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Abstract. Plasmon hybridization theory (PHT) is an analytical model
developed for understanding plasmonic interactions within complex metallic
nanostructures, and gives a useful insight for optimizing design parameters.
However, this theory is based on the electrostatic limit, which restricts the model
to nanostructures much smaller than the free space wavelength of light. Here,
we extend the PHT to incorporate retardation of the Coulomb interaction and
investigate the effects of retardation on plasmons within metallic structures. We
compare these results using other methods, such as Mie scattering theory and the
finite integration technique, and observe a good agreement in both electrostatic
and retardation regimes. Plasmons within metallic nanospheres and nanotubes
are shown to have significant retardation in certain regimes, causing red-shifting
to plasmon wavelengths, and we discuss the implications of retardation for
plasmonic devices.
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1. Introduction

Metallic nanostructures (MNs) have recently received much interest for their unique plasmonic
properties, useful for developing novel photonic devices. Through the design of the structure,
metallic surfaces and metallic nanoparticles have the ability to be tailored for applications
such as plasmonic solar cells [1]–[3], surface-enhanced Raman scattering [4]–[6], optical
switching [7], high-resolution microscopy [8] and metamaterials [9]–[11].

Modeling plasmons and understanding the light–matter interaction within MNs are both
essential for the design of useful photonic devices. The size (d) of a plasmonic nanoparticle
is typically much smaller than the wavelength of operation, i.e. λ � d [12]–[15]. Thus, the
plasmonic system can be modeled under the much simpler electrostatic limit, that is typically
valid for d < λ/10. For MNs with dimensions d > λ/10, which here we call the retardation
regime, the electrostatic approximation is no longer valid and these methods based on the
electrostatic limit produce significant errors [16].

Solving Maxwell’s equations analytically, semi-analytically or numerically using methods
such as the Mie scattering theory [16], the multipole method [17], the finite-difference
method [18] and the boundary element method [18] are commonly used in both electrostatic
and retarded regimes. These methods are useful for simulating light propagation within
these MNs and to model their optical properties. However, they do not give a complete
physical understanding of the interactions between plasmons and their influences on the optical
properties of MNs.

Plasmon hybridization theory (PHT) is an analytical model for calculating localized
plasmon modes within complex MNs [12, 13, 19, 20]. As opposed to solving Maxwell’s
equations, PHT is an analytical method that models the plasmon modes as oscillating fluids
of electrons bound to the structure of the MN. This alternative method allows one to obtain a
more intuitive understanding of the mechanisms that affect the dynamics of plasmons within
these MNs. This can be helpful for designing MNs with specific optical properties, especially
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when multiple metallic or dielectric surfaces are present. PHT has been developed in the
electrostatic limit and thus ignores retardation effects on the Coulomb potential. For structures
with d > λ/10, retardation effects become significant and plasmon frequencies are red-shifted,
as investigated in [16] where plasmons within spherical nanoshells were modeled via Mie
scattering theory.

Semi-analytical methods such as that developed in [14] can also be used to calculate
plasmon modes in complex MNs, and this one was further developed to calculate the coupling
between plasmons within a complex system [15]. However, methods such as PHT are developed
within the electrostatic limit.

This paper has the following structure. In section 2, we extend electrostatic PHT to
develop a retarded plasmon hybridization theory (RPHT) by including retardation effects into
the Coulomb potential. In section 3, we use the RPHT to derive plasmon frequencies in metallic
nanospheres and results are compared with Mie theory. We then consider a more complex MN in
section 4 where the RPHT is used to model plasmons within metallic nanotubes with dielectric
cores. In these results we observe both plasmon hybridization and retardation and provide a
comparison with numerical solutions to validate these observed phenomena. Retardation is also
shown to affect the dispersion of propagating plasmons within large-sized metallic nanotubes.

2. Retarded plasmon hybridization theory (RPHT)

Electrostatic PHT assumes that an MN consists of a uniform stationary positive background and
a fluid of conduction electrons whose motion gives rise to plasmon oscillations [13]. The fluid
is assumed to be of uniform density no, incompressible, irrotational and no damping is present.
These assumptions lead to relations for the MN plasmon frequencies in terms of the bulk metal
Drude frequency ω2

B = 4πe2no/me, where e and me are the charge and mass of an electron,
respectively [13].

Solutions to the fluid flow potential, η(r) can be solved via Laplace’s equation, ∇
2η = 0.

The modal solutions to Laplace’s equations form the basis set of the plasmon modes. Calculating
the kinetic energy and electrical potential energy of this dynamic system leads to the plasmon
eigenmodes of the MN and their corresponding modal frequencies. The kinetic energy (T ) of
the plasmon fluid is given by

T =
nome

2

∮
η E∇η · n̂ dS, (1)

where S is the surface of the MN with normal unit vector n̂. This term in the Lagrangian is not
affected by retardation effects. The potential energy V of the system is given by

V =
1

2

∫
σ(r, t)8(r, t) dS, (2)

where 8(r, t) is the retarded Coulomb potential and σ(r, t) is the surface charge distribution of
the plasmon, which are given by

σ(r, t) = noe
∫

E∇η|surface · n̂ dt (3)

and

8(r, t) =

∫
σ(r′, t − |r − r′| /c)

|r − r′|
dS′, (4)
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where c is the speed of light in free space. The retarded Coulomb potential given by (4) is
the integral of the retarded charge distribution over the surface S′ of the MN. By using this
definition of the Coulomb potential we consider retardation effects on plasmons within MNs.
The addition of the temporal delay td = |r − r′

|/c, causes a spatial–temporal coupling. However,
if we assume that the solutions to the Lagrangian for the retarded system has the same form as
that in the electrostatic case, i.e. a harmonic oscillator of frequency ω, then the spatial and
temporal terms can be separated as

σ(r, t −
∣∣r − r′

∣∣ /c) = σ(r, t) cos
(ω

c

∣∣r − r′
∣∣) . (5)

In the electrostatic limit ω|r − r′
|/c = 2πd/λ � 1 and thus σ(r, t − |r − r′

|/c) ≈ σ(r, t).
However, when the size of the particle becomes significant, retardation will no longer be
negligible. The effect of this term on (2) is to decrease the Coulomb potential energy and as
we shall see later cause a red-shift to plasmon resonances. The Coulomb potential energy of the
system then becomes

V =
1

2

∫
σ(r, t)

∫
σ(r′, t)

|r − r′|
cos

(ω

c

∣∣r − r′
∣∣) dS′ dS. (6)

We shall now use this RPHT to investigate plasmon modes within MNs for a metallic
nanosphere in section 3 and a metallic nanotube in section 4.

3. Nanosphere

3.1. Derivation of retarded plasmon frequencies

In this section, we derive an expression for the plasmon frequencies of a metallic nanosphere
with radius α, suspended in air using the RPHT. Spherical solutions of Laplace’s equations are
given by the set of orthonormal spherical harmonics,

η(r, θ, φ, t) =

∑
l,m

al,m(t)r lYl,m(θ, φ), (7)

where Yl,m is the normalized real spherical harmonic function and al,m(t) is the time-oscillating
amplitude of the l, m mode. The kinetic energy Tl,m of the l, m plasmon mode is given by [13]

Tl,m =
nome

2
la2

l,m(t)α2l+1. (8)

To solve for the Coulomb potential we shall use the spherical Green’s function expansion
given by [21]

1

|r − r′|
=

∑
i, j

4π

α(2l + 1)
Yi, j(θ, φ)Yi, j(θ

′, φ′). (9)

In general, when calculating the potential energy Vl,m of the l, m plasmon mode, one should
consider the coupling between different (p, q) plasmon modes:

Vl,m =

∑
p,q

1

2

∫
σ(r, t)l,m8p,q(r, t) dS. (10)

These cross-coupling terms where p, q 6= l, m are zero in the electrostatic regime due to
orthogonality. However, they become non-zero in the retarded regime due to the introduction
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of the retardation, which breaks the orthogonality condition. However, here we shall proceed
and ignore these much smaller cross-coupling terms. Using (7) in (3), (6), (9) and (10) gives the
potential energy Vl,m for the l, m mode as

Vl,m = 2πn2
oe2 l2

(2l + 1)
α2l+1 A2

l,m(t)
∑
i, j

Nlmi j , (11)

where ∂ Al,m(t)/∂t = al,m(t) and

Nlmi j =

∫∫
Yl,m(θ, φ)Yi, j(θ, φ) cos

(ω

c

∣∣r − r′
∣∣) Yl,m(θ ′, φ′)Yi, j(θ

′, φ′) d�′ d�, (12)

where ω is the plasmon oscillation frequency. The potential energy Vl,m of the l, m mode given
by (11) is the same obtained by standard PHT, except for the inclusion of the factor Nlmi j which,
in the electrostatic limit, converges to Nlmi j = δliδmj . Beyond the electrostatic limit, the overlap
of the retarded plasmon modes with the Green’s function expansion is no longer orthonormal
and

∑
i, j Nlmi j <1. This reduces the Coulomb potential energy of the plasmon mode. Using (8)

and (11) to define the Lagrangian L l,m = Tl,m − Vl,m , and solving the Euler–Lagrange equations
of motion [22], leads to the retarded plasmon frequency ω

sphere
l,m given by

ω = ω
sphere
l,m = ωB

√
l

2l + 1
Rl,m, (13)

where
R2

l,m =

∑
i, j

Nlmi j .

Thus, for the simple case of a metallic nanosphere, the retarded plasmon frequency given
by (13) is just the electrostatic frequency [13] scaled by a retardation factor Rl,m . However, for
the case of more complex MNs with multiple plasmons that hybridize, the expression for the
retarded plasmon frequency is more complex, as discussed in section 4 for a metallic nanotube.

It is important to note that (13) is an eigenequation, as the retardation factor Rl,m is a
function of ω

sphere
l,m . To calculate ω

sphere
l,m by (13), one can solve this eigenequation with an iteration

algorithm that we discuss in appendix A.

3.2. Comparison of retarded plasmon hybridization theory (RPHT) and Mie theory

We now use RPHT to calculate the retarded plasmon frequency of silver nanospheres in air and
dielectric backgrounds. When dielectric inclusions are present, one needs to consider the bound
surface charges at the metal–dielectric interfaces. These bound surface charges are induced by
the plasmon modes via Coulomb interactions. By applying Maxwell’s boundary conditions at
the metal–dielectric interfaces, a relationship between the total surface charge distribution and
the free surface charge distribution can be deduced [13].

In the case of a metallic nanosphere in a dielectric background of permittivity εD, the
electrostatic plasmon frequency becomes red-shifted by a factor [13]

X =

√
2l + 1

l + εD(l + 1)
.

For plasmonic particles of finite size, these Coulomb interactions that induce the bound
surface charges become retarded. Thus, the calculation of the bound surface charges are also
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Figure 1. Comparison of Mie theory (solid) with RPHT (dashed) and
electrostatic PHT (dotted) for a silver nanosphere embedded in a dielectric
background of refractive index n = 1.0 (blue), n = 1.5 (red) and n = 2.0 (green).

affected by retardation. These higher-order retardation effects may become significant for very
large plasmonic particles where magnetic interactions are also significant. For the purpose of
this paper, we shall only consider the bound surface charge induced by the electrostatic fields.
We will show by comparison with Mie theory that these assumptions are reasonable within the
regime considered here.

Under these assumptions, the retarded plasmon frequency of a metallic nanosphere in
dielectric background is given as

ω
sphere
l,m =

√
2l + 1

l + εD(l + 1)
ωB

√
l

2l + 1
Rl,m. (14)

To illustrate the accuracy of RPHT here, we give a comparison of RPHT with Mie
theory [23], which is an exact solution to Maxwell’s equations for spherical symmetry.

We assume Drude dielectric for silver with a bulk plasma frequency of ωB = 1.37 ×

1016 rad s−1 and a collision frequency of ωc = 2.73 × 1013 rad s−1 and use published Mie
scattering codes [23]. This simple spherical geometry has been chosen to clearly illustrate the
effects of retardation on localized plasmons and validate the RPHT methodology introduced
here. However, it is important to note that at ultraviolet and visible wavelengths the use of the
Drude model is inaccurate.

Appendix A discusses the calculation of the retarded plasmon frequency given by (14)
using an iterative method. The first four modes of the spherical Green’s function (Y0,0, Y1,0, Y1,1

and Y1,−1) are used. The inclusion of higher-order modes has no significant effect on the results
of RPHT in this regime. Figure 1 contains a plot of the fundamental (l = 1, m = 0) plasmon
wavelength of a silver nanosphere for varying diameter using Mie theory (solid), RPHT (dashed)
and electrostatic PHT (dotted). The nanosphere is embedded in a dielectric with refractive
indices n = 1.0 (blue), n = 1.5 (red) and n = 2.0 (green). We observe excellent agreement
between Mie theory and RPHT over all diameters considered. For very small diameters we
see that both Mie theory and RPHT converge to the electrostatic PHT, where retardation is
negligible and Rl,m = 1. At larger diameters (D), where D>λ/10, retardation weakens the
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Figure 2. (a) Metallic (silver) nanotube with a dielectric core. (b) Cross-section
of a metallic nanotube.

Coulomb interaction, causing red-shifting of plasmon wavelengths away from the electrostatic
limit. This was investigated previously [16] using Mie scattering theory for nanospheres and
spherical nanoshells.

Without the presence of a dielectric background, i.e. n = 1.0, Mie theory and RPHT
overlap perfectly to within numerical error. We see up to a 40% red-shift in the fundamental
plasmon wavelength at a nanosphere diameter of 90 nm, where D/λ ≈ 1/4. For the case of
dielectric backgrounds with n = 1.5 and 2.0 there are small deviations between Mie theory and
RPHT at large diameters. This could perhaps be due to the induced bound charge being affected
by retardation or magnetic interactions, both of which are not considered here. However, the
excellent agreement between Mie theory and RPHT for even a dielectric background suggests
that retardation does not affect the dielectric scaling (X) significantly.

4. Nanotube

Here we use RPHT to investigate retarded plasmons of a metallic nanotube with a dielectric
core of permittivity εC. This geometry is of interest, especially within the photonic crystal
community, where metallic photonic crystals are built from dielectric rods uniformly coated
with metals such as gold and silver [24], These metallic structures may possess plasmons at the
wavelengths of operation of the photonic crystal depending on the geometry of the structure. As
these structures typically have rod sizes D > λ/10, retardation will be significant.

In [25], plasmon hybridization within hollow metallic nanotubes was investigated;
however, retardation effects were not considered. To derive the retarded plasmon frequency for
a metallic nanotube, we assume that the nanotubes are much longer than their cross-sectional
diameters so they can be considered as infinitely long. Here plasmons will be localized in
two dimensions (2D), so the RPHT system reduces to 2D. There are two types of plasmon
to consider: stationary plasmons with constant phase along the rod and propagating plasmons
with oscillating phase with wave vector, k along the rod axis.

Here we consider a dielectric rod of radius β, surrounded by a metallic nanotube of outer
radius α, as shown in figure 2.

4.1. Stationary retarded plasmons

For the case of stationary plasmons, the modes do not have varying phase along the axis of the
nanotube. The 2D flow potential in polar co-ordinates is given by

η(r, θ, t) =

∑
n

[
an(t)r

n + bn(t)r
−n

]
cos(nθ), (15)
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Figure 3. Plasmon hybridization and retardation within a silver nanotube with
dielectric core of varying diameter. The ratios of inner/outer radii are β/α = 0.9
(red), β/α = 0.93 (black), β/α = 0.96 (green) and β/α = 0.98 (blue).

where an(t) and bn(t) are the amplitudes of the nth outer and inner surface modes, respectively.
The derivation of the kinetic energy Tn, and Coulomb potential energy Vn of the stationary
retarded plasmon is given in appendix B. As seen for the retarded nanosphere, retardation factors
appear in the potential energy for the nanotube. However, it is important to note that for the
nanotube, retardation factors are different for each interaction, i.e. the inner–inner, outer–outer
and inner–outer plasmon interactions have different degrees of retardation (see appendix B).
Therefore, the effects of retardation on the plasmons are dependent on both the size and shape
of the MN.

The eigenmodes of the system can be solved by diagonalization of the 2D Lagrangian
Ln = Tn − Vn. This leads to a quadratic equation for the plasmon frequency, with two solutions
corresponding to symmetric (low-frequency) and anti-symmetric (high-frequency) coupling
between inner and outer surface plasmons. Here, we model the symmetric dipole (n = 1)
stationary retarded plasmon. Again, we use the numerical iterative method to calculate the
eigenfrequencies of RPHT. The nanotube consists of a silver nanotube surrounding a rod of
Ormocer with εC = 2.43 [26].

In figure 3, we plot the plasmon wavelength with the varying rod diameter for different
ratios of inner/outer radii, β/α. The stationary plasmon wavelength of the silver nanotube
depends on the shape of the MN (i.e. the ratio β/α), the size (retardation) and the dielectric
constant of the rod. As β/α → 1, the nanotube thickness decreases, causing the hybridization
between inner and outer plasmons to increase, which for the symmetric mode considered here,
causes a strong red-shift in plasmon wavelengths. These plasmon hybridization effects are
observed with electrostatic PHT in metallic spherical nanoshells [13]. For small rod diameters,
we see that the plasmon wavelength is approximately independent of the diameter of the rod,
which is the electrostatic regime where retardation is negligible.

However, unlike electrostatic PHT, here we see that for larger rod diameters there is
significant retardation, which causes a further red-shifting to plasmon wavelengths. For the case
of β/α = 0.9, retardation causes a red-shifting of up to ∼20% at a core diameter of 200 nm.
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Figure 4. Fundamental symmetric plasmon wavelength of a hollow silver
nanotube with a fixed shell thickness of 6 nm. (a) Electric field distribution
of the plasmon resonance for a core diameter of 120 nm calculated via FIT.
(b) Comparison of RPHT (blue), electrostatic PHT (red) and FIT (green crosses)
for the varying core diameter.

For larger β/α (thinner nanotubes) hybridization red-shifts plasmons towards the electrostatic
regime (longer wavelengths), where retardation is less significant.

We now compare electrostatic PHT, RPHT and numerical finite integration technique (FIT)
using commercially available software, CST Microwave studio. FIT simulations are carried
out in time domain and use the Drude parameters, as described above. In figure 4, we model
the fundamental symmetric plasmon wavelength of a hollow silver nanotube with a fixed shell
thickness of 6 nm. Figure 4(a) contains a vector plot of the plasmon electric field distribution
calculated using the FIT for a core diameter of 120 nm. The field is incident from the left of the
nanotube. The asymmetry of the electric field distribution about the vertical axis illustrates the
de-phasing of the electric fields due to retardation.

Figure 4(b) contains a comparison of the plasmon wavelength calculated with electrostatic
PHT, RPHT and FIT for varying core diameter. As the inner diameter of the nanotube
increases, the hybridization between inner and outer surfaces becomes strong, causing red-
shifting of the plasmon mode, as seen in all three models. For the parameters considered
here the nanotube is in the retarded regime, and thus we see a significant red-shifting of the
plasmon mode from its electrostatic limit shown in red. We see good agreement between
the RPHT and FIT for the parameters considered here, showing the increased accuracy
achieved through consideration of retardation effects. At larger nanotube diameters, where
retardation becomes even greater, the RPHT and FIT have small differences in calculating the
plasmon wavelength. Differences observed between the FIT and RPHT could be due to the
lack of consideration in magnetic interactions, which become significant for highly retarded
structures.

4.2. Propagating retarded plasmons

We now consider propagating plasmons of the form η′(r, t) = η(r, θ, t)eikz where k 6= 0. The
2D flow potential of the nth mode is given by

η(r, θ, t) = [an(t)In(kr) + bn(t)Kn(kr)] cos(nθ), (16)
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dashed and solid green curves are overlapping.

where In and Kn are nth-order real modified Bessel functions. The derivation of the kinetic
energy Tn, and Coulomb potential energy Vn of the propagating retarded plasmon is given
in appendix C. As with the stationary case, the eigenmodes of the system can be solved by
diagonalization of the 2D Lagrangian Ln = Tn − Vn.

We now model the symmetric dipole (n = 1) propagating retarded plasmon of the metallic
nanotube. In figure 5, we plot the plasmon dispersion for a range of core diameters using both the
electrostatic PHT (top) and RPHT (bottom). The ratio of inner/outer radii is fixed at β/α = 0.9.

As with the stationary case, the propagating plasmon wavelength of the silver depends on the
shape of the MN, the size and the dielectric constant of the rod. However, for propagating
plasmons there is the added dependence of the wave vector k of the propagating plasmon.

For both the RPHT and electrostatic PHT, the plasmon dispersion is increased as the
core diameter is increased from 20 to 200 nm. The 20 and 40 nm nanotubes are much
smaller than the wavelength of light and thus little difference is seen between the RPHT and
PHT. However, when the size of the nanotube is increased to 200 nm retardation becomes
significant. As observed for the stationary plasmon, where k = 0, retardation causes a red-
shift of approximately 20%. As the plasmon wave vector increases, the plasmon wavelength
decreases, causing retardation to become even stronger. For k = 106 cm−1 a red-shift of over
40% is seen. Thus, retardation causes a change in the dispersion characteristics of these metallic
nanotubes.

5. Conclusion

PHT is an alternative model that can be used to investigate the coupling between plasmons
within complex MNs. This method gives more insight into plasmon mechanics than is
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achievable with direct solutions of Maxwell’s equations. However, PHT is based on the
electrostatic limit where MNs are much smaller than the wavelength of light.

We have extended the electrostatic PHT to include retardation effects to allow more
accurate modeling of plasmons beyond the electrostatic limit. The RPHT developed here agrees
well with Mie scattering theory for metallic nanospheres in both the electrostatic and retarded
regimes, illustrating the accuracy of RPHT in both these regimes.

We have observed that retardation effects cause red-shifts in the plasmon wavelength,
creating an extra degree of freedom in designing plasmonic nanostructures. We have used the
RPHT to investigate the retarded plasmon modes in metallic nanotubes with dielectric cores.
These plasmon modes are comparable to those observed recently within metallic photonic
crystals [24]. We have shown that retardation can also alter the dispersion characteristics of
propagating plasmons within metallic nanotubes.

In future work, more complex structures such as nanoparticle dimers or adjacent nanotubes
might be considered. Further investigations on the effects of damping (loss) and magnetic
interactions may also be of interest.
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Appendix A. Iterative method for RPHT

To solve the plasmon frequency with RPHT, one must solve an equation of the form ω = F(ω),
where F(ω) is given by the diagonalization of the Lagrangian of the retarded plasmon. To
solve this equation, we start by calculating the electrostatic plasmon frequency (ωo) given by
electrostatic PHT. This estimate of the retarded plasmon frequency can then be used to calculate
the retarded plasmon frequency via RPHT. By re-substituting the plasmon frequency with a
weighted average given by

ωi+1 = 0.2F(ωi−1) + 0.8F(ωi),

where the coefficients 0.2 and 0.8 were found to achieve good convergence for most parameters
considered here. In the limit of infinite iterations, the solution will converge to the exact value.
However, in practice one can iterate the system until a specific degree of accuracy is achieved.
Convergence accuracies for calculations presented in this paper are typically 0.5% of the
plasmon frequency. An example of the convergence of the RPHT is given in figure A.1, where
we model the fundamental plasmon wavelength for a silver nanosphere of diameter 100 nm
in a background material of εD = 2.43. As the number of iterations increases, we see that the
plasmon wavelength converges successfully.

This simple iteration method works for most parameters; however, for extremely
large sizes convergence may not be successful and more complicated algorithms are
required.
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Figure A.1. Convergence of the RPHT by an iteration method.

Appendix B. Stationary nanotube plasmons

Here we derive the kinetic energy Tn and Coulomb potential energy Vn of the stationary-retarded
plasmon. Using (15) in (1) gives the kinetic energy Tn as

Tn =
nomeπn

2

[
an

bn

]T [
T 11

n 0

0 T 22
n

] [
an

bn

]
, (B.1)

where

T 11
n =

[
α2n

− β2n
]

and

T 22
n =

[
β−2n

− α−2n
]
.

The Coulomb potential of the system can be solved by using a polar Green’s function
expansion given by [21]

1

|r − r′|
= 2

∞∑
m=1

1

m

(
r<

r>

)m

cos
[
m(θ − θ ′)

]
, (B.2)

where r> = max(r, r ′) and r< = min(r, r ′). To calculate the Coulomb potential energy, we must
first calculate the induced bound surface charge at the metal–dielectric interface. As in section 3,
we use the electrostatic Coulomb potential to calculate this dielectric scaling of the surface
charge distribution. The total surface charge σ t

inner and σ t
outer at the inner and outer surfaces,

respectively, are related to the spill-out plasmon charge σinner and σouter by[
σ t

inner

σ t
outer

]
= X̂

[
σinner

σouter

]
,

where X̂ is a 2 × 2 matrix that can be calculated through the boundary conditions

σouter,inner =
1

4π

[
εC

∂8

∂r
− εM

∂8

∂r

]
r=α,β

(B.3)
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and

φ(r, θ, t) =

∫
σ t

inner(θ
′, t)

|r − r′|
dS′ +

∫
σ t

outer(θ
′, t)

|r − r′|
dS′. (B.4)

Solving (B.3) gives the dielectric scaling matrix X̂ as

X =

[
01 −02α/β

0 1

]
, (B.5)

where

01 =
2

(εC + 1)

and

02 =

(
β

α

)n
(εC − 1)

(1 + εC)
.

Equation (B.5) tells us that the total inner surface charge distribution is affected by the
dielectric presence and has contributions from both the inner and outer surface plasmons. For
a hollow core, i.e. εC = 1, X reduces to the identity matrix as expected. The retarded potential
energy of the system can then be calculated via [13]

V =
1

2

∫
σ t

outer(θ, t)φ̃(r = α, θ, t)α dθ +
1

2

∫
σ t

inner(θ, t)φ̃(r = β, θ, t)β dθ,

where φ̃(r, θ, t) is the retarded Coulomb potential in the absence of a dielectric core, which can
be calculated using (15) and (B.2) in (4). The Coulomb potential energy becomes

Vn = π 2n2
oe2n

[
An

Bn

]T [
V 11

n V 12
n

V 21
n V 22

n

] [
An

Bn

]
, (B.6)

where
V 11

n =

∑
m

α2n Rout
n + β2n Rin

n 01 − (1 + 01)β
2n Rinout

n + 02α
nβn

(
Rin

n − Rinout
n

)
,

V 12
n = V 21

n =

∑
m

−Rout
n − 01 Rin

n +
(1 + 01)

2
Rinout

n +
(1 + 01)

2

β2n

α2n
Rinout

n

−
02

2
Rin

n

((
α

β

)n

+

(
β

α

)n)
+ 02

(
β

α

)n

Rinout
n ,

V 22
n =

∑
m

α−2n Rout
n + 01β

−2n Rin
n −

(
1 + 01 + 02

βn

αn

)
α−2n Rinout

n + 02b−nα−n Rin
n .

The retardation factors of the inner, outer and cross-coupling Coulomb interactions are
given by Rin

nm , Rout
nm and Rinout

nm , respectively. These are given by the following integrals:

Rout
nm =

1

π 2

∫∫
cos

(ω

c
α
√

2
√

1 − cos(θ − θ ′)
)

cos
[
m(θ − θ ′)

]
cos(nθ ′)dθ ′ cos(nθ) dθ,

Rin
nm =

1

π2

∫∫
cos

(ω

c
β
√

2
√

1 − cos(θ − θ ′)
)

cos
[
m(θ − θ ′)

]
cos(nθ ′)dθ ′ cos(nθ) dθ
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and

Rinout
nm =

1

π2

∫∫
cos

(ω

c

√
α2 + β2 − 2αβ cos(θ − θ ′)

)
cos

[
m(θ − θ ′)

]
cos(nθ ′) dθ ′ cos(nθ) dθ,

where ω is the plasmon oscillation frequency.
The V 11

n and V 22
n terms represent the self-interaction of outer and inner surface plasmons,

respectively, whereas the V 12
n and V 21

n terms represent the mutual interactions between inner
and outer surface plasmons and indicate the strength of the plasmon hybridization [13].

Appendix C. Propagating nanotube plasmons

Here we derive the kinetic energy Tn and Coulomb potential energy Vn of the propagating
retarded plasmon. Using (16) in (1) gives the kinetic energy as

Tn =
nomeπk

2

[
an

bn

]T [
T 11

n T 12
n

T 21
n T 22

n

] [
an

bn

]
, (C.1)

where

T11 = In(kα)I ′

n(kα)α − In(kβ)I ′

n(kβ)β,

2T12 = 2T21 = Kn(kα)I ′

n(kα)α + In(kα)K ′

n(kα)α

− In(kβ)K ′

n(kβ)β − Kn(kβ)I ′

n(kβ)β

and

T22 = Kn(kα)K ′

n(kα)α − Kn(kβ)K ′

n(kβ)β.

We shall now use a cylindrical expansion for Green’s function given by [21]

1

|r − r′|
= 4

∞∑
m=1

Im(kr<)Km(kr>) cos(m(θ − θ ′)).

As for the stationary case, the dielectric scaling matrix can be calculated solving (B.3),
which gives

[
σ t

inner

σ t
outer

]
=

[
(01)

−1 02

0 1

] [
σinner

σouter

]
,

where

01 = εCkβ I ′

n(kβ)Kn(kβ) − kβ In(kβ)K ′

n(kβ) (C.2)

and

02 = −

(
εCkα I ′

n(kβ)Kn(kα) − kα I ′

n(kβ)Kn(kα)
)(

εCkβ I ′
n(kβ)Kn(kβ) − kβ In(kβ)K ′

n(kβ)
) . (C.3)

The retarded Coulomb potential energy then becomes

Vn = 2π 2n2
oe2k2

[
An

Bn

]T [
V 11

n V 12
n

V 21
n V 22

n

] [
An

Bn

]
, (C.4)
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where

V 11
n =

∞∑
m=1

α2
(
I ′

n(kα)
)2

Im(kα)Km(kα)Rout
nm − αβ I ′

n(kα)I ′

n(kβ)Km(kα)Im(kβ)Rinout
nm

+ βα I ′

n(kα)Km(kα)Im(kβ)
{
02 I ′

n(kα) − 01 I ′

n(kβ)
}

Rinout
nm

+ β2 I ′

n(kβ)Km(kβ)Im(kβ)
{
01 I ′

n(kβ) − 02 I ′

n(kβ)
}

Rin
nm,

V 12
n =

∞∑
m=1

α2 I ′

n(kα)K ′

n(kα)Km(kα)Im(kα)Rout
nm −

1

2
αβ I ′

n(kα)K ′

n(kβ)Km(kα)Im(kβ)Rinout
nm

−
1

2
αβK ′

n(kα)I ′

n(kβ)Km(kα)Im(kβ)Rinout
nm + 02 Im(kβ)

×

{
βα I ′

n(kα)K ′

n(kα)Km(kα)Rinout
nm −

β2

2
Km(kβ)

{
I ′

n(kα)K ′

n(kβ) + K ′

n(kα)I ′

n(kβ)
}

Rin
nm

}
+ 01 Im(kβ)

{
β2 I ′

n(kβ)K ′

n(kβ)Km(kβ)Rin
nm −

βα

2
Km(kα)

{
I ′

n(kβ)K ′

n(kα)

+K ′

n(kβ)I ′

n(kα)
}

Rinout
nm

}
,

and

V 22
n =

∞∑
m=1

K ′

n(kα)Km(kα)
{
α2K ′

n(kα)Im(kα)Rout
nm − αβK ′

n(kβ)Im(kβ)Rinout
nm

}
+ 01β Im(kβ)K ′

n(kβ)
{
βK ′

n(kβ)Km(kβ)Rin
nm − αK ′

n(kα)Km(kα)Rinout
nm

}
+ 02βK ′

n(kα)Im(kβ)
{
αK ′

n(kα)Km(kα)Rinout
nm − βK ′

n(kβ)Km(kβ)Rin
nm

}
.
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