j

(
|1〉i 〈0|i â j + |0〉i 〈1|i â†

j

)
. (6)
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Figure 2. The NOON-state preparation protocol. Top: overview of the steps,
highlighting qubits 1 and 2 and cavities 1, 2 and C. Parties 1 and 2 only interact
during the initial Bell state preparation. Bottom left: Bell-state preparation by
interacting qubits 1 and 2 with the cavity. Qubit 1 has already undergone a
π -rotation and is in the state |1〉. The time axis shows interaction times τ1

and τ2 necessary for performing a
√

iSWAP operation with the first and an
iSWAP with the second qubit. The frequency axis indicates that the interaction
is controlled by moving the qubits in and out of resonance with the coupling
cavity. Bottom right: energy scheme indicating the cavity energy ladders for the
three different phase qubit states, assuming resonance between the cavity and the
0 ↔ 1 transition of the qubit. In the last ‘unshelving’ step of the protocol, |0, n〉

and |1, n − 1〉 are swapped.

3.2. Bell pairs

Preparation of Bell states in this setting has already been demonstrated in [7, 8]. It works as
outlined in figure 2 (lower left) using the notation |q1, nC, q2〉 for qubit 1, cavity C and qubit 2.
Starting from all elements decoupled by detuning, we let the system relax into its ground state
|0, 0, 0〉. A resonant π -pulse on �1 generates the state |1, 0, 0〉. Then, we bring qubit 1 into
resonance with the coupling cavity, 1(1)

1C = 0, for a time τ1 such that g(1)1C τ1/2 = π/2 to create
(|1, 0, 0〉 − i|0, 1, 0〉)/

√
2. Next, we move qubit 1 out of resonance and qubit 2 into resonance

for g(1)2C τ2/2 = π , leading to the state (|1, 0, 0〉 + i|0, 0, 1〉)/
√

2, which is a Bell state between
qubits 1 and 2, decoupled and disentangled from the cavity; see figure 2. After this step,
there is no requirement to couple the qubits again throughout the whole protocol, and so we
have no further use for the coupling cavity. All that remains is to separately generate a map
on each subsystem, (qubit + cavity)i denoted by |qi , ni〉, which transforms |0, 0〉i → |0, N 〉i

and |1, 0〉i → |0, 0〉i . All necessary entanglement has already been created, since an arbitrary
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NOON state has exactly the same amount of entanglement as a Bell pair. This is entanglement
between the subsystems (i.e. the two cavity/qubit subsystems), as opposed to an entanglement
measure that treats the photons themselves as particles that could be made distinguishable by
later splitting them into different modes [10, 11].

3.3. Shelving

In order to selectively increase the photon number of the qubit ground-state branch of the super-
position while keeping the excited-qubit branch in vacuum, we shelve the excited state |1, 0〉i in
the second excited state |2, 0〉i by selectively driving the qubits at frequency h̄ωd = E2,i − E1,i .
The |2, 0〉i state is considered ‘shelved’ in the sense that the JC interaction that is resonant
with the transition |0, 1〉i ↔ |1, 0〉i is far detuned from the transition |1, 1〉i ↔ |2, 0〉i as long as
E2,i − 2E1,i � g(2)i i ; see figure 2. The |2, 0〉i state is also left invariant by rotations on the first
two qubit levels assuming that the nonlinearity leaves it far off-resonant, or through the use of
pulse shaping techniques such as DRAG [24].

3.4. Climbing the Jaynes–Cummings (JC) ladder

As a next step, the nonshelved state |0, 0〉i is transformed into the state |0, N − 1〉i . This is a
special case of the Eberly–Law protocol [25] that has been demonstrated in [23, 26]. Each step
from |0, n − 1〉i to |0, n〉i is realized by first exciting the qubit by a resonant π -pulse, generating
|1, n − 1〉i . Next, the qubit is moved into resonance with its cavity for time g(1)i i

√
nt/2 = π ,

moving the excitation from the qubit to the resonator; see figure 2. This is repeated until
|0, N − 1〉i is reached. At the same time, due to efficient shelving, the other branch of the
superposition stays in |2, 0〉i as the |2, 0〉i ↔ |1, 1〉i transition is off-resonant with the cavity;
see figure 2 (lower right).

3.5. Unshelving

The procedure so far brings the total state, written in notation |n1, n2, q1, q2, nC〉 in state
(|N − 1, 0, 0, 2, 0〉 − |0, N − 1, 2, 0, 0〉)/

√
2. At this point, it may be counter-intuitive as

to why we stopped at N − 1 photons in the previous section, but the simple explanation is
that to unentangle the qubits from the cavities we must use the JC-interaction, which will
inject an additional photon into our state. The unshelving procedure is as follows. Applying
a π -pulse to both qubits on the |2〉i ↔ |1〉i transition, followed by π -pulses on the transitions
|1〉i ↔ |0〉i , permutes the qubit states such that |2〉i → |0〉i and |0〉i → |1〉i . This results in the
state (|N − 1, 0, 1, 0, 0〉 − |0, N − 1, 0, 1, 0〉)/

√
2.

3.6. Disentangling

Now we couple both qubits to their respective cavities, 1(1)
i i = 0, for time g(1)i i

√
Nt/2 = π .

If both the cavity and the qubit are in their ground states, they are left invariant by the JC
interaction. On the other hand, the branch of the wavefunction that contains |1, N − 1〉i becomes
|0, N 〉i . This step disentangles the cavities from the qubit and leads to the desired NOON state

|ψ〉 =
1

√
2
(|N , 0〉 − |0, N 〉)⊗ |0, 0, 0〉. (7)
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4. Impact of decoherence, maximal size attainable

While there is no principal bound on the maximum size N of NOON state this protocol can
achieve, there are practical limitations. One will be related to the precision of the control pulses
that can be applied, which in principle can be very high using pulse shaping [24, 27, 28].
More fundamentally, decoherence limits the size of the state attainable. There are two crucial
limitations: one is that the qubit state has to be shelved in the second excited state for a long
time and the other is that the superposition should not dephase. Given that this happens if any
of the two qubits decays, we can go up to T2/2. The total duration of our protocol can be simply
calculated as

Ttot =
1

g

N∑
n=1

√
1

n
+ N TRabi, (8)

where TRabi is the time for a single qubit Rabi oscillation. Assuming T2 ' 200 ns [29] and
TRabi ' 10 ns and 1/g ' 20 ns, this allows NOON states up to N = 4. These numbers fall well
below the number of photons already stored and investigated in such resonators, so photon loss
will not be a limiting factor [6, 30]. In transmons, which also offer an accessible third level [31],
coherence times are longer [32] and larger NOON states may be attainable.

5. State verification

Decoherence and imperfect control ensure that in the laboratory setting, the prepared state
described by a density matrix ρ̂exp is not a perfect NOON state. The fidelity between the desired
and actual state can be obtained by measuring the overlap

F = 〈ψNOON| ρexp |ψNOON〉. (9)

This is not a trivial task with the measurement tools at our disposal, which consist of driving
the system through some simple dynamics followed by qubit measurements. In this section, we
will show that we can create a set of measurement operators that is informationally complete,
that is, they span the operator space su(d) where d is the dimension of the problem under
consideration. Here d = (N + 1)2 when we consider just the microwave cavities. The outcomes
from an informationally complete set of measurements can be used to perform tomography on
the quantum state, but we will also present a method of bounding the fidelity directly.

Restricting our attention to a single cavity, the types of measurements we consider consist
of driving the cavity by a coherent displacement α, switching on the JC Hamiltonian for a time
g(1)i i t/2 = τ and then measuring the qubit in the z-basis by measuring the switching probability
out of state |1〉 [5, 29]. We can workout the corresponding operator by solving the time-
dependent Schrödinger equation for the Hamiltonian Ĥ Qi + Ĥ Ci + Ĥ QiCi + Ĥ (c)

Ci as defined in
equations (2) and (3) for this protocol starting from the simplifying assumption that the qubit is
initially uncoupled from the cavity and in its ground state. We can express this observable on
the microwave cavity as

M̂(α, τ )=

∑
n

cos(2
√

nτ)D̂†(α) |n〉 〈n| D̂(α). (10)

By sampling different values of the dimensionless time τ , with the amplitude set to α = 0,
one can only infer the diagonal elements of the density operator 〈n|ρ|n〉. The injection of α
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is crucial because diagonal measurements alone do not distinguish a NOON state from the
mixed state ρ̂ =

1
2(|N , 0〉〈N , 0| + |0, N 〉〈0, N |), the latter being not entangled and therefore

useless for quantum metrology. In [6], these types of measurements were used to construct the
Wigner function of the cavity, which is a complete description of the quantum state of the cavity
mode. This implies that at least to some finite truncation of the cavity, the set of measurements
M̂(α, τ ) are informationally complete in that one can construct a set of (N + 1)2 − 1 linearly
independent observables spanning the space su(N + 1). To generate such a set it is sufficient to
simply sample pairs (α j , τ j) from some random distribution. This will almost surely generate a
linearly independent set of measurement operators. It is not impossible that there are optimized
choices of operators that are close to orthonormal, thus optimizing the sampling of phase space,
but in practice it is most often easier to instead just oversample from our distribution on (α, τ ).

Correlating the results of measurements from the two individual cavities yields the set
of operators M̂2(α, τ, α

′, τ ′)= M̂(α, τ )⊗M̂(α′, τ ′). This is a complete set of operators on
the joint space; however, since the Hilbert space of the two-cavity system has dimension
(N + 1)2, reconstructing the entire density matrix requires measuring at least (N + 1)4 − 1 of
these operators. To perform full tomography we repeat each measurement a number of times to
obtain measurement statistics

M j = Tr
(
M̂2(α j , τ j , α

′

j , τ
′

j)ρexp

)
+ σ j W j , (11)

where the final term is a Gaussian white noise variable with variance σ j . In principle, one
can arbitrarily decrease the strength of this noise by repeated measurements; however, it is
generally more efficient to fix σ j and instead sample more measurement operators from our
distribution on M̂(α j , τ j , α

′

j , τ
′

j). From such a measurement record, one can obtain a maximum
likelihood estimate of the quantum state through a least squares fit [33]. The resulting state
may have unphysical, negative eigenvalues, which need to be compensated for either by
simply setting them to zero or by using slightly more involved semidefinite programming
techniques [34, 35] to find the physical state that is most consistent with the measurement
outcomes. The assumption that the qubits were initially in their ground states was not essential
and can be circumvented by adding to our set of measurements by additionally performing
some unitary operations to the superconducting qubit immediately prior to measurement. This
increases the number of independent measurements necessary for tomography to 16(N + 1)4 − 1
for qubits, or 81(N + 1)4 − 1 when we also account for the second qubit excited state.

Placing bounds on the experimental value of F can be accomplished with a smaller set of
measurement outcomes. We can lower bound F , defined in equation (9), by directly solving the
optimization problem

min
ρ
F (12)

subject to

M j = Tr
(
M̂2(α j , τ j , α

′

j , τ
′

j)ρexp

)
, ρ > 0, (13)

where we have neglected the noise on the measurements. The second constraint ensures that ρ is
a physical density matrix, and thus we will find the state with the lowest overlap with the NOON
state that nevertheless agrees with the outcomes from our measurements. This optimization is
of the form of a semidefinite program and can be solved very efficiently numerically [34]. We
used the Matlab program yalmip running the solver SeDuMi. Additionally, since the objective
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Figure 3. Numerical analysis of bounding the fidelity of NOON state construc-
tion with an incomplete set of measurement outcomes. All simulations are for
noiseless measurements and assume that the qubits are initially in their ground
states. (a) Upper and lower bounds for the overlap between the four-photon
NOON state and various mixtures of the NOON state and the maximally mixed
state, plotted versus the number of randomly sampled measurements performed.
(b) Lower bounds on the NOON state fidelity for mixtures of different dimen-
sions. The x-axis of this plot represents the number of measurement results
divided by the dimension of su(d) for the different NOON states. (c) The
difference between the upper and lower bounds for mixtures of the six-photon
NOON state and the maximally mixed state, plotted versus the number of
measured observables. (d) The number of measurements necessary to give a
separation of 5% between the upper and lower bounds, plotted versus the actual
fidelity of the experimental state.

of this optimization (F , equation (9)) is linear, solving the maximization problem (i.e. finding
an upper bound) is of the same difficulty.

To determine the utility of this bounding scheme, we ran some simple numerical sim-
ulations, the results of which are displayed in figure 3. We place upper and lower bounds
on states that are convex sums of the NOON state and the maximally mixed state, or
ρexp = pρNOON + (1 − p)I/d. For a given overlap with the NOON state, these mixtures are
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generally the states that are hardest to bound and so represent a worst case test of the protocol.
The measurements were chosen by sampling the τi uniformly from the interval [0, π] and the
α’s uniformly from the interior of the circle on phase space with radius N . For a simple test
we looked at NOON states with photon numbers going up to N = 6, where even the longest
semidefinite optimizations were solved in about a minute on a laptop running Matlab.

In the case of randomly sampled measurements, the lower bound has a rapid initial rise with
respect to the fraction of the possible independent operators measured. The time for convergence
of the upper and lower bounds is highly dependent on the fidelity of the experimental state, with
high-fidelity states converging very quickly. In order to get a fairly exact estimate of the fidelity
for a density matrix far from the desired state, this method may not be much more efficient
than full tomography; however, it is often useful to quickly generate bounds out of small data
sets in order to diagnose state generation protocols. Also, we suspect that this protocol is more
amenable to optimizing the measurement operators than full tomography, and so it should be
possible to get faster convergence than can be achieved by random sampling.

6. Conclusions

In conclusion, we have shown how to deterministically create large NOON states of microwave
photons in superconducting resonators and how to verify the success of this experiment in a
more efficient way than full state tomography. It can be shown that this reconstruction protocol
can be extended to account for detector noise.

NOON states in the optical domain have been proposed for super-resolution in quantum
lithography and interferometry [10, 11, 15]. With the wavelengths of microwave photons in
our case being of the order of centimetres, lithography is an unlikely application. Microwave
interferometry has applications in plasma diagnostics [36] and astrophysics relating to the
cosmic microwave background. The application of NOON states to these systems remains
speculative and will be explored in future work.
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