
            

OPEN ACCESS

Charged fibrous viruses (fd) in external electric
fields: dynamics and orientational order
To cite this article: Kyongok Kang 2010 New J. Phys. 12 063017

 

View the article online for updates and enhancements.

You may also like
Multiple plasma transport states in the H-
mode transition on JT-60U
K. Kamiya, K. Itoh, S.-I. Itoh et al.

-

Valleytronics in two-dimensional magnetic
materials
Chaobo Luo, Zongyu Huang, Hui Qiao et
al.

-

Effects of Ni content on the shape memory
properties and microstructure of Ni-rich
NiTi-20Hf alloys
S M Saghaian, H E Karaca, H Tobe et al.

-

This content was downloaded from IP address 3.128.199.88 on 28/04/2024 at 03:49

https://doi.org/10.1088/1367-2630/12/6/063017
https://iopscience.iop.org/article/10.1088/1741-4326/ab2662
https://iopscience.iop.org/article/10.1088/1741-4326/ab2662
https://iopscience.iop.org/article/10.1088/2515-7639/ad3b6e
https://iopscience.iop.org/article/10.1088/2515-7639/ad3b6e
https://iopscience.iop.org/article/10.1088/0964-1726/25/9/095029
https://iopscience.iop.org/article/10.1088/0964-1726/25/9/095029
https://iopscience.iop.org/article/10.1088/0964-1726/25/9/095029


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Charged fibrous viruses (fd) in external electric
fields: dynamics and orientational order

Kyongok Kang
Forschungszentrum Jülich, IFF-7, Weiche Materie (Soft Matter),
D-52425 Jülich, Germany
E-mail: k.kang@fz-juelich.de

New Journal of Physics 12 (2010) 063017 (16pp)
Received 13 January 2010
Published 11 June 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/6/063017

Abstract. We recently found a number of phases and dynamical states that
are induced in a concentrated suspension of charged, colloidal rods (fd-viruses)
by an alternating external electric field (Kang and Dhont 2008 Eur. Phys. Lett.
84 14005; 2010 Soft Matter 6 273). The various phases and dynamical states
are the result of interactions between the charged rods through their polarized
electric double layers, polarized layers of condensed ions and/or electro-osmotic
flow. At a relatively high frequency, a homogeneous, homeotropically aligned
phase is induced (the H-phase). We present a dynamic light-scattering study
of the microscopic dynamics of the rods, varying the frequency and field
amplitudes along different pathways within this phase. Scattering experiments
are performed at very small scattering angles with a home-made vertically
mounted dynamic light-scattering setup, where Brownian motion perpendicular
to the direction of alignment is probed. The orientational order is measured by
means of birefringence experiments. The remarkable finding is that relaxation
times and the degree of alignment are independent of the frequency and the
amplitude of the applied electric field throughout the entire H-phase. Only within
a small region in the neighborhood of the transition line, where the H-phase
transforms to an inhomogeneous chiral-nematic phase, is there a frequency and
amplitude dependence of relaxation times, which are shown to be the result of
the appearance of transient, pre-transitional domains. We also recently identified
a non-equilibrium critical point, where a time- and length-scale connected to a
dynamical state are shown to diverge (Kang and Dhont 2009 Eur. Phys. J. E 30
333). Approaching this critical point from the side of the H-phase, we find that
the light-scattering correlation functions develop a very slowly decaying mode,
the origin of which requires further investigation.
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1. Introduction

The dynamical properties of charged colloidal rods in an external electric field are generally
affected by interactions between the rods through the field-induced polarization of their
double layer and/or their core. At high frequencies (in the MHz range) and relatively high
field amplitudes, the cores of the colloids are dielectrically polarized, giving rise to dipolar
interactions between the colloids, which can lead to structure formation, such as strings and
sheets [1–3]. At such high frequencies, electric-double layers around the charged rods (fd-virus
particle with a length of L = 880 nm, a bare diameter of D = 6.6 nm, a persistence length at
high salt concentration of P = 2200 nm) are not polarized due to the finite mobility of the ions
that constitute the double layer. Double-layer polarization is important only for relatively low
frequencies. Besides interactions between rods through their polarized double layers, there are
two additional field-induced forces that may play a role, which are related to condensed ions
and electro-osmotic flow. The origin of the field-induced forces at low frequencies is sketched in
figure 1. In the absence of an external field, the electric double layer is cylindrically symmetric,
as sketched in figure 1(a). On applying an electric field, the double layer of a rod becomes
asymmetric, the layer of condensed ions is polarized and electro-osmotic flow is induced due
to electrical body forces on charged volume elements within the double layer, as sketched in
figure 1(b). In concentrated suspensions, rods interact with each other due to the polarized
double layer, the polarized layer of condensed ions, and hydrodynamically through electro-
osmotic flow, as sketched in figure 1(c). So far, very little research has been done on phase
transitions that can be induced at low frequencies as a result of these field-induced interactions.
As far as we know, no research has so far been done on the microscopic dynamics of charged
rods in phases that are induced by low-frequency electric fields, which might shed light on the
relative importance of the three above-mentioned types of interactions.

We recently found that various phases and dynamical states can be induced in suspensions
of charged colloidal rods (fd-viruses), where the concentration of fd-viruses is such that there is
an isotropic–nematic coexistence in the absence of the field [4, 5]. One of the induced phases,
which is of interest in the present paper, is a homogeneous phase with homeotropic alignment
of the rods. We referred to this phase as the H-phase. This phase is found for frequencies larger
than about 1 kHz, where there is only a weak polarization of the double layer [6], so that the
two other forces discussed above might be dominant. Interactions due to electro-osmotic flow
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(a) (b)

(c)

Figure 1. (a) A charged rod in the absence of an external field, with a cylindrical
symmetric double layer and a symmetric layer of condensed ions. (b) In a low-
frequency electric field, the double layer is polarized, the layer of condensed
ions is polarized, and electro-osmotic flow is induced. A small charged volume
element is shown on which an electric body force acts that leads to electro-
osmotic flow. (c) Two rods that interact through their polarized double layer
and layer of condensed ions, as well as hydrodynamically through the induced
electro-osmotic flow.

have been investigated by simulations in [7] for two rods with thin double layers. Interactions
through the polarization of the layers of condensed ions have very recently been analyzed,
for zero frequency, by Manning [8, 9]. This analysis suggests that the change in preferred
orientation found for fd-suspensions in [10, 11] is due to polarization of the layer of condensed
ions (although the experiments have been performed with alternating fields). It is not yet clear
which of the possible interactions are responsible for the stabilization of the H-phase. It is the
purpose of the present paper to characterize the fd-virus dynamics and orientational order in the
H-phase, in order to sustain possible future theoretical predictions on the interactions between
charged colloidal rods in low-frequency external fields.

This paper is organized as follows. We start with a section on the experimental details.
In section 2.1, the characteristics of fd-virus particles and their suspensions are presented.
Section 2.2 introduces the electrical cell and the dynamic light-scattering setup. Section 2.3 is
a summary of the phase/state behavior of fd-virus suspensions in an electric field with varying

New Journal of Physics 12 (2010) 063017 (http://www.njp.org/)

http://www.njp.org/


4

field amplitude and frequency. The orientational order, along different pathways within the H-
phase, is discussed in section 3. The pathways include regions in the phase/state diagram that
are in the vicinity of transition lines. In section 4, the microscopic dynamics, as probed with
dynamic light scattering, along the same pathways are discussed. Finally, conclusions are given
in section 5.

2. Experimental details

In this section, the properties of fd-virus particle suspensions and their preparation are discussed,
we describe the technical details of the electrical sample cell and the small angle dynamic light-
scattering setup, and we summarize the phases and dynamical states that can be induced in fd
suspensions by means of an electric field.

2.1. Charged fibrous virus (fd) suspensions

Bacteriophage fd is a rod-like macromolecule with a length of L = 880 nm, a bare diameter of
D = 6.6 nm, a persistence length at high salt concentration of P = 2200 nm and a molecular
weight of M = 1.64 × 107 g mol−1. The hydrodynamic properties (and structure) of fd-virus
particles are discussed in [12].

The fd-viruses are grown and purified following standard biological protocols [13] using
the XL1blue strain of Escherichia coli as the host bacteria. The virus particles are purified
by repeated centrifugation (105g for 5 h) and redispersed in TRIS/HCl buffers with varying
concentration, depending on the desired final ionic strength. From the dimensions and molecular
weight of an fd-virus particle, the volume fraction ϕ of an fd-virus suspension is found to be
related to the weight concentration c, as ϕ = 1.10 × 10−3c (mg ml−1). The overlap concentration
of fd-virus suspensions is equal to 0.076 mg ml−1.

We prepare fd-virus suspensions at a given ionic strength by osmotic equilibration with a
TRIS/HCl buffer. The same buffer is used to dilute the suspensions (by typically 20%) to the
desired fd concentration. The ionic strength of the osmotic reservoirs is the ionic strength from
which the electrostatic Debye–Hückel screening length is calculated. Furthermore, osmotic
equilibration ensures that the pH of the suspensions is equal to those of the osmotic reservoir.
The TRIS/HCl buffers are prepared by adding a small volume of HCl with a concentration of
1 M to a 20.0 mM TRIS solution till a pH of 8.2 is attained. This buffer is then diluted with
deionized water for the preparation of the lower TRIS/HCl buffer concentrations. For buffer
concentrations less than about 10 mM, both the ionic strength and the pH are affected by carbon
dioxide that dissolves from the air, which in turn affects the surface charges of the fd-virus
particles. A detailed account of the effect of dissolved carbon dioxide on the ionic strength and
pH as a function of the buffer concentration can be found in [14].

The charge distribution on fd-virus particles has been interpreted on the basis of different
models for an fd-virus particle from titration curves. The best fit to titration curves is found
when assuming that the charges are located only on the hydrophilic outer region of adsorbed
coat proteins and not on the DNA strand of fd itself [15]. The iso-electric point of native fd is
equal to pH = 4. In the present study, we assume that the pH is always larger than 6.5, where
the fd particles are negatively charged. The charge of an fd-virus particle varies in the range
−10 0006 Qfd 6−8500 in the pH range 6.56 pH6 8.2 [15]. The buffer capacity of the low-
ionic-strength TRIS/HCl buffer that we used is still sufficient to keep the pH above 6.5, despite
dissolving carbon dioxide from the air [14].
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In a previous study on the response of fd-virus suspensions to electric fields, it
was found that no phase transition could be induced for concentrations outside the
isotropic–nematic coexistence region [5]. The fd-concentrations are therefore chosen within
the biphasic isotropic–nematic coexistence region, in the absence of an electric field. The
buffer concentration is 0.16 mM. The Debye screening length for water at 25 ◦C, assuming
that κ−1

Q (nm) = 0.304/
√

I (M) (where I is the ionic strength corrected for dissolving carbon
dioxide [14]), is found to be equal to 27 nm = 4.1D.

2.2. The electrical cell and small angle vertical dynamic light-scattering setup

A home-made optically transparent electrical cell is used to facilitate dynamic light scattering,
imaging through a microscope and birefringence measurements. The sample is contained
between two horizontal parallel ITO glass plates, with a spacer of 1.4 mm thickness. The
conductive ITO coatings are connected to a function generator. The dynamical light-scattering
setup is vertically mounted, where the direction of incidence of a 5 mW He–Ne laser is along
the electric field, vertical to the two plates. Scattered light is collected through a fiber that is
connected to an avalanche photo diode detector. The setup is used in VV mode. The VH-
scattered intensities from fd-virus suspensions are too low to measure reliable correlation
functions.

Due to refraction of scattered light from the sample–glass and glass–air interfaces, the true
scattering angle 2s is not equal to the goniometer angle 2g (see figure 2(a)). The ratio of the
true scattering wave vector q to the apparent scattering wave vector qg as calculated from the
goniometer angle is given in figure 2(b) as a function of the goniometer angle. As can be seen
from this plot, the scattering wave vector is significantly affected by interface refraction only
for scattering angles larger than about 20◦.

At small scattering angles, the scattering vector is essentially perpendicular to the direction
of the external electric field, as sketched in figure 2(c). For larger scattering angles, there is a
small contribution to the scattering wave vector that is parallel to the external field. The relative
values of the perpendicular q⊥ and parallel q‖ components to the total scattering wave vector are
plotted in figure 2(d). As can be seen, for up to about a 15◦ scattering angle, only the dynamics
related to motion perpendicular to the electric field are probed, whereas for larger scattering
angles also a small contribution from motion parallel to the electric field is involved.

An essential part of the vertical dynamical light-scattering setup involves a lens (with focal
length 75 mm) that ensures that only light that is scattered from the bulk part of the sample is
probed. Figures 3(a) and (b) show the normalized intensity correlation functions for a dilute
silica-sphere suspension as measured without and with this lens, respectively. As can be seen,
the long-time behavior of the correlation functions (also shown in the insets) is quite different.
Without the lens, scattering by particles near the wall leads to spurious slow relaxation. The
dynamics of particles near the wall are severely slowed down by hydrodynamic interactions
with the wall. The single-exponential behavior of the correlation function that is expected for
dilute suspensions of spheres in bulk is indeed found for the setup with the lens. This can be
seen from the solid line in figure 3(b), which is a fit to a single exponential decay.

2.3. Electric phase/state diagrams of fd-suspensions

In two earlier publications [4, 5], a number of driven phases and dynamical states in fd-
virus suspensions were found, which are induced by means of an external electric field. The
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(a) (b)

(c) (d)

Figure 2. (a) Due to refraction, the true scattering angle 2s differs from the
goniometer angle 2g in degrees. (b) The ratio of the true scattering vector
q and the scattering vector qg as calculated from the goniometer angle as a
function of the goniometer angle. (c) The scattering geometry of the vertical
small angle dynamic light-scattering setup. The electric field E and the laser
beam are both along the z-direction. The main component of the scattering vector
is perpendicular to the electric field (q⊥), while for larger scattering angles there
is also a small but significant parallel component (q‖). (d) The perpendicular and
parallel components of the scattering vector as a function of the scattering angle
in degrees.

frequencies are small enough to polarize the electrical double layers of the fd-virus particles.
The new phases and states are the result of interactions between fd-virus particles through their
polarized double layer, due to polarization of the layer of condensed ions and/or electro-osmotic
flow. The phase/state diagram for an fd concentration of 2.0 mg ml−1 and a TRIS/HCL buffer
concentration of 0.16 mM in the field-amplitude versus frequency plane is given in figure 4.
The concentration is within the isotropic–nematic biphasic region in the absence of an electric
field. Detailed characterizations of the various transition lines have been published in [5]. The
following phases and dynamical states are found: the N-phase in the phase diagram in figure 4
refers to a coexistence between nematic domains and isotropic regions. A typical depolarized-
microscopy image is given below the phase/state diagram in figure 4. On increasing the field
amplitude at low frequencies, the inter-rod interactions mentioned above give rise to a transition
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(a) (b)

Figure 3. Normalized correlation function of a dilute suspension of silica
particles (diameter 166 nm) at a scattering angle of 9.6◦ (a) without the 75 mm
focal length lens and (b) with the lens. The insets show the correlation functions
at longer times. The solid line in (b) is a fit to a single exponential decay.

to the N?-phase, which is a coexistence between nematic domains and chiral-nematic domains.
The chiral-nematic regions extend over much larger regions as compared to the non-chiral
nematic domains. Two images for the N?-phase are shown in figure 4, one at low frequency
(on the left side) and the other at high frequency (on the right side). As can be seen, the pitch is
markedly larger at high frequencies, near the H-to-N? transition line, as compared to the pitch at
low frequency. On further increasing the field amplitude, the N-domains disconnect from each
other and become significantly smaller within a small field amplitude range, which we refer to
as the N?

D-phase, where the subscript ‘D’ stands for ‘disconnected’. The difference between the
typical morphologies of the N?- and N?

D-phases is shown in the two left images in figure 4. The
chiral texture melts at a certain higher field amplitude, and at the same time the N-domains melt
and reform. This dynamical state is referred to as the Ds-state, a snapshot of which is given in
the top of figure 4. The subscript ‘s’ stands for ‘slow’. On further increasing the field amplitude,
the dynamics of melting and formation become faster, referred to as the Df-state, where the
subscript ‘f’ stands for ‘fast’.

Of particular interest in the present study is the uniform phase at relatively high frequencies,
where the fd-virus particles are homeotropically aligned, parallel to the external field. This
homogeneous phase is referred to as the H-phase (where ‘H’ stands for ‘homeotropic’). The
corresponding morphology is given in the image in the right side of figure 4. In the present
paper, we study the microscopic dynamics and the degree of alignment of the fd-rods in this
H-phase, varying both the frequency and the field amplitude.

The solid lines in the phase/state diagrams in figure 4 refer to sharp phase/state-
transition lines, whereas the dotted lines refer to gradual transitions (the N?-to-N?

D and Ds-to-Df

transitions).
There is a special point where, in the phase/state diagram in figure 4, various phase/state-

transition lines meet. It resembles a critical point in equilibrium phase diagrams. On
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Figure 4. Electric phase/state diagram of fd-virus suspensions in the field-
amplitude versus normalized frequency plane for an fd concentration of
2.0 mg ml−1. The buffer concentration is 0.16 mM. The solid lines refer to sharp
phase/state transitions, while the dotted lines refer to more gradual transitions
involving the chiral texture and dynamics of N-domains. The images show
typical morphologies of the different phases/states, as obtained by polarization
microscopy. Two morphologies are shown for the N?-phase, one at low frequency
and the other at high frequency, showing the increase in the pitch with increasing
frequency. The field of view in these images is 430 × 320 µm2. Note that the
frequency is normalized by the frequency νm = 300 Hz where the critical point
occurs.

approaching this point from the side of the dynamical state, like for equilibrium critical points,
a divergent length- and timescale can be identified. As shown in [16], the size of the melting and
forming nematic domains in the dynamical state, and the timescale on which melting/forming
evolves, both diverge on approaching this non-equilibrium critical point. As will be seen in the
present study, there are also signatures for critical behavior on approaching the critical point
from the side of the H-phase.

3. Electric birefringence

Electric birefringence measurements are performed for an fd concentration of 2.0 mg ml−1

along various pathways within the H-phase, where either the field amplitude is varied at fixed
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frequency, or the frequency is varied at a fixed field amplitude, in the electric phase/state
diagram. The following pathways have been probed:

• pathway (i): varying the field amplitude at a fixed frequency of ν = 2 kHz;

• pathway (ii): varying the frequency at a fixed field amplitude of E = 2.9 V mm−1;

• pathway (iii): varying the frequency at a fixed field amplitude of E = 3.5 V mm−1.

The field amplitude for pathway (iii) is the critical field amplitude, that is, the field amplitude
where the non-equilibrium point in the phase/state diagram in figure 4 is located [16]. On
lowering the frequency along pathway (iii), the critical point is thus approached. Note that
the critical field amplitude in the phase diagram in figure 4 is a bit higher than 3.5 V mm−1.
As discussed in [5], this is related to the finite measuring time for the data points in the phase
diagram in combination with critical slowing down of dynamics near the critical point. Accurate
values for the critical amplitude and frequency have been determined in [16]. On lowering the
frequency along pathway (ii), the off-critical part of the H-to-N? transition line is approached.
The H-to-N transition line is approached along pathway (i) on lowering the field amplitude.

The He–Ne laser beam of the vertically mounted, null-optical-train birefringence setup
makes an angle of 20◦ with the direction of the external electric field. Since in the H-phase
the rods are aligned along the external field, no birefringence would be detected in the case
of a normal incidence onto the sample cell. A description of the experimental setup and a
detailed analysis of the interpretation of such birefringence measurements are given in [5]. In a
null-optical-train birefringence setup, the transmitted intensity is measured as a function of the
orientation of a polarizer. The analyzer angle where the minimum transmitted intensity is found,
relative to that of the pure buffer, is equal to half the birefringence retardation. The retardation
is in turn proportional to the orientational order parameter, where the proportionality constant
depends on the angle of incidence of the laser beam [5].

The left column of plots in figures 5(a)–(c) gives birefringence data for the three pathways
(i)–(iii), as defined above, respectively. These plots are transmitted intensities (relative to the
maximum transmitted intensity) as a function of the analyzer angle α in degrees. The filled
circles are data for the pure buffer and the open circles are data for the fd suspension (curves are
consecutively vertically shifted by 0.0005 for clarity). The right column in figure 5 shows the
analyzer angle where the minimum intensity is found, relative to the pure buffer, as a function
of the distance from the transition lines: 1E for pathway (i) and 1ν for pathways (ii) and
(iii). As can be seen, the analyzer angle where the minimum transmitted intensity is found is
surprisingly found to be equal to 1.4◦ (to within an experimental error of 0.3◦), independent of
the field amplitude and frequency. The corresponding value for the orientational order parameter
is 0.38 ± 0.08 and is the same throughout the H-phase.

The independence of the degree of alignment from both the field amplitude and the
frequency could be explained as follows. The ions within the diffuse double layer (about 15%
of the total charge) and the condensed ions (about 85%) have a finite diffusivity. At sufficiently
high frequencies, therefore, the polarization of the double layer and the layer of condensed
ions become less important. For frequencies above a few kHz range, the ions in the diffuse
double layer and in the layer of condensed ions cannot follow the external field anymore. The
establishment of electro-osmotic flow, on the contrary, is very fast (on the ns time scale), so that
electro-osmotic flow remains active also at high frequencies. Since polarization would lead to
a field-amplitude-dependent response, we anticipate that electro-osmotic flow gives rise to the
stability of the H-phase.
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Figure 5. Birefringence measurements for the pathway (i) (the two upper plots
(a)), pathway (ii) (the two middle plots (b)) and pathway (iii) (the two lower
plots (c)). The left plots are measured transmitted intensities as a function of the
analyzer angle α in degrees and the right set of figures are the phase shifts as a
function of field amplitude 1E or frequency 1ν relative to the transition values.
Here the horizontal lines indicate the average value of the obtained analyzer
angle shift α in degrees. The filled circles in the plots on the left correspond to
the pure buffer. Subsequent curves are vertically shifted by 0.0005 for clarity.
(a) From bottom to top: 1E = 1.00, 1.20, 1.60, 1.80, 2.00, 2.93, 4.00 and
4.95 V mm−1. (b) From bottom to top: 1ν = 20, 40, 70, 100, 130, 160, 190,
230, 430, 930 and 1430 Hz. (c) From bottom to top: 1ν = 10, 30, 60, 130, 230
and 530 Hz.

As shown in [5], a significantly aligned state cannot be induced at lower concentrations in
the isotropic state. This implies that the alignment in the H-phase is due to rod–rod interactions
induced by the external field and not due to single-particle alignment.
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Based on the above measurements of electric birefringence, we can conclude that the high-
frequency uniformly aligned homeotropic H-phase is governed by different interactions among
fd-virus particles, which is not by the deformation of the double layer, but by the electro-
osmotic flow that acts on the small volume element in the solvent and double layers. This is
quite substantially different for low-frequency interactions, which are mainly determined by the
direct deformation of the double layers in various phases/states. Further investigations of the
clear distinction between the possible mechanisms of these frequency–response interactions are
a follow-up subject to study in both theory and experiments.

4. Diffusion perpendicular to the director: q ⊥ E

As discussed in section 2.2, for the very small scattering angles that can be accessed
by our vertically mounted dynamic light-scattering setup, diffusion perpendicular to the
direction of alignment in the H-phase is probed. In this section, we discuss the dynamics
related to displacements perpendicular to the direction of alignment. Dynamic light-scattering
experiments at scattering angles less than 12◦ along the same pathways (i)–(iii) as those defined
in the previous section on birefringence will be performed.

Dynamic light scattering measures the intensity auto-correlation function C(t), the
relaxation rate of which characterizes the dynamics of the rods. For the system under
consideration of strongly interacting rods, the intensity auto-correlation function is generally
a complicated function of time. Correlation functions are commonly highly non-single-
exponential. The correlation functions obtained in our experiments are found to be described
by a single, stretched exponential function,

C(t) = A exp
{
−2(0⊥ t)β

}
, (1)

where A is the dynamical contrast, 0⊥ is the relaxation rate and β is the stretching coefficient.
The need for a stretched exponential function is due to the many different relaxation modes that
contribute due to the strong interactions between the fd-virus particles. Due to the finite size of
the scattering volume, typical values for the dynamical contrast are around 0.5.

For larger frequencies, far away from transition lines, there is a very small amplitude
contribution to the correlation functions of a fast relaxing mode, which is probably due to
diffusion parallel to the director. The relative amplitude of this contribution is less than about
1% at very small scattering angles, and is too small to affect the fitting values of the parameters
in equation (1). However, the amplitude of this fast mode is more pronounced at larger scattering
angles. The contribution of the fast mode is more pronounced at higher fd concentrations and/or
lower ionic strengths, which will be discussed in a separate paper.

Contrary to the off-critical path (ii), for which typical correlation functions are shown in
figure 6(a), the correlation functions along pathway (iii) develop a very slow relaxing mode on
approaching the critical point. This is shown in figure 6(b), where three correlation functions
for various distances from the critical point are shown. The solid lines are fits to a stretched
exponential in equation (1), excluding the long times. Relaxation of the initial part is seen to
become faster on approaching the critical point, due to pre-transitional domains as discussed
above, while a very slow decaying tail develops with increasing amplitude and relaxation time
near the critical point. This speeding up of the initial relaxation and slowing down of the
long-time decay on approaching the critical point lead to a crossing of the two correlations
for 1ν = 30 and 100 Hz, as indicated by the circle in figure 6(b). In addition, the size of the
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Figure 6. (a) Intensity auto-correlation functions along pathway (ii). The arrow
indicates decreasing frequency. All correlation functions are measured to within
200 Hz from the H-to-N? transition line. The measuring time was 30 min.
(b) Intensity auto-correlation functions along pathway (iii) at the critical field
amplitude E = 3.5 V mm−1 for three distances from the critical point: 1ν = 30
(circles), 100 (triangles) and 2000 Hz (squares). The measuring time for the two
functions with the slow, critical mode is 10 h. The solid lines are fits to a stretched
exponential, excluding the long times. The circle indicates where the first two
correlation functions cross.

pre-transitional domains is much larger as compared to the off-critical pathway. The
identification of the point in the phase/state diagram where several transition lines meet as a
critical point therefore seems meaningful on approaching that point not only from the dynamical
state [16] but also from the side of the H-phase. The detailed features of the critical behavior on
approaching from the side of the H-phase require further study and are outside the scope of the
present study.

Relaxation rates along the pathways (i) and (ii) are given as a function of q2 in figures 7(a)
and (b). For pathway (i) in figure 7(a), the relaxation rate is seen to be independent of the field
amplitude, right down to the H-to-N transition line. For pathway (ii), however, the relaxation
rates are strongly increasing on approaching the H-to-N? transition line, as can be seen from
figure 7(b). More than about 100–200 Hz away from the H-to-N? transition line, well within
the H-phase, the relaxation rates become independent of the frequency and are equal to those
measured for pathway (i) (data not shown). The same features are exhibited along pathway (iii).
Since the inverse relaxation rates vary linearly with q2, we can define an effective diffusion
coefficient D⊥ = 0⊥/q2. The diffusion coefficients are plotted in figure 8 for the off-critical
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Figure 7. Relaxation rates versus the square of the wave vector (a) for pathway
(i) and (b) for pathway (ii). These pathways are sketched in the top right figures.
In (a) for pathway (i), ν = 2 kHz, 1E = 0.04 V mm−1 (circles), 0.30 V mm−1

(squares) and 1.00 V mm−1 (diamonds). In (b) for path (ii), E = 2.93 V mm−1,
1ν = 20 Hz (circles), 40 Hz (triangles), 90 Hz (stars), 200 Hz (squares) and
2000 Hz (diamonds). Solid lines are guides to the eye.

pathway (ii) (filled symbols) and the critical pathway (iii) (open symbols). This shows more
clearly the strong increase in relaxation times within a region of 100–200 Hz near the H-to-N?

transition line. The relaxation rates along path (iii), well within the H-phase, are again equal
to that for pathways (i) and (ii). The diffusion coefficients for 1ν > 200 Hz are found to be in
the range 0.013 ± 0.004 µm2 s−1 for both pathways (ii) and (iii). Hence, the relaxation rates for
diffusion perpendicular to the director are independent of frequency and field amplitude within
the entire H-phase, except for a small region with a width of about 100–200 Hz near the H-to-N?

transition line. This small region in the phase diagram is indicated in the top right sketch of the
phase/state diagram in figure 8 by the shaded area, and corresponds to the shaded region in the
plot for the diffusion coefficient.

The reason for the faster dynamics in the vicinity of the H-to-N? transition line is
the presence of pre-transitional, transient nematic domains. Such a domain is shown in the
depolarized microscopy image in figure 8, in between the images for the N?- and H-phase. Near
the critical point the size of these domains is much larger than the domains observed along the
off-critical pathway. The domains appear and disappear on a timescale of a few minutes. The
local nematic director within these domains is not oriented along the electric field. Dynamic
light scattering therefore also probes diffusion of rods within the pre-transitional domains
in directions parallel to the director. The increase in the measured diffusion coefficient on
approaching the transition line is therefore attributed to diffusion parallel to the director within
the pre-transitional domains. Since diffusion parallel to the director is faster, the measured
diffusion coefficient increases as more of the nematic domains are formed near the transition
line. The fact that, within the region where pre-transitional domains are present, the apparent
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Figure 8. The measured diffusion coefficient 0⊥/q2 for the pathway (ii) (filled
circles) and pathway (iii) (open circles) as a function of the distance 1ν in
frequency from the transition line. Various depolarized optical morphologies are
shown below. The image in between the images for N? and H shows a transient
nematic domain that is seen in the shaded region in the top right sketch of the
phase/state diagram. This shaded region corresponds to the shaded area in the
plot on the left.

diffusion coefficient along pathway (iii) is larger as compared to pathway (ii) indicates that there
are relatively more rods oriented perpendicular to the field along the critical pathway. That is,
domains have a preferential orientation perpendicular to the field near the critical point.

Diffusion can be superdiffusive (in the sense that β > 1) or sub-diffusive (β < 1),
depending on the scattering wave vector q and the distance from the H-to-N? transition line.
As can be seen from the left plot in figure 9, diffusion along pathway (i) is always sub-diffusive.
For very small scattering wave vectors, normal diffusion (where β = 1) is approached. The
behavior of β for pathways (ii) and (iii) is very similar, so that we show only data on the former
in the two plots on the right in figure 9. As can be seen, diffusion is sub-diffusive well within
the H-phase. The stretching coefficient as a function of q is the same as that for pathway (i)
to within experimental error. The stretching coefficients thus seem to be the same throughout
the H-phase, and only depend on the scattering wave vector. Diffusion is superdiffusive only
within the region where pre-transitional domains are present. This is probably related to the
strong inhomogeneities that exist in this region of the phase/state diagram. The plot in figure 9
on the right shows the variation in β at a fixed q (corresponding to a scattering angle of 10◦)
as a function of the distance from the H-to-N? transition line. The value of β seems to become
equal to 2 for small wave vectors at the transition line. An understanding of the behavior of
the stretching exponent requires a microscopic theory for the rod dynamics within the H-phase,
which doesn’t yet exist.

We can conclude that the degree of orientational order and the microscopic dynamics
corresponding to displacements perpendicular to the electric field are essentially independent
of frequency and field amplitude well within the H-phase, away from the H-to-N? transition
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Figure 9. Left: the stretching coefficient β as a function of q2 for three distances
from the transition line for the off-critical path (ii): 1ν = 20 (circles), 200
(squares) and 2000 Hz (diamonds). The largest scattering angle here is 20◦.
Middle: the stretching coefficient for pathway (ii), for three frequencies with
1ν = 20 Hz (circles), 200 Hz (squares) and 2000 Hz (diamonds). Right: the
stretching coefficient for a scattering angle of 10◦ as a function of 1ν is shown
for path (ii). Solid lines are guides to the eye.

line. There are significant frequency dependencies, only close to the H-to-N? transition line,
due to the existence of pre-transitional nematic domains, which have a typical lifetime of
a few minutes. Due to these ‘anomalous’ domains, diffusion can be strongly superdiffusive,
especially for small wave vectors. Within the H-phase, perpendicular diffusion is sub-diffusive.
Furthermore, on approaching the critical point from the H-phase, a slow decaying relaxation
process is observed. The critical features of this point on approaching from the dynamical state
as described in [16] are thus also present on approaching from the H-phase.

5. Conclusions

A number of phases and dynamical states are induced in a concentrated suspension of charged,
colloidal rods (fd-viruses) by an external electric field. We performed electric birefringence
and small-angle dynamic light-scattering experiments along different pathways within one of
the phases, the H-phase, which is a homogeneous phase with homeotropic alignment. The
H-phase exists for frequencies larger than about 1 kHz. Since at frequencies higher than a
few kHz the diffuse double layers and the layers of condensed ions of the colloidal rods are
only weakly polarized, it is not yet clear by which mechanism the H-phase is stabilized. Since
electro-osmotic flow is established on a much smaller timescale (of the order of 1 ns), the field-
independent response within the H-phase might be due to rod–rod interactions induced by this
solvent flow.

The key finding of this paper is that diffusion in the direction perpendicular to the electric
field (which is also the direction of orientation of the rods) and the degree of orientational order
in the H-phase are independent of the applied frequency and field amplitude. This suggests that
the rod–rod interactions that stabilize the H-phase are not due to charge polarization but are due
to hydrodynamic interactions through electro-osmotic flow. As yet there is no theory that could
explain these observations. Only quite near to the H-to-N? transition line (within a frequency
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interval of about 100–200 Hz) we found an increase in perpendicular diffusion coefficients. This
is due to the existence of pre-transitional nematic domains with a director that is not parallel to
the electric field. The lifetime of these domains is typically a few minutes and is visualized by
means of polarization microscopy.

There is a point in the phase/state diagram where several transition lines meet. This point
has been shown [16] to exhibit a diverging time- and length-scale on approaching from the
side of the dynamical state. We have observed an extremely slow mode on approaching this
non-equilibrium critical point also from the side of the H-phase. In addition, the size of the pre-
transitional domains is much larger than for an off-critical approach of the H-to-N? transition.
The characterization of the critical behavior within the H-phase needs further study.
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