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Abstract. It has been suggested that excitation transport in photosynthetic
light-harvesting complexes features speedups analogous to those found in
quantum algorithms. Here we compare the dynamics in these light-harvesting
systems to the dynamics of quantum walks, in order to elucidate the limits
of such quantum speedups. For the Fenna–Matthews–Olson complex of green
sulfur bacteria, we show that while there is indeed speedup at short times, this
is short lived (70 fs) despite longer-lived (ps) quantum coherence. Remarkably,
this timescale is independent of the details of the decoherence model. More
generally, we show that the distinguishing features of light-harvesting complexes
not only limit the extent of quantum speedup but also reduce the rates of diffusive
transport. These results suggest that quantum coherent effects in biological
systems are optimized for efficiency or robustness rather than the more elusive
goal of quantum speedup.
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1. Introduction

In the initial stages of photosynthesis, energy collected from light is transferred across a
network of chlorophyll molecules to reaction centers [1, 2]. Recent experimental evidence
showing long-lived quantum coherences in this energy transport in several photosynthetic light-
harvesting complexes suggests that coherence may play an important role in the function
of these systems [3]–[8]. In particular, it has been hypothesized that excitation transport in
such systems features speedups analogous to those found in quantum algorithms [3, 9]. These
comments have attracted much interest from quantum information theorists [9]–[18], although
clearly photosynthesis is not implementing unitary quantum search [9]. The most direct analogy
to such transport is found in quantum walks, which form the basis of a powerful class of quantum
algorithms, including quantum search [19]–[24]. Unlike idealized quantum walks, however,
real light-harvesting complexes are characterized by disorder, energy funnels and decoherence.
Whether any quantum speedup can be found in this situation has remained unclear.

Quantum walks are an important tool for quantum algorithms [19]–[24]. On the line,
quantum walks feature ballistic spreading, 〈x2

〉 ∝ t2, compared to the diffusive spreading of a
classical random walk, 〈x2

〉 ∝ t , where 〈x2
〉 denotes the mean-squared displacement. Moreover,

because they use superpositions instead of classical mixtures of states, on any graph with
enough symmetry to be mapped to a line, quantum walks spread along that line in linear
time—even when classical spreading is exponentially slow [20]. We shall refer to this enhanced
rate of spreading as a generic indicator of ‘quantum speedup’. Such quantum speedup is
important in quantum information processing, where it can lead to improved scaling of quantum
algorithms relative to their classical alternatives. Examples of such algorithmic speedup include
spatially structured search [21], element distinctness [22] and evaluating and–or formulae [23].
Quantum walks even provide a universal implementation for quantum computing [24].

Quantum walks also constitute one of the simplest models for quantum transport on
arbitrary graphs. As such, they provide a theoretical framework for several physical processes,
including the transfer of electronic excitations in photosynthetic light-harvesting complexes

New Journal of Physics 12 (2010) 065041 (http://www.njp.org/)

http://www.njp.org/


3

[3, 9]. The closed system dynamics in a light-harvesting complex are generally well described
by a tight-binding Hamiltonian that is restricted to the single excitation subspace [2],

H =

∑
n

En|n〉〈n| +
∑
n 6=m

Jnm|n〉〈m|. (1)

Here, |n〉 represents the state where the nth chromophore (site) is in its electronic excited state
and all other chromophores are in their ground state. En is the electronic transition energy of
chromophore n and Jmn is the dipole–dipole coupling between chromophores n and m. This is
a more general variant of the Hamiltonian for standard continuous-time quantum walks, where
En = 0 and Jmn ∈ {0, 1}. The salient differences of the general model, variable site energies
and couplings, arise naturally from the structure and role of light-harvesting complexes. Non-
constant site energies can serve as energy funnels and can enable the complex to absorb at a
broader range of frequencies, while variable couplings between sites reflect their physical origin
as dipole–dipole interactions. These differences yield excitation dynamics that can deviate
significantly from quantum walks.

Here we study the key question of whether excitation transport on light-harvesting
complexes shows quantum speedup. Such quantum speedup would be necessary for any
quantum algorithm that offers algorithmic speedup relative to a classical search of physical
space. (Achieving true algorithmic speedup, i.e. improvement over the best classical algorithms,
would also require suitable scaling of the space requirements [25].) We address this with a study
of the Fenna–Matthews–Olson (FMO) complex of green sulfur bacteria, a small and very well-
characterized photosynthetic complex [1, 2, 26, 27], the same complex for which long-lived
quantum coherences were recently observed and suggested to reflect execution of a natural
quantum search [3]. We also consider the dynamics of transport along a theoretical model of an
extended chain of chromophores to elucidate the systematic influence of variable site energies
and dephasing on transport.

2. The Fenna–Matthews–Olson (FMO) complex

The FMO complex acts as a quantum wire, transporting excitations from a large, disordered
antennae complex to a reaction center. In addition to the possibility of quantum speedup
[3, 9], recent studies have speculated that coherence may assist unidirectional transport along
this wire [5], or suggested that it may contribute to overall efficiency [11]. The crystal
structure of FMO shows three identical subunits that are believed to function independently,
each with seven bacteriochlorophyll-a molecules embedded in a dynamic protein cage [26].
A refined model Hamiltonian for the single excitation subspace is available from detailed
quantum chemical calculations [27], and the orientation of the complex was recently verified
experimentally [28]. By neglecting the weakest couplings in this model Hamiltonian, we see
that transport in an individual monomer of FMO can be mapped to a one-dimensional path
between chromophores, as shown in figure 1. This mapping of the excitation transport in FMO
to a single dimension allows us to make contact with known results for quantum transport in
one dimension and to quantitatively assess the extent of quantum speedup.

3. Coherent dynamics

Under Hamiltonian dynamics, quantum walks on highly symmetric graphs can spread
ballistically, but any significant lack of symmetry can lead to localization. Consider transport
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Figure 1. (a) Crystal structure of the FMO complex of C. tepidum (Protein
Data Bank accession 3ENI), with lines between the chromophores representing
dipolar couplings. The thickness of the lines indicates the coupling strengths.
Only couplings above 15 cm−1 are shown; the largest coupling is 96 cm−1. The
full Hamiltonian is given in appendix A. (b) Site energies, shown relative to
12 210 cm−1, in the reduced dimensionality model derived from mapping the
strongest couplings onto a one-dimensional graph. The red sites (1, 6) are source
sites at which the excitation enters the complex and the black site (3) is the trap
site from which the excitation is transferred to the reaction center [27, 28].

along the infinite line. Here, a random variation of any magnitude in the site energies leads to
Anderson localization [29]. Similarly, random variations in the coupling strengths contribute
to localization [30]. Systematic variations in site energies or coupling strengths can also cause
localization [31], with the well-known instance of Bloch oscillations and Stark localization
deriving from a linear bias in site energies [32]. Both systematic and random variations in site
energies remove the symmetry necessary for Bloch’s theorem, so it is not surprising that their
combination leads to localization as well [33, 34]. Adding disorder into the graph structure
also usually causes localization [35] (although such disorder can also reduce localization if it
makes an already disordered graph more connected [36]). The varied couplings, energy funnel
and disordered energies evident in the FMO Hamiltonian depicted in figure 1 suggest that
localization due to several of these effects will be significant for light-harvesting complexes. The
standard measure of localization under coherent dynamics, the inverse participation ratio [29]
ξ =

∑
i |ψi |

2/
∑

i |ψi |
4, for the amplitudes ψi in the site basis of an eigenstate ψ of our model

Hamiltonian confirms this intuition, since the typical eigenstate for FMO occupies only ξ ∼ 2
sites (see also [37]).

We can estimate the timescale for localization tloc based upon the experimentally accessible
parameters of geometry, localization length ξ and an average coupling strength J . Consider
the speed of the quantum walk as an upper bound on excitation transport speed prior to
localization. For the continuous-time quantum walk on the infinite line, it is well known
that 〈x2

〉 ∼ 2J 2t2/h̄2 [38]. Similarly, starting at one end of an infinite line, 〈x2
〉 ∼ 3J 2t2/h̄2.

This gives an average speed g J/h̄, where g =
√

2 and g =
√

3, respectively, yielding the
bound tloc & h̄ξ/g J . Our simulations of strict Hamiltonian dynamics (no decoherence) with
FMO, as described below, find the onset of localization at tloc ∼ 70 fs, which is close to the
bound h̄ξ/g J ∼ 100 fs from the mean inverse participation ratio ξavg ≈ 2, the mean coupling
strength Javg ≈ 60 cm−1 and g =

√
3 (this value for g is suggested by the dominant pathways in
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figure 1 for transport starting at sites 1 or 6, which are the chromophores closest to the antenna
complex [27, 28]).

4. Decoherence

Decoherence, i.e. non-unitary quantum evolution, is also an essential feature of excitation
dynamics in real systems. In light-harvesting complexes decoherence arises from interactions
with the protein cage, the reaction center and the surrounding environment. Recently it has
been shown that some degree of fluctuation of electronic transition energies (i.e. dephasing in
the site basis) increases the efficiency of transport in FMO and other simple models otherwise
limited by Anderson localization. The intuition is that at low levels dephasing allows escape
from localization by removing destructive interference, but at high levels it inhibits transport by
inducing the quantum Zeno effect [9, 10, 12, 13].

We consider here two essential types of decoherence, dephasing in the site basis and loss
of excitations. Under the Born–Markov approximation, time evolution with this decoherence
model is determined by the system Hamiltonian H and a sum of Lindblad operators L according
to [39]

∂ρ

∂t
= −

i

h̄
[H, ρ] +Lloss(ρ)+Ldeph(ρ). (2)

Lloss describes loss of excitations with site-dependent rates γn, including trapping to a reaction
center, and is specified by the operator

〈n|Lloss(ρ)|m〉 = −
γn + γm

2
〈n|ρ|m〉, (3)

which results in exponential decay of the diagonal elements of the density matrix ρ (and
corresponding decay of off-diagonal elements, which ensures positivity). Ldeph describes
dephasing, which is specified by the operator

〈n|Ldeph(ρ)|m〉 = −
0n +0m

2
(1 − δnm)〈n|ρ|m〉, (4)

with site-dependent dephasing rates 0n, and yields exponential decay of the off-diagonal
elements of ρ.

A remarkable feature of our results for FMO is that, as we shall demonstrate, they are
independent of the finer details of the bath dynamics and system–bath coupling. Thus, for
simplicity, we specialize here to the Haken–Strobl model [40] and restrict losses to trapping by
the reaction center. The ease of calculation with the Haken–Strobl model has made it popular
for simulating the dynamics of light-harvesting complexes [10, 12, 13, 41, 42]. Following
Rebentrost et al [10], we use the spatially uniform, temperature-dependent dephasing rate
0 = 2πkBT ER/h̄

2ωc, for an ohmic spectral density with bath reorganization energy ER =

35 cm−1 and cut-off frequency ωc = 150 cm−1. This dephasing rate holds when chromophores
are treated as qubits coupled to independent reservoirs in the spin-boson model, in the thermal
(or Markovian) regime t � h̄/kBT [39], which corresponds to t � 25 fs at 300 K. Although
the exact parameters of the protein environment surrounding FMO are unclear [5], these are
reasonable estimates. This model gives dephasing rates (69 fs)−1 at 77 K and (18 fs)−1 at 300 K.
Also, as in [10], we restrict trapping to site 3 at a rate of γ3 = 1 ps−1. Finally, we neglect exciton
recombination since it occurs on much slower timescales (∼1 ns−1), and in any case it does not
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alter the mean-squared displacement. Therefore, we set γi = 0 for i 6= 3. While more realistic
decoherence models would incorporate thermal relaxation, spatial and temporal correlations in
the bath and strong system–bath coupling [43], this treatment is sufficient for analyzing the
quantum speedup, as justified in detail by comparison with the corresponding analysis using
more realistic simulations of FMO [43] in appendix B.

5. The limits of quantum speedup

To access the extent of quantum speedup for a system that can be mapped to a line, a natural
measure is the exponent b of the power law for the mean-squared displacement 〈x2

〉 ∝ tb. In
particular, we use the best-fit exponent b from the slope of the log–log plot of the mean-squared
displacement 〈x2

〉 = tr[ρx2]/trρ versus t . The value b = 1 corresponds to the limit of diffusive
transport, whereas b = 2 corresponds to ideal quantum speedup as in a quantum walk (ballistic
transport).

The timescale for quantum speedup is generally bounded above by both the timescale for
dephasing, tdeph = 1/0, and the timescale for static disorder to cause localization, tloc. To see
this, it is illustrative to consider transport along a linear chain with constant nearest-neighbor
couplings J . For dephasing but no static disorder or energy gradient (En = 0), the mean-squared
displacement shows a smooth transition from ballistic to diffusive transport [44, 45]5,

〈x2
〉 =

4J 2

h̄20

[
t +

1

0

(
1 − e−0t

)]
. (5)

The corresponding power-law transition is shown in figure 2(a). Technically, transport remains
super-diffusive even after tdeph, since the power never drops below b = 1. In contrast, for static
disorder but no dephasing, there is a sudden transition from ballistic transport to essentially no
transport at all (localization). The power law starts at b = 2, then drops and begins to oscillate
wildly after tloc as the wave function continues to evolve in a confined region. Several examples
are shown in figure 2(b) for variable strengths of disorder. Figure 2(c) shows the behavior with
both strong static disorder and dephasing, as in light-harvesting complexes. In this case, the
transport can even exhibit a sub-diffusive power law. The reason for this sub-diffusive behavior
may be easiest to understand by analogy to the Anderson model (random site energies) in an
infinite chain. Consider transport in such a system under weak dephasing and with an ensemble
average over different realizations of strong static disorder. In this case, one expects transport
must transition from ballistic (b = 2) at short times, to localized (b = 0) at intermediate times,
to diffusive at long times (b = 1). (The situation at long times is analyzed more explicitly in
section 6 and appendix C.) For stronger dephasing as in figure 2(c) (and as we shall see with
FMO), the fully localized regime with no transport may never be realized, but transport will still
be sub-diffusive for intermediate times.

Figure 3 shows the results of a simulation of FMO dynamics made with our simple
decoherence model. The displacement xi of a site i is given by its position in the one-
dimensional mapping that is presented in figure 1(b). Note that our simulations use the full
Hamiltonian; the one-dimensional map is only used in the analysis of the results, to determine
the displacement xi of each site. The upper-left panel, (a), shows the mean-squared displacement
〈x2

〉 of an excitation initially localized on site 6, one of the two excitation source sites, and the

5 This result, obtained in the context of excitation transport in molecular crystals, also applies to decoherent
continuous-time quantum walks since they use the same tight-binding Hamiltonian.
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Figure 2. The best fit power-law exponent b for the mean-squared displacement
with J/h̄ = 1, for transport along a linear chain with either (a) increasing
dephasing (0 = 1, 3, 9) and no static disorder (En = 0), (b) no dephasing (0 =

0) and increasing static disorder (independent site energies En from a single
Gaussian distribution normalized to standard deviation σ = 1, 3, 9) or (c) the
same disorder as (b), but with finite dephasing rate 0 = 1. Panels (b) and (c) show
results for single instances of disorder. When an ensemble average over different
realizations of static disorder is taken, the power law varies smoothly instead of
oscillating as in (b) and (c).

lower-left panel, (b), the best fit exponent b for the power law 〈x2
〉 ∝ tb. Our results show that

even though coherence in this simple model lasts for ∼500 fs (see figure 3(c)), a transition
from initially ballistic to sub-diffusive transport occurs after only ∼70 fs, independent of the
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Figure 3. Results of simulations on FMO with the decoherence model described
in the text. (a) Log–log plot of mean-squared displacement 〈x2

〉 as a function
of time, for an initial excitation at site 6. (b) Power-law exponent for the mean-
squared displacement, given by the slope of the plot in panel (a). The dashed
line b = 1 separates super- and sub-diffusive transport (see text). (c) Total site
coherence, given by the sum of the absolute value of all off-diagonal elements
of the density matrix in the site basis, indicates persistent coherence for ∼500 fs.
(d) Oscillating site populations (shown for 77 K only) also indicate persistent
coherence for hundreds of femtoseconds.

dephasing rate. While increased dephasing causes a faster initial decrease of the power law,
dephasing alone cannot lead to sub-diffusive transport, as is clear from equation (5). We note
that the transition to sub-diffusive transport at 70 fs occurs at the same timescale as the onset
of localization (section 3), implying that even though there is persistent coherence beyond this
time, it no longer yields quantum speedup because of static disorder. The sub-diffusive power
law at intermediate times (∼100 fs–2 ps) arises from the interplay of this disorder-induced
localization and dephasing that is discussed above for the linear chain model. At longer times
the power-law exponent b goes to zero because of the finite size of the system. Since complete
energy transfer through FMO takes picoseconds, this analysis shows that most of the excitation
transport is formally sub-diffusive.

While FMO is a relatively small system, so that terms such as ‘ballistic’ and ‘diffusive’
cannot literally describe transport across its seven chromophores, this time dependence of the
power law of spreading would also characterize larger artificial or natural systems. Our results
here are robust to variations in the strength of the trap, and to whether the initial excitation is at
site 1 or 6, the sites believed to be the primary source for excitations in FMO [27]. They are also
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independent to variations of the map to a one-dimensional system in figure 1, such as counting
the number of chromophores away from the trap site instead of along the entire line, or using
the real space distance between adjacent chromophores instead of assuming that each pair is
merely separated by a unit lattice distance.

Our timescale for short-lived quantum speedup in FMO should be largely independent
of the details of the decoherence model, since the non-uniform energy landscape will always
limit ballistic transport to times prior to tloc ∼ 70 fs. This is confirmed by applying our analysis
to the results of recent calculations for FMO made with a considerably more sophisticated
decoherence model that incorporates thermal relaxation, temporal correlations in the bath
and strong system–bath coupling [43]. As demonstrated in appendix B, these more realistic
calculations also predict a loss of quantum speedup after 70 fs.

6. Diffusive transport

To gain general insight into the interplay between disorder and dephasing for light-harvesting
complexes, we now consider the dynamics of an infinite linear chain at long times with
variable site energies, couplings and dephasing rates. By extending an analysis for damped
Bloch oscillations [46], we find that any set of nonzero dephasing rates 0n asymptotically
leads to diffusive transport 〈x2

〉 ∼ 2Dt . Haken and Reineker also performed a reduction of the
Haken–Strobl model without disorder to a diffusion equation along similar lines [47]. Note that
since the Haken–Strobl model does not include energy relaxation, no classical drift velocity will
be obtained from these dynamics. The time evolution of an arbitrary density matrix element for
an infinite linear chain under site-dependent dephasing rates is given by

ρ̇nm = −
i

h̄
(Jn−1ρn−1,m + Jnρn+1,m − Jmρn,m+1 − Jm−1ρn,m−1)

−

[
i

h̄
(En − Em)+

0n +0m

2
(1 − δnm)

]
ρn,m, (6)

where Jn ≡ Jn,n+1. If we neglect terms in the second off-diagonal relative to the diagonal terms
(see justification in appendix C), we obtain

ρ̇n+1,n = −
i

h̄
Jn(ρn,n − ρn+1,n+1)−

(
i

h̄
1n +0′

n

)
ρn+1,n, (7)

where 1n ≡ En+1 − En and 0′

n ≡ (0n +0n+1)/2. This equation has the solution

ρn+1,n =
i

h̄
e−(i1n/h̄+0n)t

∫ t

0
Jn(ρn+1,n+1 − ρn,n)e

(i1n/h̄+0n)t ′dt ′

≈
Jn(ρn+1,n+1 − ρn,n)

1n − ih̄0′
n

, (8)

in the nearly stationary regime where site populations vary slowly compared to 1/0′

n and h̄/1n.
Inserting (8) and the corresponding result for ρn−1,n into (6), we obtain

ρ̇nn =
2J 2

n0
′

n

12
n + h̄20′2

n

(ρn+1,n+1 − ρnn)+
2J 2

n−10
′
n−1

12
n−1 + h̄20′2

n−1

(ρn−1,n−1 − ρnn). (9)
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Figure 4. Diffusion coefficients at long times as a function of a constant
dephasing rate 0 and the static disorder between adjacent sites, as calculated
by (11) with J = h̄ = 1. Solid lines are contours; the dashed line is the optimal
dephasing rate for given static disorder. The ideal quantum walk, which is non-
diffusive, is at the origin.

This is now a classical random walk with variable bond strengths between sites. For
asymptotically large times it has been proven to approximate the diffusion equation with the
coefficient given by

D =

〈
12

n + h̄20′

n
2

2J 2
n0

′
n

〉−1

, (10)

as long as the average over sites in the diffusion coefficient is well defined [48]. With 1n, Jn

and 0n constant, this matches the known diffusion coefficient [46, 49]. For constant coupling
Jn = J and constant dephasing 0′

n = 0, we note that (10) reduces to

D =
2J 20

〈12
n〉 + h̄202

, (11)

which is plotted as a function of 〈12
n〉

1/2 and 0 in figure 4.6 Note that with 〈12
n〉 = 0, this is the

long time limit of (5). In the case of equation (11), for a given degree of static disorder, we find
an optimal dephasing rate h̄0 = 〈12

n〉
1/2. However, figure 4 shows that for a given dephasing

rate, excitation transport would be improved by reducing the static disorder to further delocalize
the system.

7. Conclusions

These principles show that quantum speedup across a photosynthetic or engineered system
requires not only long-lived quantum coherences, but also excitons delocalized over the entire

6 We note that the parameter 〈12
n〉

1/2 does not completely specify the degree of localization, although it does
show that Stark and Anderson localization equivalently influence diffusive transport. For example, the inverse
participation ratio in these two cases differs, even with the same value of 〈12

n〉
1/2.
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complex. Such completely delocalized excitons do not exist in FMO and are also unlikely
to exist in other light-harvesting complexes because of the presence of energy gradients and
disorder. Moreover, equation (11) makes it clear that the conditions needed for longer-lived
quantum speedup (reduced dephasing and static disorder) are those necessary for faster diffusive
transport as well.

The short-lived nature of quantum speedup in light-harvesting complexes that we have
established here implies that the natural process of energy transfer across these complexes does
not correspond to a quantum search. Indeed, neither a formal quantum nor a classical search may
be necessary, since pre-determined (evolved) energy gradients can guide relaxation to reaction
centers, even though such gradients suppress coherent and dephasing-assisted transport. This is
particularly relevant for systems such as FMO, which either receive excitations one at a time
or have isolated reaction centers. Instead of yielding dynamical speedup like that in quantum
walk algorithms, quantum coherence in photosynthetic light-harvesting appears more likely to
contribute to other aspects of transport, such as overall efficiency or robustness. We emphasize
that a restricted extent of quantum speedup does not imply that there is no significant quantum
advantage due to long-lived coherence in electronic excitation energy transfer. Identifying
the specific nature of any ‘quantum advantage’ for FMO will clearly require more detailed
analysis of the dynamics, particularly in the sub-diffusive regime. Related examples of such
‘quantum advantage’ are found in the LH2 complex of purple bacteria, where coherence has
been specifically shown to improve both the speed [50] and robustness [51] of transport from
the B800 to the B850 ring.
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Appendix A. The FMO Hamiltonian

In all of our calculations, we use the Hamiltonian calculated for C. tepidum by Adolphs and
Renger [27]. In the site basis, this is given by

200 −96 5 −4.4 4.7 −12.6 −6.2
−96 320 33.1 6.8 4.5 7.4 −0.3

5 33.1 0 −51.1 0.8 −8.4 7.6
−4.4 6.8 −51.1 110 −76.6 −14.2 −67
4.7 4.5 0.8 −76.6 270 78.3 −0.1

−12.6 7.4 −8.4 −14.2 78.3 420 38.3
−6.2 −0.3 7.6 −67 −0.1 38.3 230


, (A.1)

with units of cm−1 and a total offset of 12 210 cm−1. Bold entries indicate those shown in
figure 1. In units with h̄ = 1, we note that the rate 1 ps−1

≡ 5.3 cm−1.
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Figure B.1. For the reduced hierarchy equation model as applied to FMO, we
plot the power law for the mean-squared displacement, as in figure 3(b). The
plot is interpolated from a fourth-order polynomial fit of density matrix elements
for results from a numerical simulation on FMO with sampling approximately
every 8 fs, with the initial excitation at site 6 [5].

Appendix B. Reduced hierarchy equations model for FMO

Energy transfer dynamics in photosynthetic complexes can be difficult to model because
perturbations from the surrounding protein environment can be large, and the timescale of
the protein dynamics is similar to the timescales of excitation transport. This makes common
approximations involving perturbative treatments of system–bath coupling and Markovian
assumptions on the bath invalid. Recently, a non-perturbative, non-Markovian treatment
of energy transfer was formulated by Ishizaki and Fleming [43]. This model assumes
(i) a bilinear exciton–phonon coupling, (ii) protein fluctuations that are described by
Gaussian processes, (iii) a factorizable initial state of chromophores and protein environment,
(iv) protein fluctuations that are exponentially correlated in time and (v) no spatial correlations
of fluctuations.

To verify our results in figure 3 of the main paper with this more realistic model for
excitation dynamics, we apply the power-law analysis of mean-squared displacement to the
results of the simulations that were used to calculate entanglement dynamics in [16] using
the non-perturbative non-Markovian method of [5]. These simulations used a reorganization
energy of the protein environment of 35 cm−1, a phonon relaxation time of 100 fs and a reaction
center trapping rate of (4 ps)−1, all of which are consistent with the literature on FMO [27, 53].
Figure B.1 shows the power-law analysis for two different temperatures, 77 and 300 K. Our
analysis of these realistic simulations shows that longer-lasting coherences (as discussed in
[5, 43]) are evident in the power-law oscillations, but that transport is nevertheless sub-diffusive
after ∼70 fs, for both temperatures.

It is particularly noteworthy that our results for FMO hold even under a model
incorporating finite temperature relaxation. In principle, thermal relaxation could bias the
dynamics on a linear chain with a classical drift velocity [54] to give the power law 〈x2

〉 ∝ t2
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Figure C.1. Decay of coherences. Log–log plot of the sum of the absolute
values kth off-diagonal elements of the density matrix over time for constant
dephasing and coupling strengths 0 = J/h̄ = 1. Panels show the quantum walk
with dephasing (a), and Stark (b) and Anderson (c) localization with dephasing
and 〈12

n〉
1/2

= π/2. Note that the main diagonal always sums to 1.

even without quantum speedup. However, the above analysis of FMO simulations made with
the most realistic treatment of relaxation available today (figure B.1) shows that this is not the
case in this system.

Appendix C. Decay of coherences in linear transport

For a constant dephasing rate 0 � J/h̄, there is a simple analytical argument that the off-
diagonal elements of the density matrix in the site basis can be neglected relative to the main
diagonal [55]. In the case of transport along a line, application of the analysis of [55] to
equation (6) shows that the first off-diagonal elements decay at rate 0, unless more coherence
is generated from the main diagonal. If the main diagonal elements have order 1, then the first
off-diagonal elements cannot have magnitude greater than order J/h̄0. A similar argument
bounds the second diagonal elements as less than (J/h̄0)2 and so forth. For large 0, this justifies
neglecting this second off-diagonal relative to the main diagonal. The higher order terms in this
expansion can also be calculated explicitly [52].

From extensive numerical experiments with infinite chains, we have found uniformly that
the off-diagonal elements of the density matrix decay nearly monotonically after time 1/0 even
when 0 � J/h̄ does not hold, although an analytic proof of this result has eluded us. Several
examples are presented in figure C.1. This matches the analytical result for finite systems in the
Haken–Strobl model that coherence must vanish eventually for any nonzero 0 [56].
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