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Abstract. Interferometry with ultracold atoms promises the possibility of
ultraprecise and ultrasensitive measurements in many fields of physics, and is
the basis of our most precise atomic clocks. Key to a high sensitivity is the
possibility to achieve long measurement times and precise readout. Ultracold
atoms can be precisely manipulated at the quantum level and can be held for very
long times in traps; they would therefore be an ideal setting for interferometry.
In this paper, we discuss how the nonlinearities from atom–atom interactions,
on the one hand, allow us to efficiently produce squeezed states for enhanced
readout and, on the other hand, result in phase diffusion that limits the phase
accumulation time. We find that low-dimensional geometries are favorable,
with two-dimensional (2D) settings giving the smallest contribution of phase
diffusion caused by atom–atom interactions. Even for time sequences generated
by optimal control, the achievable minimal detectable interaction energy 1Emin

is of the order of 10−4µ, where µ is the chemical potential of the Bose–Einstein
condensate (BEC) in the trap. From these we have to conclude that for more
precise measurements with atom interferometers, more sophisticated strategies,
or turning off the interaction-induced dephasing during the phase accumulation
stage, will be necessary.
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1. Introduction

Interferometry is the method of choice for achieving the most precise measurements, or when
trying to detect the most feeble effects or signals. Interferometry with matter waves [1] became
a very versatile tool with many applications ranging from precision experiments to fundamental
studies.

In an interferometer, an incoming ‘beam’ (light or matter ensemble) is split into two
parts (pathways), which can be separated into either internal state space or real space. The
splitting process prepares the two paths with a well-defined relative phase δθ(t = 0) = θ1(t = 0)

− θ2(t = 0). After the splitting, they evolve separately and can accumulate different phases θ1(t)
and θ2(t) due to the different physical settings they evolve in. Finally, in the recombination
process after time T , the relative phase δθ(T ) = θ1(T ) − θ2(T ) accumulated in the two paths
can be read out.

The sensitivity of an interferometer measurement depends now on two distinct points:
how well can the phase difference δθ be measured and how long can one accumulate a phase
difference in the split paths. For perfect readout contrast and standard (binomial) splitting and
recombination procedures, the uncertainty in determining 1θ is given by the standard quantum
limit 1θ = 1/

√
N , where N is the number of registered counts (e.g. atom detections). The

second point concerns the question of how long the beams can be kept in the ‘interaction
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region’ of the distinguishable interferometer arms and for how long the paths stay coherent.
Ultracold (degenerate) atoms can be held and manipulated in well-controlled traps and guides,
and therefore promise ultimate precision and sensitivity for interferometry. Both dipole traps [2]
and atom chips [3]–[6] have been used to analyze different interferometer geometries [7]–[10]
and employed for experimental demonstration of splitting [11]–[14] and interference [15]–[24]
with trapped or guided ultracold atoms.

The power of interferometry lies in the precision and robustness of the phase evolution,
which provides the measurement stick. This robustness of the phase evolution is based
on the linearity of time propagation in the different paths, which is the case for most
light interferometers, atom interferometers [1] with weak and dilute beams or neutron
interferometers [25]. Measurements lose precision when this robustness of the phase evolution
cannot be guaranteed. This is the case if the phase evolution in the paths depends on
the intensity (density), that is, when the time evolution becomes nonlinear. Atom optics is
fundamentally nonlinear, the nonlinearity being created by the interaction between atoms. For
ultracold (degenerate) trapped Bose gases, this mean field energy associated with the atom–atom
interaction can even dominate the time evolution. Consequently, in many interferometer
experiments with trapped atoms, the atom–atom interaction creates a nonlinearity in the time
propagation, and the accumulated phase depends on the local atomic densities. Thus, number
fluctuations induced by the splitting cause phase diffusion [26, 27], which currently limits the
coherence and sensitivity of interferometers with trapped atoms much more than decoherence
coming from other sources, like the surface [28]–[30].

In the present paper, we will discuss the physics that leads to degradation of performance
of an atom interferometer with trapped atoms and how one can counteract it by using optimal
input states. We first discuss the performance of a trapped atom interferometer in the simplest
two-mode model. This will allow us to illustrate the basic physics. We then investigate how
this simple two-mode model has to be modified when taking into account the many-body
structure of the wave function. Optimal control techniques are applied to prepare the desired
input states [31]–[33].

In our calculations, we always assume zero temperature. The effects of additional
dephasing and decoherence due to fundamental quantum noise and due to thermal excitations
at finite temperature will be discussed in the last section.

2. Two-mode model description of atom interferometry

When atom interferometry is performed with a trapped Bose–Einstein condensate (BEC), we
consider the following key stages: the splitting stage (with the time duration Tsplit), where the
condensate wave function is split into two parts; the phase accumulation stage (Tphase), where
the atoms in one arm of the interferometer experience an interaction with some weak (classical)
field; and finally the readout stage (Ttof), where the phase accumulated is measured after the
condensates have expanded in time-of-flight (TOF).

In our theoretical description, we start by introducing a simple but generic description
scheme of an interferometer in terms of a two-mode model for the split condensate. Such
a model has also proved successful for the description of interference with spin squeezed
states [34, 35] and of condensates in double wells [18, 23]. To properly account for the many-
boson wave function, we introduce the field operator in second-quantized form [36]

9̂(x) = âL φL(x) + âR φR(x). (1)
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Here, a†
L,R are bosonic field operators that create an atom in the left or right well, with wave

functions φL,R(x), respectively. In many cases, we can properly describe the dynamics of the
interacting many-boson system by means of a generic two-mode Hamiltonian6 [33, 37, 38]

Ĥ = −
�

2
(â†

LâR + â†
RâL) + κ(â†

Lâ†
LâLâL + â†

Râ†
RâRâR). (2)

Here, � describes a tunneling process, which allows the atoms to hop between the two wells,
and κ is the nonlinear atom–atom interaction, which energetically penalizes states with a high
atom-number imbalance between the left and right wells. We treat � as a free parameter, but
choose a fixed κ ≈ U0/2. U0 is the effective one-dimensional (1D) interaction strength along
the direction where the potential is split into a double well. A more accurate way of relating κ

and U0 will be given in section 4.
In the example we discuss in this paper, the initial state of the interferometry sequence is

prepared by deforming a confinement potential from a single to a double well. This corresponds
to a situation where one starts with the two-mode Hamiltonian of equation (2) for a large tunnel
coupling, � � κ , and then turns off �, as a consequence of the reduced spatial overlap of the
wave functions φL,R(x).

In the beginning of the splitting sequence, tunneling dominates over the nonlinear
interaction, and all atoms reside in the bonding orbital φL(x) + φR(x). This results in a binomial
atom number distribution. When � is turned off sufficiently fast and the dynamics due to the
nonlinear coupling play no significant role, the orbitals φL,R(x) become spatially separated, but
the atom number distribution remains binomial. In contrast, when � is turned off sufficiently
slowly, the system can adiabatically follow the ground state of the Hamiltonian (2) and ends up
approximately in a Fock state. As we will discuss below, such states with reduced atom number
fluctuations are appealing for the purpose of atom interferometry.

2.1. Pseudo-spin operators and the Bloch sphere

A convenient representation of the two-mode model for a many-boson system is in terms of
angular-momentum operators [37]–[39]. Quite generally, the internal state of an ensemble of
atoms that are allowed to occupy two states (here left and right) can be described as a collective
(pseudo)spin Ĵ =

∑N
i=1 ĵi , which is the sum of the individual spins of all atoms. Here the total

angular momentum is N/2, and the projection m on the z-axis corresponds to states where,
starting from a state where the left and right wells are each populated with N/2 atoms, m atoms
are promoted from the right to the left well. Through the Schwinger boson representation

Ĵ x =
1

2
(â†

LâR + â†
RâL), Ĵ y = −

i

2
(â†

LâR − â†
RâL), Ĵ z =

1

2
(â†

LâL − â†
RâR), (3)

we can establish a link between the field operators âL,R and the pseudo-spin operators. Ĵ x

promotes an atom from the left to the right well, or vice versa, and Ĵ z gives half the atom
number difference between the two wells.
6 From now on, we use conveniently scaled time, length and energy units [33], unless stated differently.
First we set h̄ = 1 and scale the energy and time according to a harmonic oscillator with confinement length
aho =

√
h̄/(mωho) = 1 µm and energy h̄ωho. Our considerations deal with Rb atoms. We therefore measure

mass in units of the 87Rb atom and then time is measured in units of 1/ωho = 1.37 ms and energy in units of
h̄ωho = 2π h̄ × 116.26 Hz.
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Figure 1. Bloch sphere representation of a number-squeezed state with squeezing
factor (defined in text) ξN ≈ 0.2. 1Jz corresponds to number squeezing, and
1Jy is proportional to phase squeezing. In the ring below the sphere we show
the polarization of the state along the x-axis, which is proportional to the
coherence factor α = 2〈 Ĵ x〉/N . For squeezed states there is also a noise 1Jx

in the polarization of the state on the equator.

One can map the two-mode wave function onto the Bloch sphere [40], which provides
an extremely useful visualization tool for the purpose of atom interferometry (see figure 1).
A state on the north pole corresponds to all atoms residing in the left well and a state on the
south pole to all atoms in the right well. All atoms in the bonding orbital correspond to a state
localized around x = N/2. This is a product state where the atoms are totally uncorrelated.
In this state the quantum noise is evenly distributed among 1Jy = 1Jz =

√
N/2, i.e. it has

equal uncertainty in number difference (measured along the z-axis) and in the conjugate phase
observable (measured around the equator of the sphere). Similar to optics with photons, or
as discussed in the context of spin squeezing, quantum correlations can reduce the variance
of one spin quadrature, for a given angle φ, Ĵ φ = cos φ Ĵ z + sin φ Ĵ y at the cost of increasing
the variance of the orthogonal quadrature: at the angle φ the variance 1J 2

φ becomes minimal,
whereas the orthogonal variance 1J 2

φ+π/2 becomes maximal [41]. For example, the squeezed
state shown in figure 1 has reduced number fluctuations, as described by the normalized number
squeezing factor ξN = 1Jz/(

√
N/2), and enhanced phase fluctuations, as described by the

normalized phase squeezing factor ξphase = 1Jy/(
√

N/2).
Within the pseudo-spin framework, the two-mode Hamiltonian becomes

Ĥ = −� Ĵ x + 2κ Ĵ 2
z , (4)

which is completely analogous to the Josephson Hamiltonian of superconductivity. � is
associated with the (time-dependent) Josephson energy and the nonlinearity κ with the charging
energy [42]. For a given state on the Bloch sphere, the tunnel coupling rotates the state around
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Figure 2. Time evolution of states on the Bloch sphere. The different panels
report the results for a (a) binomial, (b) number-squeezed [ξN ≈ 0.2] and
(c) phase-squeezed state [ξφ ≈ 0.2]. The time interval is T = 12.8 for the
phase-squeezed state, and T = 32 otherwise. Due to the nonlinear atom–atom
interactions, the states become distorted, thus spoiling the interferometer
performance.

the x-axis, whereas the nonlinear part distorts the state such that the components above and
below the equator become twisted to the right- and left-hand sides, respectively. The twist rate
due to Ĵ 2

z increases with distance from the equator (see figure 2).

2.2. Readout noise in the interference pattern

We next address the question of which states would be the best for the purpose of reading out
an atom interferometer. For this purpose we neglect the nonlinear atom–atom interaction that
distorts the wave function during the phase accumulation time and postpone the question of
how the specific states could actually be prepared in experiment. Our discussion (which closely
follows [43], with some extensions) is primarily intended to set the stage for the later discussion
of the full atom interferometer sequence in the presence of atom–atom interactions.

We assume that in the phase accumulation stage the wave function has acquired a phase θ .
Instead of describing the interaction process dynamically, which would correspond to a Bloch-
sphere rotation of the state around the z-axis, we directly assign the phase to the single-particle
wave function, such that the field operator reads as [43]

9̂(x) = âL φL(x) + âR e−iθφR(x). (5)

To read out θ , one usually turns off the double-well potential and lets the two atom clouds
overlap in TOF. The accumulated phase is then determined from the interference pattern [16].
After release, the wave function evolves under the free Hamiltonian. Here, and in the rest of
this paper, we ignore the influence of atom–atom interactions during TOF, which is justified in
low-dimensional systems [44] but might be problematic under other circumstances [45]–[47].

As a representative example, we consider for the dispersing wave functions φL(x) and
φR(x) two Gaussians with variance σ 2, which are initially separated by the interwell distance d.
The density operator n̂(x) = 9̂†(x)9̂(x) associated with this TOF measurement can then be
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computed by using the pseudospin operators of equation (3) as

n̂(x) =
N

2
(nL + nR) + 2

√
nLnR(cos(kx + θ) Ĵ x − sin(kx + θ) Ĵ y) + (nL − nR) Ĵ z, (6)

where nL,R are the probability distributions of the Gaussian wave functions, and k =

2h̄Ttofd/mσ(Ttof)
2σ 2 is a time-dependent wavenumber that determines the fringe separation.

Here, σ(t)2
= σ 2(1 + (h̄t/mσ 2)2) is a time dependent variance and Ttof is the readout time.

In the following, we analyze the mean (ensemble-averaged) atomic density and its
fluctuations around the mean value, such that for a single-shot measurement the outcome is with
a high probability within the error bonds defined by the variance if the probability distribution
is Gaussian. If the initial state preparation was for a symmetric double-well potential, then the
mean atom number difference vanishes 〈 Ĵ z〉 = 0, and for the real-valued tunnel coupling, we
can set 〈 Ĵ y〉 = 0. The mean density thus becomes

n(x) = 〈n̂(x)〉 =
N

2
(nL(x) + nR(x)) + 2

√
nL(x)nR(x) cos(kx + θ)〈 Ĵ x〉, (7)

which is shown for representative examples in figure 3. Here, the visibility of the interference
fringes (equation (7)) is determined by the coherence factor

α = 2〈 Ĵ x〉/N . (8)

It is one for a coherent state with perfect polarization, 〈 Ĵ x〉 = N/2, where all atoms reside in
the bonding orbital φL(x) + e−iθφR(x), while 〈 Ĵ y〉 = 〈 Ĵ z〉 = 0. In contrast, a Fock-type state,
where half of the atoms reside in the left well and the other half in the right well, has no defined
phase relation between the orbitals: it is completely delocalized around the equator of the Bloch
sphere, and the coherence α = 0 vanishes. In general, squeezed states have 0 < α < 1.

From equation (6) we can also obtain the density fluctuations

1n(x)2
= 〈(n̂(x) − n(x))

2
〉

= 4nLnR(〈1 Ĵ 2
x〉 cos2(kx + θ) + 〈 Ĵ 2

y〉 sin2(kx + θ)) + (nL − nR)2
〈 Ĵ 2

z〉. (9)

Noise contributions from all pseudospin operators contribute, differently weighted by the time-
and space-dependent probability distributions nL,R(x, t). The x-contribution, proportional to
〈1 Ĵ 2

x〉, accounts for an uncertainty in the polarization of the state on the equator (see figure 1).
It is zero only for a coherent state. We will discuss the physical meaning of this quantity later in
the context of multi-configurational time-dependent Hartree for Bosons method (MCTDHB) in
section 4. The y-contribution accounts for the intrinsic phase width of the quantum state, which
provides a fundamental limit for the phase measurement and the z-contribution for the number
fluctuations between the two wells.

2.3. Phase sensitivity

The ideal state for detecting small variations 1θ is one where n(x) as a function of θ has a
sufficiently large derivative, and the fluctuations 1n(x) are sufficiently small. In order to resolve
1θ , the inequality

1n(x)6

∣∣∣∣∂n(x)

∂θ

∣∣∣∣ 1θ (10)

has to be fulfilled. The explicit expression in terms of nL,R follows immediately from equations
(7) and (9). A particularly simple expression is obtained if we keep in equation (10) only the
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Table 1. Definition of squeezing factors used in this work. ξR is the useful
squeezing that determines the sensitivity of an interferometer. It differs from the
phase squeezing through the coherence factor α = 2〈 Ĵ x〉/N . ξN is the number
squeezing that depends on the number fluctuations between the two wells.

Squeezing factor Definition

Useful squeezing ξR = 1Jy/(α
√

N/2)

Phase squeezing ξphase = 1Jy/(
√

N/2) = ξRα

Number squeezing ξN = 1Jz/(
√

N/2)

dominant contribution from the phase noise, which is proportional to 〈 Ĵ 2
y〉 (other contributions

depend on nL,R(x) and are expected to be less important), which leads to the estimate for the
phase sensitivity in terms of shot noise by Kitagawa and Ueda [41] (see also table 1)

ξR =

√
N 〈1 Ĵ 2

y〉

|〈 Ĵ x〉|
. (11)

This expression will serve as a guiding principle for optimizing atom interferometry. We will
consider in the following the phase squeezing at the optimal working point. The normalization
by 〈 Ĵ x〉 takes into account that improving the interferometric sensitivity requires not only
to reduce noise but also to maintain a high interferometer contrast α (which determines the
difference to ξphase via ξR = ξphase/α). Equation (11) provides a simple way to estimate the
sensitivity obtainable by a given initial state. For a coherent state with a binomial atom number
distribution, the mean value and the variance are proportional to the total atom number N . Thus,
ξR = 1 and the phase sensitivity 1θ = 1/

√
N is shot-noise-limited. We refer to this limit as the

standard quantum limit.
For the purpose of reading the interference pattern, phase-squeezed states are ideal because

they allow us to reduce the sensitivity below shot noise. ξR provides a measure of useful
squeezing for metrology [48]: a state with ξR < 1 allows one to overcome the standard quantum
limit by a factor ξR. The lower bound of the sensitivity is provided by the Heisenberg limit. From
the commutation relation [ Ĵ y, Ĵ z] = i Ĵ x , one obtains the uncertainty relation 1Jy1Jz > N/2.
Thus, for a state with a maximal number uncertainty, 1Jz = N/2, the standard deviation 1Jy

is in the order of unity, and the Heisenberg limit becomes ξR =
√

2/N .
In figure 3 we show density and density fluctuations for a (a) binomial, (b) phase-squeezed

and (c) number-squeezed state. One observes that the fluctuations are smallest for the phase-
squeezed state and become larger for the coherent and number-squeezed state. To appreciate the
sensitivity of the interferometer, we also plot the density profile for a state that has acquired a
phase θ of the order of shot noise. As is apparent from the insets, which magnify the regions of
smallest noise. The smallest θ variations can be resolved with the phase-squeezed state.

In a typical double-well interferometer experiment, where the interference is read out in
TOF, the exact number of atoms N is not known, and one has to obtain N and the accumulated
phase θ from a suitable fitting procedure. To benefit from the regions of reduced density noise,
the density distribution n(x) has to be weighted appropriately by 1n(x).

The dependence on the duration of the readout stage is shown in figure 4. For short Ttof

the overlap between the condensates is small, and the contribution from 1Jz (the third term
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Figure 3. Density and density noise for a (a) binomial, (b) phase-squeezed and
(c) number-squeezed state and for a phase θ = 0 (green areas) and θ = 1/

√
N

(red areas), corresponding to shot noise. We use N = 100, width σ = 0.05,
a readout time Ttof = 10 and an interwell separation of d = 5. The degree of
squeezing is characterized by a squeezing factor of ξN = 0.18 (ξφ = 0.18). The
dashed lines show the density profile of the condensates without interference.
The insets magnify the region where the noise is least. The phase sensitivity is
best for the phase-squeezed state, although in certain regions noise is enhanced
due to 1Jx .
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Figure 4. (a) Best achievable ξR versus readout time Ttof for atom number
N = 100, σ = 0.05 and d = 5 (as in figure 3). For a given Ttof, the optimal
phase squeezing ξphase (dashed line) is found such that ξR (solid black line) is
minimized. ξR approaches the Heisenberg limit (gray line) for large Ttof. The
difference between ξR and ξphase is due to α < 1. (b) Polarization noise, 1Jx , of
the corresponding phase-squeezed states of (a).

in equation (9)) is important. Since small phase fluctuations are accompanied by large number
fluctuations, there exists an optimal degree of phase squeezing for the interferometer input state.
For large enough Ttof, this effect is less important and ξR approaches the Heisenberg limit. We
optimize the degree of phase squeezing of the initial state (i.e. at Ttof = 0) for a given Ttof,
such that ξR is minimized. This is shown in figure 4(a) versus Ttof (solid line), together with
the corresponding optimal phase squeezing ξphase (dashed line). For small ξphase, polarization
noise 1Jx (shown in figure 4(b)) is introduced. This noise reduces the spatial region where
the sensitivity is high (see also figure 3(b)). In conclusion, the expansion in TOF has to be
sufficiently long, such that the atom clouds can expand sufficiently far, and the phase sensitivity
is no longer limited by number fluctuations between the clouds.
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2.4. Interferometry in the presence of atom–atom interactions during the phase
accumulation stage

In the following, we discuss how the atom–atom interactions affect the phase distribution of
the split condensate during the phase accumulation stage and spoil the atom interferometry, and
what could be done to minimize those effects.

For the purpose of atom interferometry, it is convenient to introduce the phase
eigenstates [49]

|φ〉 =
1

√
2π

∑
m

eiφm
|m〉, (12)

where |m〉 is a state with atom number imbalance m between the left and right wells. The
relation between |m〉 and |φ〉 corresponds to a Fourier transformation. We can now project any
state on the phase eigenstates and obtain the phase representation of the state. From this we
obtain the phase width 1φ (see also [49]). The noise 1Jy , which enters the phase sensitivity
of the TOF interferometer according to equation (11), has a similar time evolution as the phase
width. However, while the phase width is bound to values below 2π , the upper bound of 1Jy is
given by the total atom number N and therefore 1Jy =

√
N1φ.

Phase diffusion due to atom–atom interactions is best illustrated in the Bloch sphere
representation (see figure 2): the nonlinear coupling κ Ĵ 2

z from equation (4) twists the state,
and the larger the number fluctuations 1Jz the faster the state winds around the Bloch sphere.
In the notion of phase eigenstates, a state with a well-defined phase has a broad atom-number
distribution. As each atom-number eigenstate |m〉 evolves with a different frequency, the time
evolution of a superposition state will suffer phase diffusion. The phase width broadens with the
rate [27]

R = 8U01n = 8U0ξN (
√

N/2) . (13)

As a result, states with small number fluctuations (ξN < 1) are more stable during the phase
accumulation time.

One immediately sees a conflict of requirements. For best readout of the interference
pattern we want phase-squeezed states, but those are very fragile and result in a fast phase
diffusion and a short measurement time. On the other hand, number-squeezed states allow for
longer measurement times but have a rather poor readout performance. In the remaining part of
the paper, we will discuss the optimal strategy for interference experiments and how one can
implement them in realistic settings.

To demonstrate the above reasoning, we show in figure 5 the achievable phase sensitivity
as a function of phase accumulation time Tphase in the presence of atom–atom interactions for
a binomial (solid), a number-squeezed (dashed line) and a phase-squeezed (dashed-dotted line)
state with squeezing factors ξN ≈ 0.22 and ξφ ≈ 0.22, respectively. The phase-squeezed state
has initially sub-shot noise phase sensitivity. For longer hold times, the number-squeezed state
outperforms the phase-squeezed and binomial ones due to its smaller phase diffusion rate.

3. Optimizing atom interferometry

When designing a trapped atom interferometer for measurements, one has to consider the
conflicting requirements from phase diffusion and readout, the one asking for number squeezing
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Figure 5. Example for the phase sensitivity of a binomial (solid line), a number-
squeezed (dashed line) and a phase-squeezed (dashed-dotted line) state with
squeezing factors ξN ≈ 0.22 and ξφ ≈ 0.22, respectively. Parameters are N =

100 and U0 N = 1. The binomial and phase-squeezed states have a better initial
phase sensitivity, whereas the number-squeezed state is much more stable against
phase diffusion, and has a much better sensitivity at later times. The gray line
corresponds to shot noise (ξR = 1).

and the other for phase squeezing. In the following, we will outline a few strategies of how to
optimize interferometer performance for realistic double-well settings.

3.1. A very simple estimate

We first analyze the impacts of trap geometry and initial state preparation. We start by employing
a simple model to illustrate the effects of nonlinearity in the evolution of the split trapped BEC.
Let us first look at the interaction energy of a trapped cloud, and how it changes with the number
of trapped particles. Without losing generality, we discuss in the context of a harmonic trap
characterized by the mean confinement ω0 and the length scale a0, which are defined through

ω0 = 3
√

ωxωyωz, a0 =

√
h̄

mω0
. (14)

With N atoms in the trap, the chemical potential µ in the Thomas–Fermi approximation [50] is
given by

µ =
h̄ω0

2

(
15Nas

a0

)2/5

, (15)

where as is the s-wave scattering length. Adding a single atom to the trap changes µ by
∂µ

∂ N
=

2

5

µ

N
. (16)

This quantity corresponds to the effective 1D interaction parameter U0 discussed earlier. We
can now estimate the scaling of the phase diffusion rate R caused by a number distribution
with fluctuations 1N = ξN

√
N/2 after splitting (ξN = 1 corresponds to a binomial number

distribution, whereas ξN < 1 corresponds to number squeezing),

R ∝ ξN N−1/10 ω
6/5
0 a2/5

s m1/5. (17)

For 87Rb atoms (as = 5.2 nm, m = 87), one obtains R ≈ 0.022 ξN N−1/10 ω
6/5
0 s−1, or in scaled

units R ≈ 0.29 ξN N−1/10 ω
6/5
0 . If we now set the phase diffusion rate R as equal to the phase
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accumulation rate (1/h̄)1E (the signal we want to measure), we find the limit (1/h̄)1Emin
= R

for the sensitivity of a single-shot interferometer measurement, even for perfect readout. It
is interesting to note that this sensitivity limit is only very weakly dependent on the atom
number N .

If the interferometer measurement is not limited by readout, we can identify the following
strategies for improving the interferometer performance (or, equivalently, reducing the effect of
phase diffusion):

Minimize the scattering length: The best is to set as = 0, which can in principle be achieved
by employing Feshbach resonances [51]. Drastic reduction of phase diffusion when bringing
the scattering length close to zero was recently demonstrated in two experiments [52, 53]. A
disadvantage thereby is that using Feshbach resonances requires specific atoms and specific
atomic states. These states need to be tunable, and are therefore not the ‘clock’ states usually
used in precision experiments, which are immune to external disturbances like magnetic fields.

Choose a trap with weak confinement: This route seems problematic, since the time scale in
splitting and manipulating the trapped atoms scales with the trap confinement. Optimal control
techniques, like those discussed in [31]–[33], will be needed to allow splitting much faster than
the phase diffusion time scale. It is interesting to note that one needs a strong confinement only
in the splitting direction. In the other two space directions the confinement can be considerably
weaker. This suggests working with strongly anisotropic traps.

For an elongated cigar-shaped trap (1D geometry) with confinement ratio C1D = ωz/ω⊥

(strong confinement ω⊥ in the radial directions and weak confinement ωz in the axial direction),
one finds

ω
(1D)

0 = ω⊥

3
√

C1D. (18)

For a flat pancake-shaped trap (2D geometry) with confinement ratio C2D = ωplane/ω⊥ (strong
transverse confinement ω⊥ and weak in-plane confinement ωplane), one finds

ω
(2D)

0 = ω⊥

3

√
C2

2D. (19)

With a confinement ratio C ∼ 1/1000, which is easily obtainable in experiments, the phase
diffusion is reduced by a factor 10 in a 1D geometry and a factor 100 in a 2D geometry.

Increase number squeezing in the splitting process: This directly reduces the phase
diffusion rate and hence leads to a better limit for the minimal detectable signal. Number
squeezing can be achieved during the splitting process. It is mediated by the atom interactions
and one has to achieve a careful balance between the interactions necessary to obtain sizable
number squeezing and the decremental effect of the interactions during the phase accumulation
time. This will be one of the central parts in our optimization discussed below.

In an ideal interferometer one would like to use clock states, create strong squeezing during
the splitting process by exploiting the nonlinearity in the time evolution, and then turn off
the interactions (by setting the scattering length to as = 0) after splitting. All together might,
however, be difficult or even impossible to achieve. In the remainder of the paper we will
discuss the different contributions to the precision of an atom interferometer and investigate
how the performance can be optimized.

3.2. Optimization of the many-boson states

3.2.1. Optimized number squeezing. First we briefly discuss how number-squeezed states can
be prepared during the splitting stage. Number-squeezed states are created in a double-well
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potential when the interaction energy starts to dominate over the tunnel coupling, the latter
being controlled by the barrier height and the double-well separation. A natural way to achieve
high number squeezing is dynamic splitting of a BEC [49, 54], such that the wave function
can adiabatically follow the ground state [38]. However, this may take very long, possibly
longer than the phase diffusion time of the split condensate. In our earlier work [32, 33, 39],
we employed optimal control theory (OCT) to find splitting protocols, which allow for high
number squeezing on a fast time scale, at least one order of magnitude shorter than for the
quasi-adiabatic splitting. These protocols can be viewed as the continuous transformation of a
(close to) harmonic potential into a double well. Thereby, a barrier is ramped up at the center,
and simultaneously the two emerging wells are separated. In many cases this splitting process
can be parameterized by a single parameter, whose time variation is obtained within OCT such
that sizeable squeezing is created, condensate oscillations are prevented after splitting and phase
coherence is better preserved at the end of the splitting process [32, 33, 39].

Unless stated otherwise, in the following discussion of the dynamics during the phase
accumulation stage, we use number-squeezed states as initial states that are obtained as the
ground states of equation (4) for finite values of tunneling �. They are very similar to those
obtained by OCT for splitting. Similar initial states obtained by exponential splitting have a
smaller degree of coherence. During the phase accumulation stage, we set � = 0.

How much number squeezing is ideal for a predetermined phase accumulation time of an
interferometer? In figure 6 we show results where we optimize the degree of number squeezing
for the interferometer input states at Tphase = 0, in order to achieve the best phase sensitivity at
a given time Tphase. The top panel reports the best achievable phase sensitivity for an initially
number-squeezed state (black lines), and the middle panel reports the corresponding number
squeezing. For short phase accumulation times, less initial number squeezing is better. With
increasing accumulation time, more number squeezing becomes favorable. This is due to the
competition between phase fluctuations 1Jy , which increase with number squeezing, and the
decrease of phase diffusion for states with high number squeezing.

The results can be well explained by a simple model. Neglecting the effects of reduced
phase coherence, we have initially ξR = ξ 0

phase, the initial phase squeezing. Phase diffusion with

rate R then results in ξR =

√
(ξ 0

phase)
2 + R2T 2

phase. We next use that ξNξ 0
phase ≈ 1, which is in the

spirit of the Heisenberg uncertainty principle and agrees well with our OCT results. Putting in
all the constants, we have

ξR =

√
1

ξ 2
N N

+ 16Nξ 2
NU 2

0 T 2
phase. (20)

The minimum with respect to ξN is found as ξmin
N = 1/(2

√
U0 N Tphase), which yields a best phase

sensitivity ξmin
R = 2

√
2U0 N Tphase. For a given final ξR, we see that Tphase is indirectly proportional

to the interaction parameter U0, which allows rescaling of Tphase in case of a different U0.
Predictions of the simple model are shown in figure 6 by the diamond symbols. The

agreement with the exact results is very good in figure 6(a), and gives the right scaling in
figure 6(b). Indeed, ξmin

R in figure 6 is independent of N for long periods, as long as U0 N is
constant. This is not true for ξmin

N . The reason is that neglecting phase coherence makes the
minima with respect to ξN much more shallow. For longer periods, however, phase coherence
becomes more important and the present approximations are no longer valid for small N .
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Figure 6. (a) Optimal phase sensitivity versus phase accumulation time for
N = 100 (solid lines), N = 500 (dashed lines), N = 2000 (dashed-dotted lines)
and N = 8000 (dots). Interaction strength is such that U0 N = 1. The black lines
show results for number-squeezed states, and the gray lines result for slightly
tilted number-squeezed states. (b) The corresponding optimal number squeezing.
(c) The total tilt angle φtilt = �tiltTpulse is determined by the pulse duration (here
Tpulse = 2) and strength �tilt (very similar for all N ). The diamond symbols in (a)
and (b) show estimates from a simple model.

3.2.2. Optimized specialized initial states. A different strategy for improving the interferome-
try performance is to prepare the system at the beginning of the phase accumulation stage (i.e.
at Tphase = 0) in a special state, which evolves under the influence of the nonlinear interaction
after some predetermined time into a state with high intrinsic sensitivity. The ideal initial state
would be the time reversal of a phase-squeezed state. We term this strategy as refocusing. When
the condensate is released at the optimal time and expands in the absence of interactions to form
the interference pattern, interferometry can be performed with a sensitivity determined by the
properties of the refocused state. This can be achieved because the phase accumulation (rotation
around the z-axis on the Bloch sphere) and the nonlinear coupling do not interfere.

Such a refocusing strategy is related to spin-echo techniques, which were investigated by
turning the scattering length as from repulsive to attractive [55]. However, the latter has given
a rather poor improvement, because it does not lead to a perfect time reversal of the many-
body dynamics [56]. Artificial preparation of the desired time reversed states seems to be very
difficult. We did not succeed in this task using optimal control techniques.

One state that leads to very good refocusing can be prepared by tilting the initial number-
squeezed state on the Bloch sphere slightly against the direction of the twist originating from
Ĵ 2

z . The tilt can be achieved by applying a short tunnel pulse within a time interval Tpulse that
rotates the number-squeezed state. In real space, this operation corresponds to lowering the
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Figure 7. Refocusing control sequence for N = 100, U0 N = 1, Tpulse = 2 and
(a) Tphase = 1 as well as (b) Tphase = 4. The lower panel shows ξR, while the upper
panel shows the coherence factor α. In the first stage, the tunnel pulse is applied
and tilting is achieved. In the second stage, the state refocuses to a state with a
good phase sensitivity, in (a) below shot noise. The Bloch spheres visualize the
time evolution.

barrier for a suitable amount of time, which cannot be done arbitrarily quickly because of
condensate oscillations. Appropriate controls of the barrier will be discussed in detail in the
context of a realistic modeling in section 4. Within the generic model, we consider for simplicity
square-� pulses, which is the best possible pulse in the presence of interactions [57]. Examples
are shown in figure 7 for different Tphase. During the tilting pulse sequence and the phase
accumulation stage, ‘rephasing’ happens and the phase fluctuations decrease. Simultaneously,
the phase coherence is restored to a value close to one. This significantly improves the phase
sensitivity; for short times one can even reach below shot noise. However, this cannot be done
perfectly, the degree of phase squeezing ξphase achieved after refocusing is always less than the
degree of number squeezing ξN of the original state.

We next optimize systematically both parameters of initial number squeezing and tilt angle.
The lowest panel of figure 6 shows the optimal tilt angles. From the upper panels (bright lines),
we find a clear improvement of phase sensitivity for a given phase accumulation time. The
dependence on N is very distinct now for small atom numbers, and saturates for large N . We
find that for small N the improvement is roughly a factor of three in time, and for large N
approximately one order of magnitude.

3.3. Optimized trapping potential and atom number: results of generic two-mode model

We next proceed to a more detailed analysis of the ideal trap parameters. Considering our
previous discussion of section 3.1, we expect an improvement in the interferometer performance
when increasing the anisotropy of the trap. In the following calculations, we choose a fixed
N = 100 (the results are not expected to depend decisively on N ).

We first investigate the role of the interaction U0 N and the pulse duration Tpulse for the
refocusing strategy. In figure 8 we plot the best phase sensitivity using refocusing versus
interaction strength for (a) Tphase = 1 and (b) Tphase = 20. Sub-shot noise phase sensitivity is
clearly achievable for short Tpulse or for U0 N � 1. Short pulses are favorable and give better
phase sensitivity. This is in particular important for short phase accumulation times Tphase
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Figure 8. Best achievable phase sensitivity versus interaction strength for various
pulse durations for (a) Tphase = 1 and (b) Tphase = 20. Atom number is N = 100.
We optimize for the initial number squeezing and the tunnel pulse.

(see figure 6). Optimizing the pulse form and duration within a realistic modeling of tilting
on the Bloch sphere will be discussed in detail in section 4.

Quite generally, we can expect that for a reduced interaction parameter it is more difficult to
obtain high number squeezing in the splitting process. To estimate the time scale for achieving
a certain degree of number squeezing, we consider splitting protocols derived in a previous
work within the framework of OCT [33] and already discussed in section 3.2.1. They directly
provide us with optimized number squeezing for a given splitting time Tsplit. For a given phase
accumulation time Tphase, we then optimize the tunnel pulse that tilts the number-squeezed state,
similar to the analysis of section 3.2.2. The best possible phase sensitivity for various Tsplit

and U0 N values is shown in figure 9 for (a) Tphase = 1 and (b) Tphase = 20. For both cases,
distinctly sub-shot noise sensitivity can be achieved. To achieve the squeezing needed to boost
interferometer performance, a finite U0 is needed, and for a given Tsplit there exists an optimal
value of U0. This value decreases for longer splitting times.

In order to analyze the dependence on N , we consider now a realistic 3D cigar-shaped
trap with transverse trapping frequency ω⊥ = 2π × 2 kHz as typically realized in atom chip
interference experiments. The effective 1D interaction strength in the splitting direction U0

is then approximately proportional to C2/5
1D . A more rigorous estimate, that is used in the

calculations, is given in [33]. For N = 0, U0 N = 1(0.1) corresponds to an aspect ratio of
C1D ∼ 1/100(1/1000). These values change for N = 1000 to C1D ∼ 1/1000(1/10000). For
the pan cake-shaped trap we have C2D ∼

√
C1D, and thus U0 N = 0.01 is within reach for

C2D ∼ 1/1000 and N = 100, or C2D ∼ 1/10000 and N = 1000.
Let us first consider the case without refocusing. We find approximately ξR ∼ 2

√
2U0 Nt ,

and, considering the dependence of U0 on the trapping potential, we obtain

ξR ∼ a1/5
s ω

3/5
⊥

C1/5
1D N 1/5T 1/2

phase. (21)

In order to reach sub-shot noise phase sensitivity, we need the confinement ratio C1D, atom
number N and Tphase all to be small. In figure 10(a), ξR is plotted for C1D = 1/100, 1/300 and
1/1000 (solid, dashed and dashed-dotted lines, respectively).
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(a) (b)

Figure 9. (a,b) Phase sensitivity for a sequence including splitting and phase
accumulation versus interaction strength U0 N and Tsplit. Parameters are N = 100,
(a) Tphase = 1, (b) Tphase = 20 and Tpulse = 2. For a given Tsplit, we take the best
number squeezing achieved by OCT. Number squeezing is higher for larger Tsplit

and U0 values. We also optimize for a tunnel pulse that rotates the number-
squeezed state. The minimum phase sensitivity decreases very slowly with Tsplit.
The contour lines are at (a) ξR = 0.35 and (b) ξR = 0.6.

As we have seen in section 3.2, equation (21) is valid only if the coherence is well
preserved. We estimate the breakdown of this approximation when α ≈ 1 − ξ 2

N/2N ≈ 0.6. From
this we can obtain the time after which ξR is expected to grow rapidly because the coherence
factor tends to zero. It is given as Tcoh = N 3/5/2 · 152/5a2/5

s ω
6/5
⊥

C6/15
1D and is shown in figure 10(f)

for different C1D.
We now turn to refocusing. In the 1D elongated trapping geometry, we find a more

moderate increase of ξR with N compared to the case without refocusing (see figures 10(a)
and (b)). This illustrates that the refocusing works better for large N , as long as U0 N is constant
(see also figure 6).

The accumulated phase for a potential 1E is given as θ = 1ET phase, and the smallest
detectable potential difference in time Tphase becomes 1Emin

= ξR/(
√

N Tphase). Without
refocusing, we find an improvement with N and Tphase, 1Emin

∼ 1/(N 0.3
√

Tphase). Similar
scaling also holds for the case with refocusing (figures 10(c)–(e)). We expect that for 2D traps,
1Emin somewhat below 10−3 is within reach.

This confirms, in agreement with the scaling analysis of section 3.1, that a stronger
trap anisotropy appreciably helps us to reduce phase diffusion and, in turn, to improve the
phase sensitivity of the interferometer. Possible limitations of strongly anisotropic systems are
discussed in section 5. The atom number N helps us to improve absolute sensitivity but makes
it more difficult to demonstrate measurements with a sensitivity below shot noise.

4. Interferometer performance within MCTDHB

Until now we have used a generic two-mode model to describe the interferometer, which
captures the basic processes and physics but ignores many details of the condensate dynamics
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Figure 10. Optimization for a realistic cigar-shaped trapping potential with
transverse frequency ω⊥ = 2π · 2 kHz (ω⊥ ≈ 17 in scaled units) and aspect
ratio C1D = 1/100 (solid lines), C1D = 1/300 (dashed lines) and C1D = 1/1000
(dashed-dotted lines). (a) and (b) ξR versus N for (a) Tphase = 1 and (b) Tphase =

20. (c) and (d) Minimal detectable potential 1Emin versus N for (c) Tphase = 1
and (d) Tphase = 20. (e) 1Emin versus time for N = 1000. The black lines show
results for the case when the initial number squeezing is optimized. The colored
lines show results with refocusing, i.e. where both initial number squeezing and
tunnel pulse are optimized. (f) Time Tcoh after which ξR is expected to grow
rapidly due to loss of coherence, if refocusing is not applied.

in realistic microtraps. More specifically, the modeling of the splitting process and of the
rotation pulses requires in many cases a more complete dynamical description in terms of the
MCTDHB [58]. In this section, we discuss first the MCTDHB details relevant for our analysis
and its relation to the generic model. The main part will be concerned with the simulation and
optimization of tunnel pulses for achieving tilted squeezed states, as discussed in section 3.2.2 in
the context of refocusing. An exhaustive discussion of MCTDHB as well as optimal condensate
splitting can be found elsewhere [33, 58].

In the two-mode Hamiltonian of equation (2), we did not explicitly consider the shape
of the two orbitals φL and φR, but lumped them into the effective parameters � and κ . The
dynamics are then completely governed by the wave function accounting for the atom number
dynamics. Within MCTDHB, both the orbitals and the number distribution are determined self-
consistently from a set of coupled equations, which are obtained from a variational principle.
This leads us to a more complete description, accounting for the full condensates’ motion
in the trap. The state of the system is then given by a superposition of symmetrized states
(permanents), which comprise the time-dependent orbitals. Instead of left and right orbitals,
such as those used in the two-mode model, we employ for the symmetric confinement potential
of our present concern orbitals with gerade and ungerade symmetry. The time-dependent
orbitals then obey nonlinear equations, which depend on the one- and two-particle reduced
densities [59] describing the mean value and variances of the number distributions [60].
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The atom number part of the wave function obeys a Schrödinger equation with the
Hamiltonian

H= � Ĵ x +
1

2

∑
k,q,l,m

â†
k â†

q âl âm Wkqlm, (22)

where the indices are either g (gerade) or e (ungerade or excited). We observe that, in contrast
to the two-mode Hamiltonian of equation (2), the atom–atom interaction elements

Wkqlm = U0

∫
dx φ∗

k (x, t)φ∗

q(x, t)φl(x, t)φm(x, t), (23)

as well as the tunnel coupling � =
∫

dx φ∗

e (x)ĥφe(x) −
∫

dx φ∗

g(x)ĥφg(x), are governed by the
orbitals. The only input parameter of the MCTDHB approach is the trapping potential Vλ(x),
which enters the single-particle Hamiltonian ĥ(x) = −(∇2/2) + Vλ(x). We note that � obtained
within MCTDHB cannot be directly interpreted as tunnel rate, but has to be renormalized if the
two-body matrix elements differ from each other [38, 61]. Thus, there is in general no direct
correspondence between the two-mode model and the MCTDHB approach. MCTDHB, which
relies on time-dependent orbitals, captures a large class of excitations not included in a two-
mode model. If the calculations converge when using more modes, MCTDHB reproduces the
exact quantum dynamics, as discussed in [62]–[64].

In our MCTDHB calculations, we consider a cigar-shaped magnetic confinement potential
prototypical for atom chips [4]. Splitting is assumed to be along a transverse direction and is
accomplished using RF dressing [65]–[68]. For illustration purposes, the trapping potential in
the splitting direction can to very high accuracy be described by a quartic potential of the form

V (x, t) = a(t)x2 + b(t)x4, (24)

where for most cases b(t) varies very slowly and can be assumed as constant. This potential
grasps the essential features of the initial and final potentials, and the time evolution a(t)
describes how the potential is split and the barrier is ramped up. a(t) large and positive
characterizes the initial single well, a(t) large and negative the split double well and the constant
b(t) the confinement during the splitting. In the calculations, we use the exact form of the
potential used in atom chip double-well experiments [65]. To describe the transformation of the
potential, we introduce a control parameter λ(t) connected to the amplitude (phase) of the RF
field. Thereby, values of −2/3 < λ < 0 translate to a single well and λ ∼ 1 to a double well.

Within MCTDHB the pseudo-spin operator Ĵ x has to be rewritten in terms of the gerade
and ungerade orbitals. In the new basis it measures the atom number difference with respect to
the two states, Ĵ x =

1
2(â

†
g âg − â†

e âe), as discussed in more detail in the appendix. It is important
to note that the gerade and ungerade orbitals are natural orbitals, i.e. they diagonalize the
one-body reduced density of the system [59]. Therefore, if both of them are macroscopically
populated, one obtains a fragmented condensate [36]. We can thus interpret the coherence
factor α as the degree of fragmentation. The system has maximal coherence if its state is not
fragmented but forms a single condensate. Coherence is lost if the condensate fragments into
two independent condensates. In between, we have a finite but reduced coherence. Similarly,
we can interpret 1Jx as the number uncertainty between the fragmented parts.

OCT [31, 69] is a very powerful tool to find a path that optimizes for a certain control
target. In our earlier work [32, 33] we implemented and optimized condensate splitting
within MCTDHB [31, 69]. We found that, although the generic two-mode model describes
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Figure 11. Two-body matrix elements for the ground states of a magnetic
trap [65] versus splitting distance for N = 100 and U0 N = 1. The splitting is
parametrized by the parameter λ. Wgege and Wggee coincide for the ground states,
but not in general (see the examples of figures 12 and 13).

qualitatively the splitting dynamics, the more complete MCTDHB description is needed for a
realistic modeling. This is because one needs to control condensate oscillations during splitting
and to ensure a proper decoupling of the condensates at the end of the control sequence. In
this section, we employ OCT to find the appropriate paths in varying the trapping potential to
achieve the desired tilting on the Bloch sphere in a short time Tpulse and prevent excitation of
condensate oscillations.

4.1. Parameter correspondence between the models

For the calculation of time-dependent condensate dynamics including oscillations, a self-
consistent approach like MCTDHB is mandatory. However, we expect the generic model
(equation (2)) to properly describe the phase accumulation stage (� = 0), provided the
condensates are at rest. The two-body overlap integrals of the orbitals from MCHB (time-
independent version of MCTDHB [60]), given in equations (23), are then constant and coincide.
This is because φg and φe have degenerate moduli for split condensates. When comparing
equations (2) and (22), we find the value of κ to be used in the generic model. Similarly, in
the context of optimized splitting protocols in our earlier work [32, 33], we have found that
both optimizing �(t) in the generic model and optimizing λ(t) within MCTDHB yield the
same amount of number squeezing for a given time interval.

In figure 11 we show how the two-body overlap integrals from MCHB vary with the control
parameter that determines the shape of the confinement potential. During the transition from
a single well to a double well, they drop by roughly a factor of two. This is because in the
final state the gerade and ungerade orbitals are delocalized over both wells. After reaching a
minimum around λ ∼ 0.7, the overlap integrals start to increase again slightly. In the context of
splitting we found that it is reasonable to assume κ = U0/2 throughout the splitting process [33],
i.e. to take the value in the most relevant regime during condensate breakup (λ ∼ 0.7–0.8). Atom
interferometry has to be performed with split condensates. This requires a splitting distance of
some micrometers, corresponding to λ& 1. With the corresponding value of κ ≈ 0.65U0, phase
diffusion in the phase accumulation stage can be well described using the generic model. This
has in particular the advantage that we can translate our findings for the optimal states for atom
interferometry from section 3.2.2 to MCTDHB calculations of tunnel pulses.
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4.2. Pulse optimization

A key ingredient in interferometer performance is the preparation of an optimized initial state,
as discussed in section 3.2.2. This can be achieved by ‘tunnel pulses’ facilitating the tilting of the
initial number-squeezed state. This operation has been analyzed by Pezzé et al in the context
of a cold atom beam splitter. They used the generic model [57] and studied to what extent
the creation of phase-squeezed states from number-squeezed states is spoiled by atom–atom
interactions. The real space dynamics have been neglected.

In real space, the confining potential has to be modified to bring the condensates together
for the tunnel pulse that accomplishes the desired ‘tilt’ on the Bloch sphere. As has been
discussed in section 3.3, the duration of the tunnel pulse (Tpulse) is very critical for the
interferometer performance; the pulse should be as short as possible. This has to be done without
significantly disturbing the many-body wave function. To design appropriate control schemes
with the shortest possible time duration, we will have to take the real space dynamics of the
BEC into account using MCTDHB.

To find a control sequence for the preparation of the optimal initial states at Tphase = 0 for a
given interferometer sequence within MCTDHB, we first start, following section 4.1, with the
optimized initial number squeezing and the tilt angle required for rephasing at a given Tphase

as calculated in section 3.2.2 within the generic model. We then choose the top of a Gaussian-
shaped initial guess

λ(t) = λ0 + (λend − λ0) · t/Tpulse − A[e−(t−Tpulse/2)2/2B2
− e−(Tpulse/2)2/2B2

]. (25)

We start with a state of the double-well potential Vλ0 with the required initial number squeezing.
Then, as λ decreases, the barrier is ramped down and the condensates approach each other.
The desired 1J d

y to be reached at Tpulse is fixed by the required tilt angle. It can be tuned by
the parameters A and B, corresponding to the depth and the width of the control parameter
deformation, respectively. Finally, a double well Vλend is re-established, which completely
suppresses tunneling of the two final condensates, at least if they are in the ground state.

Results of our MCTDHB calculations are shown in figures 12 and 13 for interactions
U0 N = 0.1 and 1, respectively. The pulse achieves the desired ξR (dashed lines in (d)), as we
expected from the generic model (dashed-dotted lines). However, it not only affects the atom
number distribution, but also leads to an oscillation of the condensates in the microtrap. This
can be seen in the density, which is depicted in figures 12(b) and 13(b). Condensate oscillations
during the phase accumulation and release stage are expected to substantially degrade the
interferometer performance, and may even lead to unwanted condensate excitations [64]. These
oscillations can be avoided by using more refined tilting pulses, which can be obtained within
the framework of OCT, where we now optimize for phase squeezing and a desired 1J d

y at the
final time of the control interval Tpulse, corresponding to Tphase = 0. Some details of our approach
are given in the appendix.

For weak interactions a short tunnel pulse Tpulse = 2 can be easily found that properly tilts
the atom number distribution and brings the condensates to a stationary state at the end of the
process. A typical control sequence for U0 N = 0.1 and optimized for a short Tphase = 1 is shown
in figure 12(a) (green solid line), and the corresponding density is given in (c). In panel (d) we
depict the phase sensitivity ξR (solid line), which compares in the phase accumulation stage very
well with the desired behavior given by the generic model (dashed-dotted line).

The gain of our OCT solution with respect to an ‘adiabatic’ control of Gaussian type
(equation (25)), where λ is modified sufficiently slowly in order to suppress condensate
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Figure 12. (a) Typical OCT control (green solid line) for weak interactions
U0 N = 0.1, atom number N = 100, Tpulse = 2 and Tphase = 1, compared with
a simpler control (blue dashed line). The dashed vertical line separates
the control sequence from the phase accumulation time thereafter. The
corresponding condensate densities are shown (b) for the initial guess and
(c) for the OCT solution, and we compare (c) useful squeezing ξR and (d) tunnel
coupling �. Additionally, we compare with results from the generic two-mode
model, where a square-� pulse is used (red dashed-dotted lines). (f) The two-
body matrix elements of the OCT solution are shown, similar to figure 11.

oscillations, depends on the chosen value of Tphase. Smaller Tphase values require larger tunnel
pulses (see figure 6(c)). In our example, the OCT pulses can be at least one order of magnitude
faster, which means an improvement of up to 30% in ξR (compare also with figure 8).
In figures 12(e) and (f), we report the tunnel coupling and two-body matrix elements. For the
initial guess, which has a wildly oscillating density, also the tunnel coupling oscillates strongly
and takes on a finite value after the control sequence. We interpret this as a signature of
condensate excitations, which go beyond the two-mode MCTDHB model. In contrast, a smooth
tunnel pulse and stationary final condensates are achieved for the optimal control. MCTDHB
simulations with a higher number of modes indicate that the two-mode approach provides a very
accurate level of description [64]. The two-body matrix elements of the optimized solutions
show a complex behavior and deviate from each other quite appreciably, which demonstrates
that the dynamics depend critically on the orbitals (see equation (23)).

For stronger interactions, we find that it becomes more difficult to decouple the condensate
at the end of the tilting pulse, as shown in figure 13 for U0 N = 1 and Tphase = 5. Although we
easily achieve trapping of the orbitals in a stationary state, also for shorter Tpulse or Tphase, we

New Journal of Physics 12 (2010) 065036 (http://www.njp.org/)

http://www.njp.org/


23

0.7

0.8

0.9

1

1.1

λ 
co

nt
ro

l

(a)

T
pulse

T
phase

1 1.5 2 2.5
0.73

0.74

0.75

0.76

λ 
co

nt
ro

l

Time

P
os

iti
on

(b) −2

0

2

P
os

iti
on

(c) −2

0

2

0

0.1(e)

Ω

0 2 4 6 8

0.5

0.6

0.7
(f)

Time

|W
kq

lm
|/U

0

0 2 4 6 8
0

1

2

3

4

5

6

(d)

ξ R

Time

 

 

Guess

Optimal

Generic model

Figure 13. The same as figure 12, but for U0 N = 1, Tpulse = 4 and Tphase = 5.
(a) The inset magnifies the controls. (b)–(f) describe the same quantities as in
figure 12.

find that number fluctuations are not constant after the control sequence (results are not shown),
which is a signature of additional unwanted condensate excitations [64]. These excitations are
most pronounced when the coherence factor tends to one, and the ungerade orbital becomes
depopulated. In particular, we could not find pulses shorter than Tpulse = 4 that lead to a final
decoupling of the condensates. The same holds for the initial guess (blue dashed lines in
figure 13). Although the condensate oscillations after the pulse sequence are moderate, they
do not uncouple, as indicated by the growing tunnel coupling at later times. In contrast, the
OCT control (green solid line in panel (a), magnified in the inset) achieves decoupling and a
complete suppression of any tunneling. Also the two-body matrix elements are stationary to a
good degree.

In conclusion, we find that optimized tilting pulses are crucial for avoiding condensate
oscillations in the phase accumulation stage, and for reducing unwanted condensate oscillations.
Adiabatic pulses might be orders of magnitude longer and thus appreciably reduce the
interferometer performance.

5. Influence of temperature on the coherence of interferometer measurements

Up to now we considered the atom cloud (BEC) at zero temperature. In realistic experiments
the quantum system will be at some finite temperature, and, especially for the favorable
low-dimensional geometries, temperature effects and decoherence due to thermal or even
quantum fluctuations might become important [70]–[73]. We now turn to look at the effects
of temperature on the decoherence of a split BEC interferometer.
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5.1. One-dimensional systems

In one-dimensional quantum systems (kBT and µ < h̄ω⊥), fundamental quantum fluctuations
prevent the establishment of phase coherence in an infinitely long system, even at zero
temperature [71]. The coherence between two points in the longitudinal direction z1 and z2

decays as |z1 − z2|
−1/2K, where K = π h̄

√
n1D/(g1Dm) = πn1Dζh is the Luttinger parameter.

Thereby ζh = h̄/
√

mn1Dg1D is the healing length, n1D is the 1D density and g1D = 2h̄ω⊥as is
the 1D coupling strength in a system with transversal confinement ω⊥ and scattering length as.
For a weakly interacting 1D system K� 1, and the length scale where quantum fluctuations
start to destroy phase coherence is

lquant
8 ≈ ζhe2K . (26)

For weakly interacting 1D Bose gases, ζh is of the order of 0.1–1 µm. With K > 10 one can
safely neglect quantum fluctuations (see also [73]).

At finite temperature T , thermal excitations introduce phase fluctuations, which lead to the
appearance of a quasi-condensate [70]. The phase coherence length is then given by l therm

8 ≈

ζhT1D/T ≈ 2h̄2n1D/mT , where T1D = Nh̄ωz is the temperature to reach quantum degeneracy in
a 1D system in the presence of longitudinal confinement characterized by ωz. In the temperature
range where T8 < T < T1D, the density fluctuations are suppressed, but the phase fluctuates on
a distance scale l therm

8 that is much larger than the healing length ζh in the degenerate regime.
These thermal phase fluctuations are also present in a very elongated 3D Bose gas. In such

a finite 1D system, one can achieve phase coherence (i.e. l therm
8 becomes larger than the longi-

tudinal extension of the atomic cloud) if the temperature is below T8 = T1Dh̄ωz/µ ≈ n1Dζhh̄ωz.
To achieve a practically homogeneous phase along the BEC, T < T8/10 is desirable [70].

For interferometry, only the relative phase between the two interfering systems and its
evolution are important. After a coherent splitting process, even a phase fluctuating condensate
is split into two copies with a uniform relative phase. For interferometer measurements,
decoherence of this definite relative phase is adverse.

The loss of coherence in 1D systems due to thermal excitations was considered
theoretically by Burkov et al [74] and by Mazets and Schmiedmayer [75], and probed in an
experiment by Hofferberth et al [19] and Jo et al [20]. The coherence in the system left is
characterized by the coherence factor

9(t) =

〈
1

L

∣∣∣∣∫ L

0
dz eiθ(z,t)

∣∣∣∣〉 , (27)

where θ(z, t) is the relative phase between the two condensates. The angular brackets denote
an ensemble average. The key feature in both calculations is that for 1D systems the coherence
factor 9(t) decays non-exponentially:

9(t) ∝ exp
[
−(t/t0)

2/3
]
. (28)

Burkov et al [74] give for the characteristic time scale

t0 = 2.61π
h̄µ

T 2
K, (29)

whereas Mazets and Schmiedmayer [75] find

t0 = 3.2
h̄µ

T 2

(
K
π

)2

= 3.2
h̄3n2

1D

mT 2
. (30)
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Even though the two show a different scaling with the Luttinger parameterK, both are consistent
with Hofferberth et al [19] within the experimental error bars in the probed range of K ∼ 30.

There are two strategies to obtain long coherence times:

• The characteristic time scale for decoherence scales like T −2, indicating that very long
coherence times can be reached for low temperatures.

• The time scale of decoherence scales with the 1D density as t0 ∝ n2
1D in [75] and t0 ∝ n3/2

1D
in [74]. Increasing the 1D density will enhance the coherence time available for the
measurement.

Putting all together, coherence times t0 of the order of 104h̄/µ can be achieved for T ≈ 20 nK
and n1D ≈ 60 atoms µm−1.

The above estimates have also to be taken with care, especially since the 1D calculations
are only strictly valid for T < µ, but we believe that they are a reasonable estimate also for
elongated 3D systems.

The question is whether the required low temperatures (T ∼ µ/5 in the above example) can
be reached in 1D systems where two-body collisions are frozen out. In the weakly interacting
regime, that is for small scattering length and relatively high density, this should be possible,
because thermalization can be facilitated by virtual three-body collisions [76]–[78]. In the
experiments by Hofferberth et al, T ≈ 30 nK and n1D ≈ 60 atoms µm−1 were achieved [22].

Another point is dynamic excitations in the weakly confined direction. The interaction
parameter U0, in general, varies when λ is changed and this can lead to longitudinal excitations.
We find numerically that this effect is very small for the trapping potentials considered. In
addition, one can, in principle, account for the effects of the change in interaction energy by
controlling the longitudinal confinement.

5.2. Two-dimensional systems

Quantum fluctuations are not important in 2D systems since a repulsive bosonic gas exhibits
true condensate at T = 0.

In a 2D Bose gas at finite temperature, the phase fluctuations scale logarithmically with
distance (r � λT ) [70]:

〈[ϕ(r) − ϕ(0)]〉T ≈
2 T

T2D
ln

(
r

λT

)
, (31)

where T2D = 2π h̄2n2D/m is the degeneracy temperature for a 2D system, n2D being the peak
2D density. For T � µ the length scale is λT ≈ ζh, where ζh = h̄/

√
mn2Dg2D is the healing

length in the 2D system with the effective coupling g2D. For weak interactions it is given
by g2D =

√
8π h̄2as/ml⊥ with l⊥ =

√
(h̄/mω⊥) [70]. For T � µ one finds the length scale

λT ≈ h̄cs/T , which is equal to the wavelength of thermal phonons. The phase coherence length
l8 is given by the distance where the mean square phase fluctuations become of the order of
unity:

l8 ≈ λT exp

(
T2D

2T

)
. (32)

The decoherence in 2D systems was considered by Burkov et al [74], where they find a
power law decay of the coherence factor:

9(t) ∝ t−T/8TKT (33)
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for times larger than

t0 =
3
√

3

4π

µTKT

T 3
, (34)

where µ = n2Dg2D is the chemical potential of the 2D system. The temperature for the
Kosterlitz–Thouless transition is given by

TKT =
π

2

nsf
2D

m
6

1

4
T2D, (35)

where nsf
2D 6 n2D is the superfluid density. Again at sufficiently low temperatures the

decoherence due to thermal phase fluctuations is smaller than the phase diffusion due to the
nonlinear interactions during the phase accumulation stage.

6. Summary and conclusions

From our analysis of a double-well interferometer for trapped atoms, it becomes evident that the
main limiting factor to measurements with atom interferometers is the phase diffusion caused
by the nonlinearity created by the atom–atom interactions. Consequently, many of the recent
experiments used interferometry to study the intriguing quantum many-body effects caused by
interactions [18]–[20], [22, 23].

Optimal control techniques can help in improving the interferometer performance
significantly by designing optimized splitting ramps and rephasing pulses, but the overall
performance of the interferometer is still limited by atom interactions, and not by the readout,
except for experiments with very small atom numbers. In general, low-dimensional confinement
of the trapped atomic cloud is better for interferometry. Nevertheless, we found it difficult to get
a performance for the minimal detectable shift 1Emin < 10−4µ, even for an optimized setting
with a 1D elongated trap. In addition, we would like to point out that even though we did our
analysis for a generic double well, the same will hold for trapped atomic clocks [79], where the
signal comes from Ramsey interference of internal states. For the internal state interferometers,
the difference in the interaction energies is the relevant quantity to compare.

The most direct way to achieve a much improved performance is to decrease the atom–atom
interaction. The best is to cancel it completely, either by putting the atoms in an optical lattice,
where on each site the maximal occupancy is 1, or by tuning the scattering length as = 0, which
can in principle be achieved by employing Feshbach resonances [51]. Drastic reduction of phase
diffusion when bringing the scattering length close to zero was recently demonstrated in two
experiments in Innsbruck [52] and Firenze [53]. The big disadvantage thereby is that using
Feshbach resonances requires specific atoms and specific atomic states. These states need to
be tunable, and are therefore not the ‘clock’ states, which are insensitive to external fields and
disturbances.

In an ideal interferometer one would like to use clock states, create strong squeezing during
the splitting process by exploiting the nonlinearity in the time evolution due to atom–atom
interactions, and then, after the splitting, turn off the interactions (by setting the scattering length
to as = 0). All together might be difficult or even impossible to achieve.

For the interferometers considered here one can always reach low enough temperature to
neglect decoherence due to thermal excitations even for 1D and 2D systems.

In addition to the interferometer scheme considered here, there exist other ideas on how
atom interferometry could be improved. An interesting route will be to exploit in interferometry
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the correlations of the many-boson states and to establish a readout procedure that is immune
to phase diffusion. One approach is to use Bayesian phase estimation schemes for the analysis
of the phase sensitivity [80, 81]. Other proposed schemes include monitoring the coherence and
revival dynamics of the condensates [82], the measurement of a phase gradient along the double-
well potential containing tunnel-coupled condensates by means of a contrast resonance [83] or
inhibition of phase diffusion by quantum noise [84]. For those more advanced ways to read
out the interference patterns, however, the requirements for the temperature will become more
stringent the better the new readout schemes can compensate for the adverse effects of phase
diffusion.
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Appendix. Optimality system for pulse optimization

In this appendix, we give details of the optimality system for pulse optimization. For this
purpose, we first discuss the pseudo-spin operators of equation (3) within MCTDHB. Since
the many-boson state depends on both the number distribution and the orbitals, the operators
now depend on the position and time. Ĵ z measures the difference between atoms in the left and
the right well, and Ĵ x the difference between atoms in gerade and ungerade orbitals. Ĵ y is then
determined such that the pseudo-spin operators fulfill the spin algebra. Then,

Ĵ x =
1

2
(â†

g âg − â†
e âe), Ĵ y = i(dâ†

g âe − d∗â†
e âg), Ĵ z = (dâ†

g âe + d∗â†
e âg), (A.1)

where d =
∫ 0

−∞
φ∗

g(x)φe(x) dx is the half-sided overlap integral of the orbitals [33]. It measures
the degree of orbital localization on the left-hand side. For our OCT optimization, we define a
cost functional for pulse optimization

J (φg, φe, C, λ) =
γ1

2
(1J d

y − 〈C(T )| Ĵ 2
y|C(T )〉)2 +

γ2

2
[2 − |〈φg(T )|φd

g〉|
2
− |〈φe(T )|φd

e 〉|
2]

+
γ

2

∫ T

0

[
λ̇(t)

]2
dt, (A.2)

where C is the atom number part of the wave function, and γ1, γ2 and γ are weighting
parameters. The first term quantifies the deviation of the actual 1Jy from the desired one, the
second term accounts for trapping the orbitals in the ground state and the third term penalizes
rapidly varying controls and renders the problem well posed. In our OCT approach, the cost
function is minimized subject to the constraint that the many-boson wave function fulfills the
proper MCTDHB equations. Details of this approach can be found in [33].

References

[1] Cronin D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[2] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95

New Journal of Physics 12 (2010) 065036 (http://www.njp.org/)

http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://www.njp.org/


28

[3] Folman R, Krüger P, Cassettari D, Hessmo B, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 84 4749
[4] Folman R, Krüger P, Schmiedmayer J, Denschlag J and Henkel C 2002 Adv. At. Mol. Opt. Phy. 48 263
[5] Reichel J 2002 Appl. Phys. B 75 469
[6] Fortagh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
[7] Hinds E A, Vale C J and Boshier M G 2001 Phys. Rev. Lett. 86 1462
[8] Hänsel W, Reichel J, Hommelhoff P and Hänsch T W 2001 Phys. Rev. A 64 063607
[9] Andersson E, Calarco T, Folman R, Andersson M, Hessmo B and Schmiedmayer J 2002 Phys. Rev. Lett.

88 100401
[10] Kreutzmann H, Poulsen U V, Lewenstein M, Dumke R, Ertmer W, Birkl G and Sanpera A 2004 Phys. Rev.

Lett. 92 163201
[11] Houde O, Kadio D and Pruvost L 2000 Phys. Rev. Lett. 85 5543
[12] Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483
[13] Cassettari D, Chenet A, Folman R, Haase A, Hessmo B, Krüger P, Maier T, Schneider S, Calarco T and

Schmiedmayer J 2000 Appl. Phys. B 70 721
[14] Dumke R, Müther T, Volk M, Ertmer W and Birkl G 2002 Phys. Rev. Lett. 89 220402
[15] Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E and Leanhardt A E 2004 Phys. Rev. Lett. 92 050405
[16] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Krüger

P 2005 Nat. Phys. 1 57
[17] Wang Y-J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal

S R and Wu S 2005 Phys. Rev. Lett. 94 090405
[18] Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[19] Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Nature 449 324
[20] Jo G-B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M and Prentiss M

2007 Phys. Rev. Lett. 98 030407
[21] Jo G-B, Choi J-H, Christensen C A, Pasquini T A, Lee Y-R, Ketterle W and Pritchard D E 2007 Phys. Rev.

Lett. 98 180401
[22] Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E and Schmiedmayer J 2008

Nat. Phys. 4 489
[23] Estève J, Gross C, Weller A, Giovanazzi S and Oberthaler M K 2008 Nature 455 1216
[24] Böhi P, Riedel M F, Hoffrogge J, Reichel J, Hänsch T W and Treutlein P 2009 Nat. Phys. 5 592
[25] Rauch H, Treimer W and Bonse U 1974 Phys. Lett. A 47 369
[26] Lewenstein M and You L 1996 Phys. Rev. Lett. 77 3489
[27] Javanainen J and Wilkens M 1997 Phys. Rev. Lett. 78 4675
[28] Henkel C, Krüger P, Folman R and Schmiedmayer J 2003 Appl. Phys. B 76 173
[29] Skagerstam B S, Hohenester U, Eiguren A and Rekdal P K 2006 Phys. Rev. Lett. 97 070401
[30] Hohenester U, Eiguren A, Scheel S and Hinds E A 2007 Phys. Rev. A 76 033618
[31] Hohenester U, Rekdal P K, Borzì A and Schmiedmayer J 2007 Phys. Rev. A 75 023602
[32] Grond J, Schmiedmayer J and Hohenester U 2009 Phys. Rev. A 79 021603
[33] Grond J, von Winckel G, Schmiedmayer J and Hohenester U 2009 Phys. Rev. A 80 053625
[34] Oblak D, Petrov P G, Garrido Alzar C L, Tittel W, Vershovski A K, Mikkelsen J K, Sorensen J L and Polzik

E S 2005 Phys. Rev. A 71 043807
[35] Fernholz T, Krauter H, Jensen K, Sherson J F, Sorensen A S and Polzik E S 2008 Phys. Rev. Lett. 101 073601
[36] Leggett A 2001 Rev. Mod. Phys. 73 307
[37] Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[38] Javanainen J and Ivanov M Y 1999 Phys. Rev. A 60 2351
[39] Hohenester U, Grond J and Schmiedmayer J 2009 Fortschr. Phys. (special issue) 57 1121
[40] Arecchi F T, Thomas H, Gilmore R and Courtens E 1972 Phys. Rev. A 6 2211
[41] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[42] Barone A and Paterno G 1982 Physics and Application of the Joesphson Effect (New York: Wiley)

New Journal of Physics 12 (2010) 065036 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.84.4749
http://dx.doi.org/10.1007/s003400200861
http://dx.doi.org/10.1103/RevModPhys.79.235
http://dx.doi.org/10.1103/PhysRevLett.86.1462
http://dx.doi.org/10.1103/PhysRevA.64.063607
http://dx.doi.org/10.1103/PhysRevLett.88.100401
http://dx.doi.org/10.1103/PhysRevLett.92.163201
http://dx.doi.org/10.1103/PhysRevLett.85.5543
http://dx.doi.org/10.1103/PhysRevLett.85.5483
http://dx.doi.org/10.1007/s003400050886
http://dx.doi.org/10.1103/PhysRevLett.89.220402
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1103/PhysRevLett.94.090405
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1103/PhysRevLett.98.030407
http://dx.doi.org/10.1103/PhysRevLett.98.180401
http://dx.doi.org/10.1038/nphys941
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nphys1329
http://dx.doi.org/10.1016/0375-9601(74)90132-7
http://dx.doi.org/10.1103/PhysRevLett.77.3489
http://dx.doi.org/10.1103/PhysRevLett.78.4675
http://dx.doi.org/10.1007/s00340-003-1112-z
http://dx.doi.org/10.1103/PhysRevLett.97.070401
http://dx.doi.org/10.1103/PhysRevA.76.033618
http://dx.doi.org/10.1103/PhysRevA.75.023602
http://dx.doi.org/10.1103/PhysRevA.79.021603
http://dx.doi.org/10.1103/PhysRevA.80.053625
http://dx.doi.org/10.1103/PhysRevA.71.043807
http://dx.doi.org/10.1103/PhysRevLett.101.073601
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.60.2351
http://dx.doi.org/10.1002/prop.200900094
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://www.njp.org/


29

[43] Jääskeläinen M, Zhang W and Meystre P 2004 Phys. Rev. A 70 063612
[44] Imambekov A, Mazets I E, Petrov D S, Gritsev V, Manz S, Hofferberth S, Schumm T, Demler E and

Schmiedmayer J 2009 Phys. Rev. A 80 033604
[45] Xiong H, Liu S and Zhan M 2006 New J. Phys. 8 245
[46] Masiello D J and Reinhardt W P 2007 Phys. Rev. A 76 043612
[47] Cederbaum L S, Streltsov A I, Band Y B and Alon O E 2007 Phys. Rev. Lett. 98 110405
[48] Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67
[49] Menotti C, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023601
[50] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[51] Chin C, Grimm R, Julienne P and Tiesinga E 2008 Rev. Mod. Phys. 82 1225
[52] Gustavsson M, Haller E, Mark M J, Danzl J G, Rojas-Kopeinig G and Nägerl H-C 2008 Phys. Rev. Lett.

100 080404
[53] Fattori M, D’Errico C, Roati G, Zaccanti M, Jona-Lasinio M, Modugno M, Inguscio M and Modugno G 2008

Phys. Rev. Lett. 100 080405
[54] Streltsov A I, Alon O E and Cederbaum L S 2007 Phys. Rev. Lett. 99 030402
[55] Widera A, Trotzky S, Cheinet P, Fölling S, Gerbier F, Bloch I, Gritsev V, Lukin M D and Demler E 2008

Phys. Rev. Lett. 100 140401
[56] Sakmann K, Streltsov A I, Alon O E and Cederbaum L S 2009 arXiv:0911.4661
[57] Pezzé L, Smerzi A, Berman G P, Bishop A R and Collins L A 2006 Phys. Rev. A 74 033610
[58] Alon O E, Streltsov A I and Cederbaum L S 2008 Phys. Rev. A 77 033613
[59] Sakmann K, Streltsov A I, Alon O E and Cederbaum L S 2008 Phys. Rev. A 78 023615
[60] Streltsov A I, Alon O E and Cederbaum L S 2006 Phys. Rev. A 73 063626
[61] Ananikian D and Bergeman T 2006 Phys. Rev. A 73 013604
[62] Sakmann K, Streltsov A I, Alon O E and Cederbaum L S 2009 Phys. Rev. Lett. 103 220601
[63] Streltsov A I, Sakmann K, Alon O E and Cederbaum L S 2009 arXiv:0910.5916
[64] Grond J, Hohenester U, Schmiedmayer J and Scrinzi A in preparation
[65] Lesanovsky I, Schumm T, Hofferberth S, Andersson L M, Krüger P and Schmiedmayer J 2006 Phys. Rev. A

73 033619
[66] Lesanovsky I, Hofferberth S, Schmiedmayer J and Schmelcher P 2006 Phys. Rev. A 74 033619
[67] Hofferberth S, Lesanovsky I, Fischer B, Verdu J and Schmiedmayer J 2006 Nat. Phys. 2 710
[68] Hofferberth S, Fischer B, Schumm T, Schmiedmayer J and Lesanovsky I 2007 Phys. Rev. A 76 013401
[69] Peirce A P, Dahleh M A and Rabitz H 1988 Phys. Rev. A 37 4950
[70] Petrov D S, Gangardt D M and Shlyapnikov G V 2004 J. Phys. IV 116 5
[71] Cazalilla M A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 S1
[72] Imambekov A, Gritsev V and Demler E 2006 Proc. 2006 Enrico Fermi Summer School on “Ultracold Fermi

Gases” ed M Inguscio, W Ketterle and C Salomon (Varenna, Italy, 2006) (arXiv:cond-mat/0703766v1)
[73] Bistritzer R and Altman E 2007 Proc. Natl Acad. Sci. 104 9955
[74] Burkov A A, Lukin M D and Demler E 2007 Phys. Rev. Lett. 98 200404
[75] Mazets I E and Schmiedmayer J 2009 Eur. Phys. J. B 68 335
[76] Mazets I E, Schumm T and Schmiedmayer J 2008 Phys. Rev. Lett. 100 210403
[77] Mazets I E and Schmiedmayer J 2009 Phys. Rev. A 79 061603
[78] Mazets I E and Schmiedmayer J 2010 New J. Phys. (arXiv:0912.4493) at press
[79] Treutlein P, Hommelhoff P, Steinmetz T, Hänsch T W and Reichel J 2004 Phys. Rev. Lett. 92 203005
[80] Pezzé L, Smerzi A, Khoury G, Hodelin J F and Bouwmeester D 2007 Phys. Rev. Lett. 99 223602
[81] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[82] Dunningham J A and Burnett K 2004 Phys. Rev. A 70 033601
[83] Jääskeläinen M and Meystre P 2006 Phys. Rev. A 73 013602
[84] Khodorkovsky Y, Kurizki G and Vardi A 2008 Phys. Rev. Lett. 100 220403

New Journal of Physics 12 (2010) 065036 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.70.063612
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1088/1367-2630/8/10/245
http://dx.doi.org/10.1103/PhysRevA.76.043612
http://dx.doi.org/10.1103/PhysRevLett.98.110405
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1103/PhysRevA.63.023601
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.100.080404
http://dx.doi.org/10.1103/PhysRevLett.100.080405
http://dx.doi.org/10.1103/PhysRevLett.99.030402
http://dx.doi.org/10.1103/PhysRevLett.100.140401
http://arxiv.org/abs/0911.4661
http://dx.doi.org/10.1103/PhysRevA.74.033610
http://dx.doi.org/10.1103/PhysRevA.77.033613
http://dx.doi.org/10.1103/PhysRevA.78.023615
http://dx.doi.org/10.1103/PhysRevA.73.063626
http://dx.doi.org/10.1103/PhysRevA.73.013604
http://dx.doi.org/10.1103/PhysRevLett.103.220601
http://arxiv.org/abs/0910.5916
http://dx.doi.org/10.1103/PhysRevA.73.033619
http://dx.doi.org/10.1103/PhysRevA.74.033619
http://dx.doi.org/10.1038/nphys420
http://dx.doi.org/10.1103/PhysRevA.76.013401
http://dx.doi.org/10.1103/PhysRevA.37.4950
http://dx.doi.org/10.1051/jp4:2004116001
http://dx.doi.org/10.1088/0953-4075/37/7/051
http://arxiv.org/abs/cond-mat/0703766v1
http://dx.doi.org/10.1073/pnas.0608910104
http://dx.doi.org/10.1103/PhysRevLett.98.200404
http://dx.doi.org/10.1140/epjb/e2008-00421-5
http://dx.doi.org/10.1103/PhysRevLett.100.210403
http://dx.doi.org/10.1103/PhysRevA.79.061603
http://arxiv.org/abs/0912.4493
http://dx.doi.org/10.1103/PhysRevLett.92.203005
http://dx.doi.org/10.1103/PhysRevLett.99.223602
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevA.70.033601
http://dx.doi.org/10.1103/PhysRevA.73.013602
http://dx.doi.org/10.1103/PhysRevLett.100.220403
http://www.njp.org/

	1. Introduction
	2. Two-mode model description of atom interferometry
	2.1. Pseudo-spin operators and the Bloch sphere
	2.2. Readout noise in the interference pattern
	2.3. Phase sensitivity
	2.4. Interferometry in the presence of atom-- atom interactions during the phaseaccumulation stage 

	3. Optimizing atom interferometry
	3.1. A very simple estimate
	3.2. Optimization of the many-boson states
	3.3. Optimized trapping potential and atom number: results of generic two-mode model

	4. Interferometer performance within MCTDHB
	4.1. Parameter correspondence between the models 
	4.2. Pulse optimization

	5. Influence of temperature on the coherence of interferometer measurements 
	5.1. One-dimensional systems
	5.2. Two-dimensional systems

	6. Summary and conclusions
	Acknowledgments
	Appendix.  Optimality system for pulse optimization
	References

