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Abstract. We propose a method for measuring the temperature of strongly
correlated phases of ultracold atom gases confined in spin-dependent optical
lattices. In this technique, a small number of ‘impurity’ atoms—trapped in
a state that does not experience the lattice potential—are in thermal contact
with atoms bound to the lattice. The impurity serves as a thermometer for the
system because its temperature can be straightforwardly measured using time-
of-flight expansion velocity. This technique may be useful for resolving many
open questions regarding thermalization in these isolated systems. We discuss
the theory behind this method and demonstrate proof-of-principle experiments,
including the first realization of a three-dimensional (3D) spin-dependent lattice
in the strongly correlated regime.
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1. Introduction

Ultracold atoms trapped in optical lattices are an ideal system for probing strongly correlated
quantum phases. Recent results in these systems include the observation of a fermionic Mott
insulator [1, 2], superexchange in a Bose–Hubbard system [3], a disordered strongly interacting
insulator [4] and in situ imaging of a two-dimensional (2D) bosonic Mott insulator [5]. While
one of the main goals remains observing antiferromagnetism [6], current cooling techniques
remain insufficient to reach the low entropies required to obtain magnetic ordering. There
have been a number of new cooling techniques proposed [7, 8], but measuring the temperature
remains an outstanding problem if these proposals are to be realized and validated. In addition,
measuring the temperature is necessary for quantum simulation [9]—temperature may be the
primary axis of a phase diagram of interest, and a lack of thermodynamic information can lead
to ambiguity about observed phases [10, 11].

Temperature can be indirectly measured in optical lattice experiments by assuming
adiabaticity and equating the entropy in the lattice to the entropy before loading into the
lattice [2, 12]. The initial entropy is straightforward to determine because the lattice is loaded
from a weakly interacting gas in a harmonic trap, which is well understood thermodynamically.
Thermometry is then performed by functionally relating entropy in the lattice to temperature.
However, in most cases, calculating this relationship is computationally intensive or impossible
(i.e. if the physics is unknown). Also, non-adiabatic heating processes, such as spontaneous
emission, cause entropy to be generated in the lattice [12]. And, there has been a recent
result [13] showing that adiabaticity may be difficult to maintain while turning on the lattice.

To circumvent these limitations, there have been a number of direct thermometry methods
proposed and realized, including measuring site-occupancy statistics [14], in situ diameter [15],
spin separation in a two-component Mott insulator [16], in situ number fluctuations [5, 9], and
direct comparison of time-of-flight images to quantum Monte Carlo simulations [12]. A general
feature of these methods is that they measure a specific aspect of the system under study that
has a known relationship with temperature in certain limits. Therefore, there is some restriction
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to their applicability since a specialized measurement apparatus and extensive computations
may be required, and a reliable theory is necessary. Most of these approaches are therefore of
limited usefulness for optical lattice quantum simulation, which ultimately must probe unknown
physics in an unbiased manner.

A more general approach is to build an ideal thermometer, which is a system with an
exactly understood dependence of measurable quantities on temperature in thermal contact with
the system under study. The presence of the thermometer must be non-perturbative, so that the
behavior of the system of interest is unaffected. In this paper, we propose a method to realize
such a thermometer—a weakly interacting, harmonically confined gas in thermal contact with
strongly correlated lattice atoms—and present proof-of-principle experiments.

There are two techniques to prevent the thermometer atoms from experiencing the optical
lattice potential. The first is to use two distinct atomic species, which encounter different optical
potentials for the same laser wavelength due to dissimilar electronic structure [17]. At a specific
wavelength the potential can vanish for one species, which has been recently used in a K–Rb
mixture to demonstrate a 1D species-specific lattice [18]. We pursue another implementation:
a spin-dependent potential, where the system and the thermometer are in two different internal
‘spin’ (i.e. hyperfine) states of the same atomic species. In this scheme, the lattice potentials
are made dependent on the hyperfine state of the atoms by manipulating the laser wavelength
and polarization. There are technical advantages to this method since only one atomic species
is required. Spin-dependent potentials have applicability beyond thermometry, as they may be
used to observe exotic phases (for example, see [19]), to study four-wave mixing of matter
waves [20] and to study thermalization in isolated quantum systems, which is an open question
theoretically [21] and experimentally [22]. Also, spin impurities have been studied in a number
of contexts, see [23]–[25].

In the following, we discuss creating spin-dependent optical lattices appropriate for this
type of thermometry, and we present experimental results on creating a thermalized impurity
and on loading spin mixtures into a 1D and a 3D spin-dependent lattice. We also present the first
demonstration of atoms trapped in a 3D spin-dependent lattice in the strongly correlated regime.
This paper is organized as follows. Section 2 examines the theory of a spin-dependent lattice.
Section 3 discusses the theory of co-trapped harmonically confined and lattice-bound gases.
Section 4 discusses creating an impurity spin to act as the thermometer; we also present the
observation of dynamical ‘melting’ of an impurity condensate far from equilibrium. Section 5
presents our implementation of a 1D spin-dependent lattice and evidence that the lattice can
exchange energy with atoms in a spin-sensitive fashion. Finally, section 6 presents evidence
for a superfluid–Mott insulator (SF–MI) transition of a two-component mixture in a 3D spin-
dependent lattice. We also show preliminary results on co-trapping a strongly correlated lattice-
bound and weakly interacting harmonically confined gas.

2. Spin-dependent lattices

Optical fields can be used to create atomic potentials because neutral atoms interact with an
oscillating electric field through the electric dipole interaction. For a simple two-level system,
the ac Stark shift of the electronic ground state due to this interaction is

V (r) = −
3πc20

2ω3
0

(
1

ω0 − ω
+

1

ω0 + ω

)
I (r), (1)
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Figure 1. Level structure of 87Rb (not to scale). The blue line represents the
applied laser field with detunings 13/2 and 11/2 from the D2 and D1 transitions,
respectively. Inset (a) shows the Zeeman states for each hyperfine level, which
are split in a magnetic field with first-order energy shift gFmF B. Each hyperfine
state has 2F + 1 Zeeman states.

where I is the laser intensity, c is the speed of light, ω0 is the atomic transition frequency, ω is the
laser frequency and 0 is the decay rate of the excited state. We have assumed that the detuning
1 = ω − ω0 � 0 and that I/Isat � 1, so that the population in the excited state is small. This
energy shift can be either positive or negative depending on whether the laser frequency is
larger (‘blue-detuning’) or smaller (‘red-detuning’) than the atomic transition frequency. For
the remainder of this paper, we ignore the small contribution of the counter-rotating term (the
second term in brackets in (1)) given the relatively small detuning required for realizing spin-
dependent lattices. Since the energy shift is proportional to the intensity, the ac Stark shift can
be used to confine atoms as the field intensity can have local minima or maxima. Furthermore,
by interfering two beams of the same frequency at an angle θ , an optical lattice potential
V0 sin2(klat(x)/sin(θ/2)) can be created with periodicity λ/2 sin(θ/2), where klat is the lattice
wavevector [1]–[3], [5].

In real atoms, the two-level approximation is not accurate because there are a number of
excited state levels. For example, the level structure of 87Rb, shown in figure 1, has 24 states in
the (first) excited-state 5P manifold. When the laser frequency detuning is large compared to the
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Figure 2. Spin-dependent lattice geometry. The atom gas is shown as a blue
circle.

Zeeman and hyperfine splittings of the excited states, calculating the ac Stark shift by summing
over these states is an excellent approximation, and (1) becomes [26, 27]

V (r) =
πc20

2ω3
0

( 2

13/2
+

1

11/2

)
I (r) + gFmF

∑
q=−1,0,1

q

(
1

13/2
−

1

11/2

)
Iq(r)

 , (2)

where mF is the Zeeman state (with gyromagnetic ratio gF) of the atom; 13/2(11/2) is the
detuning ω − ω0 relative to the S → P3/2(S → P1/2) transition; q refers to the three possible
polarizations of light, which are defined with respect to the quantizing magnetic field along the
z-axis,

π̂ =

0
0
1

 , σ̂ +
=

1
√

2

1
i
0

 , σ̂−
=

1
√

2

 1
−i

0

 (3)

and Iq is the intensity of the light with polarization q(I (r) =
∑

q=−1,0,1 Iq(r)). We write
(2) assuming that 0/ω3

0 is the same for the D1 and D2 transitions, which is an excellent
approximation for the alkali atoms. The first term in brackets in (2) is the scalar light shift,
which is the same for all Zeeman states. Creating a spin-dependent lattice relies on the tensor
shift (the second term in brackets) [27], which is nonzero only for q 6= 0 and gFmF 6= 0.

To calculate spin-dependent lattice potentials, we adopt a geometry in which the magnetic
field is given by the vector EB (B̂ = EB/| EB|) and the linearly polarized lattice laser beam has
a wavevector Ek (k̂ = Ek/|Ek|). The beam is retro-reflected (with wavevector −Ek), and the retro-
reflected polarization is rotated with respect to the incoming polarization by an angle θ . This
scenario is illustrated in figure 2 and is referred to as a lin-θ -lin lattice. Experimentally, the
polarization rotation can be accomplished using a quarter-wave plate or an electro-optical
modulator if dynamic polarization rotation is desired. This scenario has been previously
considered as a quantum information science tool [28]–[30] and has been used experimentally
to realize controlled collisions [31, 32], quantum walks [33] and (with some elaboration) a
2D lattice of double wells [34]. Previous work on lin-θ -lin lattices, however, only treated the
magnetic field and lattice laser wavevector as collinear. In this work, we are concerned with the
general case for which

V (r) =
I0πc20

ω3
0

{(
2

13/2
+

1

11/2

) [
1 + cos(θ) cos(2Ek · Er)

]
+ gFmF

(
1

13/2
−

1

11/2

)
(k̂ · B̂) sin(θ) sin(2Ek · Er)

}
, (4)
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where I0 is the intensity of the lattice laser beam. This can be rewritten as a single sinusoidal
potential

V (r)= A +
√

A2 cos2(θ)+C2(gFmF)2(k̂ · B̂)2 sin2(θ) cos

[
2Ek · Er −atan

(
CgFmF(k̂ · B̂)

A
tan(θ)

)]
,

(5)

with

A =
I0πc20

ω3
0

(
2

13/2
+

1

11/2

)
, (6)

C =
I0πc20

ω3
0

(
1

13/2
−

1

11/2

)
. (7)

The basis for the proposed thermometry method is a lin-perp-lin lattice (θ = 90◦), for which
the potential is

V (r) = A + C(gFmF)(k̂ · B̂) sin(2Ek · Er). (8)

In this configuration there is no lattice potential for states with gFmF = 0. Our proposal is
to use a gas with atoms in the mF = 0 state as a thermometer; these atoms are co-trapped
with mF 6= 0 atoms using a far-detuned, state-independent dipole trap. In principle, the lattice-
bound atoms can then be used to explore strongly correlated phases, while a small number of
mF = 0 atoms remain weakly interacting and in thermal contact with the gas of interest. Because
the mF = 0 atoms are trapped harmonically and are low-density, straightforward time-of-flight
expansion velocity can be used to determine their temperature. Bosonic atoms are required for
the thermometer, since only they possess mF = 0 states. For a multi-dimensional lattice the
magnetic field must be selected so that the k̂ · B̂ factor is nonzero along all lattice directions.

A lin-θ -lin lattice has other features that may be useful for exploring interacting spin
physics [35]. When θ = 90◦, the potentials for states with opposite signs of gFmF are 180◦

out of phase, i.e. the minimum of the lattice for one state is a maximum for the other. The
lattice potential depth is also proportional to gFmF, so that co-trapped spin states can experience
significantly different lattice potentials. Both the offset between potential minima and the
relative lattice depths are tunable by adjusting θ (5). Changing θ can therefore be used to tune
the inter- and intra-species interaction strengths as well as the relative tunneling energies [36].

An important consideration for optical dipole potentials is heating caused by momentum
diffusion [37]. Even when the ac Stark shift vanishes (e.g. for mF = 0 and θ = 90◦), there can
still be heating. The rate of energy (‘heating power’) increase due to momentum diffusion for a
two-level atom is

dE

dt
=

0

2m

(
| Eµge · EE |

2

12

)k2 +

∣∣∣∣∣∇( Eµge · EE)

Eµge · EE

∣∣∣∣∣
2
 , (9)

where EE is the electric field, Eµge = 〈g| Eµ|e〉 is the dipole matrix element and m is the atomic
mass. We have omitted counter-rotating terms by assuming that |1| � ω0. For multi-level atoms
we sum over all the excited-state levels, and the full heating power is

Ė = ER

∑
q

πc202

2h̄ω3
0

Iq(r)

1 +
1

k2

∣∣∣∣∣∇ EEq(r)

EEq(r)

∣∣∣∣∣
2
(2 − qmFgF

12
3/2

+
1 + qmFgF

12
1/2

)
, (10)
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Table 1. Comparison of lattice depths (s), heating power (Ė) and τ = s/Ė at
different wavelengths for I0 = 50 W cm−2 (approximately 5 mW of light focused
to an 80 µm waist) in the forward lattice beam for a retro-reflected configuration.
We assume that Ek and EB are parallel.

θ = 0◦ θ = 90◦

gFmF = 1/2

λ(nm) Ė (ER s−1) s(ER) τ (s) s(ER) τ (s)

765 0.27 15.31 57.02 1.47 5.46
775 2.13 42.69 19.58 6.74 3.17
785 2.86 31.88 11.16 15.62 5.47
788 1.59 11.36 7.16 13.90 8.76
790 1.83 0.12 0.06 15.63 8.52
805 0.42 19.72 47.48 3.32 7.99
815 0.13 12.16 91.64 1.24 9.36

where ER is the recoil energy, and we have assumed that 02
3/2/ω

3
3/2 ≈ 02

1/2/ω
3
1/2, which is correct

for Rb to within 5%. For a retro-reflected lin-θ -lin lattice where the forward beam intensity
is I0, the heating power is

Ė = ER
2πc202

h̄ω3
0

I0

(
2

12
3/2

+
1

12
1/2

)
, (11)

which is independent of the angle (θ ), the mF state, the projection of the wavevector on the
magnetic field (B̂ · k̂), and position in the lattice. The independence of the heating power on
position in the lattice is counter-intuitive for standing wave potentials (θ = 0), since one would
naively expect the heating rate to vanish at the nodes where the light intensity is zero. Although
heating induced by recoil from scattering is absent in this case, interactions of the fluctuating
atomic dipole with the electric field gradient (maximal at the nodes) still result in heating. In
fact, heating from dipole fluctuations at the nodes is equal to recoil heating at the anti-nodes, as
pointed out in [37].

In table 1, we compare the lattice potential depth s and scattering rate at θ = 0◦ and 90◦ for
states with gFmF = 1/2 and for several lattice laser wavelengths. The ratio of θ = 90◦ to θ = 0◦

lattice depth is maximized at λ = 790 nm, which we find useful for minimizing complications
introduced by imperfect laser polarization (see section 4). Furthermore, the ratio τ = s/Ė is
nearly maximum at 790 nm, which also makes this wavelength optimal for realizing spin-
dependent lattices. A disadvantage of the spin-dependent lattice is that the maximum τ in this
range is approximately 9 s, whereas for the θ = 0◦ lattice τ is about 50 s for λ = 805 nm. Unlike
the θ = 0◦ lattice, which can have an arbitrarily high τ (for arbitrarily high detunings), τ for a
spin-dependent lattice is roughly independent of detuning. This problem can be alleviated by
using atoms with a larger fine structure splitting, such as Cs.

3. Harmonic gas and lattice gas

In this section, we address several practical issues relevant to realizing the proposed
thermometry technique. To calculate questions relevant to thermodynamics and interactions
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between the atoms, we consider a gas of interacting lattice bosons co-trapped with a gas of
harmonically confined bosons using the grand canonical ensemble. If the lattice atoms are
labeled with the subscript α and the harmonically trapped atoms with the subscript β, then
the grand canonical Hamiltonian can be written as

K̂ = −J
∑
〈i, j〉

(â†
i,αâ j,α) +

∑
i

[
U

2
n̂i,α(n̂i,α − 1) +

(
1

2
mω2

αd2i2
− µα

)
n̂i,α

]

+
∑

k

[
h̄ωβ(k + 1/2) − µβ

]
n̂k,β + γαβ

∫
d3r n̂β(r)

∑
i

n̂i,αφ
2
i (r) (12)

in the tight-binding limit and neglecting interactions between the β atoms. Here J and U are
the tunneling and interaction parameters of the Hubbard model [38], 〈〉 indicates a sum over
nearest-neighbor lattice sites, µ is the chemical potential, d is the spacing between lattice sites,
âi,α is the operator in the Wannier basis that creates an α particle on lattice site i (n̂i,α = â†

i,αâi,α),
n̂k,β is the number operator for the kth harmonic excitation of the parabolic trap, n̂β(r) is the
density operator for harmonic atoms at radius r measured from the center of the parabolic
potential and φi(r) is the Wannier function centered at site i . We have assumed that the α and
β atoms may experience different parabolic confining potentials with harmonic frequencies
ωα and ωβ . Interactions between the two spin states are characterized by γi j = 4π h̄2ai j/m,
where ai j is the s-wave scattering length between states i and j . In our physical implementation,
α and β are the |1, −1〉 and |2, 0〉 states of 87Rb, so the masses m are identical and the scattering
length ai j = 98.1 ± 0.1a0, where a0 is the Bohr radius [39, 40]. In collisions between atoms
there is also the possibility of the atoms changing their spin projections (while conserving total
spin) [41, 42]; we ignore these processes since they can be highly suppressed by applying a
small magnetic field [43].

3.1. Effective lattice for β atoms

One of the conditions for thermometry is that the impurity atoms have well-known
thermodynamic properties. This may not be the case if they are strongly affected by the atoms
in the lattice. We can estimate interaction effects by assuming that the α atoms are fixed in
place and that inter-species interactions appear as a potential γαβ

∑
i〈n̂i,α〉φ

2
i (r) for the β atoms,

where 〈〉 represents the expectation value. For a sufficiently deep lattice, this will appear as an
effective lattice for the β atoms with a potential depth of γαβ〈n̂i,α〉φ

2
0(0). The effective lattice

height is plotted as a function of the applied lattice depth in figure 3 for 〈n̂i,α〉 = 1. These lattice
heights are small even for strong α lattices and can be handled perturbatively using an effective
mass formalism.

3.2. Heat capacity

Another condition for thermometry is that the impurity atoms do not change the temperature
of the system being studied. However, as the lattice is applied the temperature of the lattice-
bound atoms may change significantly [44], and therefore heat must be transferred to/from the
lattice atoms to maintain inter-species thermal equilibrium. If the impurity atoms start at Ti

and the lattice atoms at Tf, then the deviation of the final system temperature from Tf due to
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Figure 3. Effective lattice potential depth s∗ for β atoms arising from the
interaction with a unit-filled α lattice with potential depth s. We assume that
the α atoms are confined in a retro-reflected 790 nm lattice.

thermalization is

1T ≈
Nβ

Nα

∫ Ti

Tf
Cβ(T ′)dT ′

Cα(Tf)
, (13)

where Cα and Cβ are the per particle heat capacities of the two gases and we have assumed
that 1T is small. The desired bound on 1T sets an upper bound on the size of the impurity
system, Nβ/Nα. Practically, this bound must be finite—the impurity cannot be set to arbitrarily
low density given a finite signal-to-noise ratio for time-of-flight imaging.

The heat capacity is defined as

C =
∂〈E〉

∂T

∣∣∣∣
N

, (14)

where we assume that the confining potential U (r) is kept constant. For a harmonically trapped
gas far from degeneracy, the heat capacity is 3NkB, while for a non-interacting Bose gas
below TC, the heat capacity is

C = 10.8NkB

(
T

TC

)3

. (15)

Because of degeneracy, a harmonically trapped thermal gas may have a much larger heat
capacity than a degenerate gas of interest.

To estimate bounds on the impurity atom number, we first consider a non-interacting gas
in a combined lattice–parabolic potential [15, 44, 45]. We assume that a gas of 150 000 atoms
is prepared in a 50 Hz trap with a 70% condensate fraction (T = 80 nK), and that a 3D lattice
is adiabatically turned on to s = 6 ER with J = 0.051 ER; the harmonic confining frequency
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is kept constant. The temperature and condensate fraction in the lattice are T ′
= 56.9 nK and

83%, respectively, which are determined by calculating the entropy and fugacity z in the lattice
semi-classically from the grand canonical potential,

� = −

(
2πkBT

d2 mω2

)3/2

kBT
∞∑

n=1

zne−6Jn/kBT

n5/2
I 3

0 (2n J/kBT ), (16)

where d = 790/2 nm is the lattice spacing and I0(x) is the modified Bessel function of the first
kind. The heat capacity in the lattice is 2.35 kB per particle, calculated according to C =

∂〈E〉

∂T

∣∣
N

.
The gas must therefore absorb heat from the impurity in order to reach thermal equilibrium.
Using (13), we determine that the impurity state must consist of less than 14 500 atoms to result
in a less than 5% change in T ′.

Interaction effects tend to reduce the heat capacity of atoms in a lattice and therefore reduce
the limit on the number of impurity atoms. To estimate the impact of interaction effects,
we use site-decoupled mean field theory [46]–[48] and the local density approximation to
calculate the heat capacity. For the same initial conditions, but turning on the lattice to s = 17
(keeping the parabolic potential fixed), T ′

= 17 nK and the heat capacity is 0.8kB per particle in
the lattice. In this regime, 91% of the atoms are in the Mott-insulator phase (at T = 0), which
significantly reduces the overall heat capacity. For these conditions, the impurity must consist
of less than 500 atoms in order to limit the change in T ′ to 5%.

3.3. Thermalization

The final practical constraint on this type of thermometry is sufficient thermal contact
between the impurity and lattice-bound atoms. Adequate thermal contact is achieved when
the thermalization rate, which is the rate for energy to be exchanged between spin states, is
higher than atom loss and heating rates. For harmonically trapped atoms, thermalization has
been extensively studied in the context of evaporative cooling, and the thermalization rate is
proportional to the collision rate. For example, 2.5 s-wave collisions per atom are required for
cross-dimensional thermalization in a trapped gas [49, 50]. The total collision rate between
species i and j is given by [51]

γcoll = (1 + δi j)4πa2
i j |vi − v j |

∫
ni(r)n j(r)d3r, (17)

where |vi − v j | is the mean relative speed between species, and ni(r) and n j(r) are the atomic
densities.

The general issue of thermalization in optical lattices is unresolved and is an active
topic of current research [52]–[55]. Some insight into the problem may be gained from
the literature on thermalization between species with different masses [56, 57], for which the
thermalization rate is proportional to 4m1m2/(m1 + m2)

2. If we assume that the effect of the
lattice on thermalization is to change the effective mass of the lattice species, then the collision
rate is reduced to approximately 90% at s = 6 and nearly 50% at s = 10 of the bare-mass value
(using m∗

= h̄2/2d2 J ).
For comparing collision rates to loss and heating rates, we calculate the time between

elastic collisions per |2, 0〉 atom before turning on the lattice. We use the parameters from
section 4: 123 000 atoms in the |1, −1〉 state, and 12 000 atoms in the |2, 0〉 state at T = 73 nK.
The |2, 0〉 atoms are in a thermal state, and the condensate fraction for the |1, −1〉 gas is 76%.
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The calculated time τcoll = 1/γcoll for elastic collisions between |2, 0〉 and |1, −1〉 atoms is
47 ms. Here we neglect degeneracy effects, and we assume zero velocity and a Thomas–Fermi
density profile for the |1, −1〉 atoms. This is the fastest elastic collision time in the system, as
compared to collisions between |2, 0〉 atoms (τ = 300 ms) and between |2, 0〉 atoms and the
|1, −1〉 thermal atoms (τ = 225 ms). We assume that this is the lowest relevant collision rate
since turning on the lattice increases the density of the |1, −1〉 atoms.

Thermalization must compete with heating and loss processes, such as collisions with
residual gas atoms (typically τ > 100 s), and three-body recombination and hyperfine relaxation
in binary collisions involving |2, 0〉 atoms. For pure condensates in |1, −1〉, three-body
recombination is the limiting process with approximately a 30 s lifetime for the parameters
considered in this work [58]. Atoms in the |2, 0〉 state involved in collisions can relax to
the F = 1 state, and convert the hyperfine energy (Ehf/kB ≈ 0.3 K) into kinetic energy. For
collisions between |2, 0〉 thermal atoms, we estimate a 12 s lifetime using the rate (measured for
condensate atoms) from [43]. The most dominant loss process arises from collisions between
|2, 0〉 atoms and the |1, −1〉 condensate, which gives a lifetime of ≈830 ms as estimated from
the loss rate measured between a |1, −1〉 and |2, 1〉 condensate in [59]. This rate is consistent
with the negligible loss observed in section 4 over 100 ms. While these rates may change with
the lattice present, they appear to be sufficiently long such that heating in the lattice from
spontaneous scattering—as discussed in section 2—will be the dominant process competing
with thermalization.

3.4. Limitations on measuring the impurity temperature

The proposed thermometry method depends on reliably measuring the temperature of the
harmonically trapped gas, which is typically carried out by determining the expansion velocity
after release from the trap. Given that we wish to avoid Bose condensation of the thermometer
gas (in order to minimize interaction effects), we must therefore work at temperatures higher
than TC = 0.94h̄ω̄N 1/3. To maximize the dynamic range in temperature, both the number of
atoms N and the harmonic oscillator frequency ω can be decreased. We note that N must already
be quite small to minimize heat capacity effects, as discussed in section 3.2. The lower bound
on number and trap strength is ultimately set by technical issues, such as signal-to-noise in
imaging. Reasonable lower bounds are N = 1000, ω̄ = 2π(20 Hz), for which TC = 9 nK. This
should be compared to the ‘melting’ temperature of the Mott-Insulator [60], T ∗

≈ 0.2U/kB,
which is 15 nK for λ = 790 nm and s = 16. Therefore, this method should be able to probe
temperatures in the Mott-insulator regime. It may be more difficult to reach the regime in which
the layers between insulating regions are superfluid, which occurs below T ≈ z J , where z is
the coordination number. Since z = 6 for a 3D cubic lattice, this gives a temperature of 6 nK for
λ = 790 nm and s = 16.

4. Creating an impurity

A key component of our thermometry scheme is deterministically preparing an impurity state
that is thermalized with the atoms of interest. For the proof-of-principle experiments we discuss
here, the |F = 2, mF = 0〉 state acts as the thermometer for |1, −1〉 atoms confined in a lin-perp-
lin lattice. In this section, we show that adiabatic rapid passage driven by a microwave frequency
magnetic field can be used to create a condensed mixture of the |2, 0〉 and |1, −1〉 states that
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is out of thermal equilibrium. The |2, 0〉 condensate subsequently decays into a thermalized,
low-density component.

We create BECs of 87Rb in the |1, −1〉 state—details can be found in [15], with several
changes discussed here. Previously we worked with spin-polarized atoms in the |1, −1〉 state
confined in a hybrid magneto-optical trap formed from a single-beam 1064 nm dipole trap and a
quadrupole magnetic field. This method is not appropriate for a gas composed of multiple spin
states with different values of gFmF. We now prepare a cold, but uncondensed, gas of |1, −1〉

atoms in the hybrid trap created using crossed 1064 nm dipole traps. We further evaporatively
cool the gas close to degeneracy in this trap, then simultaneously ramp the magnetic quadrupole
off, a 3 G bias magnetic field on, and the dipole power up (to compensate gravity). We
evaporatively cool in the purely optical trap to the desired condensate fraction and then create
a spin mixture via adiabatic rapid passage; information regarding the microwave source can be
found in [36]. At the end of this procedure, the dipole trap laser power is approximately 2.5 W,
and the confining harmonic frequencies are 88.2 ± 0.8, 29.8 ± 0.5 and 92.8 ± 0.7 Hz.

Figures 4(a) and (b) show performance data for transferring atoms into the |2, 0〉 state for
a thermal gas. For these data, a microwave sweep centered at 6832.65 MHz was applied to the
atoms. The number of atoms transferred into the |2, 0〉 state was measured by hyperfine state
selective imaging. The fraction of atoms transferred into the |2, 0〉 state can be smoothly varied
either by adjusting the microwave power (figure 4(a)) or the sweep rate (figure 4(b)). Time-of-
flight expansion data shown in figure 4(c) demonstrate that microwave transfer does not affect
the temperature of the gas.

For thermometry in the condensed regime, a mixture of |1, −1〉 and thermal |2, 0〉 atoms
must be prepared so that the atoms used for thermometry are weakly interacting. Naïvely, one
would expect that adiabatic rapid passage as employed here could only be used to create a spinor
condensate composed of two spin states. Spinor condensates have been extensively studied
[41, 42], [61]–[65] and are a vibrant area of current research [66, 67]. However, these
experiments typically probe the zero-temperature regime.

We find that, under the right conditions, creating a spin impurity can take the gas far from
equilibrium into a state that decays into a mixture of |1, −1〉 condensed and |2, 0〉 thermal
components. An example of this is shown in figure 5. Here we start with a |1, −1〉 condensate
composed of (135 ± 8) × 103 atoms, with a condensate fraction of 0.76 ± 0.01 at 73 ± 5 nK
(Tc is 144 ± 3 nK). A swept microwave field transfers 9.0 ± 0.5% of the atoms into the |2, 0〉

state. As this spin mixture is held in the dipole trap, the condensate fraction stays relatively
constant for the |1, −1〉 atoms, yet decreases to zero for the |2, 0〉 atoms in approximately 60 ms.
The simplest explanation of this phenomenon is a thermodynamic argument. The transfer is
approximately isothermal, so the temperature of the |2, 0〉 gas is unchanged. However, since
TC ∝ N 1/3, the spin components have two different condensation temperatures: 140 ± 3 nK for
the |1, −1〉 atoms (relatively unchanged by the microwave transfer) and 64 ± 1 nK for the |2, 0〉

atoms. As the system relaxes back to thermal equilibrium, the |2, 0〉 condensate ‘melts’, while
the |1, −1〉 condensate remains unperturbed. The decay timescale is roughly consistent with the
elastic collision rate between |2, 0〉 atoms and the |1, −1〉 condensate calculated in section 3.
After decay of the |2, 0〉 condensate, the components are in thermal equilibrium, and the |2, 0〉

component can be used for thermometry. Past work on spinor gases out of thermal equilibrium
can be found in [68]–[70].
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Figure 4. Creating an impurity. Parts (a) and (b) show how the fraction of atoms
in the |2, 0〉 state can be controlled by varying the microwave power and sweep
rate; the data in (a) were taken using a fixed 0.02 MHz ms−1 sweep rate. Fits
(red lines) are to the Landau–Zener theory for two states. The error bars in
(a) represent a systematic uncertainty in determining atom number arising from
finite signal-to-noise ratio in imaging. Part (c) shows time-of-flight expansion
data used to measure temperature for a 13% |2, 0〉 impurity (•) and |1, −1〉(�)

gas before transfer. Images of the atom gas were fitted to a Gaussian, and the
fitted rms radius of the gas is shown versus expansion time (red line |2, 0〉, blue
dashed line |1, −1〉). The measured temperature was 393 ± 20 nK for the |2, 0〉

gas and 383 ± 13 nK for the |1, −1〉 gas, thus illustrating that the microwave
transfer preserves temperature.

5. A one-dimensional spin-dependent lattice

The other ingredient essential to the thermometry scheme is transferring the atoms into a spin-
dependent lattice. To create the lattice, we use a setup similar to that in [15], except that we
have added quarter-wave plates into the retro beam paths to rotate the laser polarization by 90◦.
We use 790 nm light to create the lattice for two reasons. Firstly, as explained in section 2,
employing 790 nm light optimizes the ratio of lattice depth to spontaneous scattering for a
lin-perp-lin lattice. Secondly, again from section 2, working at 790 nm minimizes problems
introduced by laser polarization impurities—there is no scalar light shift at this wavelength
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Figure 5. Melting of an impurity condensate. Condensate fraction and
temperature of |2, 0〉(•) and |1, −1〉(�) are shown after a microwave sweep that
transfers 9.0 ± 0.5% of the atoms into the |2, 0〉 state. Images of the |2, 0〉 and
|1, −1〉 gases are shown on the right for different hold times in the dipole trap
after the transfer; approximately 10% of the |1, −1〉 atoms are imaged using
partial repumping [71]. There is a 5% systematic error in both the temperature
and condensate fraction due to uncertainties in the expansion time and the fitting
procedure.

since the ac Stark shift from the D1 and D2 transitions cancels. Small imperfections in laser
polarization are magnified because the lattice potential arises from an interference effect. For
example, for a lin-perp-lin lattice at 785 nm, it would take a 5% impurity in the retro beam
polarization to create a lattice for the |2, 0〉 state with half the potential depth as for the |1, −1〉

state. By using 790 nm light to make the lattice, polarization impurities do not contribute to a
parasitic lattice, and at worst increase the heating rate. The absence of the scalar light shift at
790 nm is evident by observing diffraction of |1, −1〉 atoms from a pulsed 1D lin–lin lattice for
different lattice wavelengths, as shown in figure 6(a).

To verify the properties of the 790 nm spin-dependent lattice, we measured diffraction
of the atoms from the lattice by transiently pulsing the lattice and then turning off the trap.
Figure 6(b) shows images of diffracted atoms in the |1, −1〉, |2, −2〉 and |2, 0〉 states. Figure 6(c)
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Figure 6. Properties of a 1D spin-dependent lattice. Part (a) shows the diffraction
ratio (NA + NC)/NB (see (b)) for |1, −1〉 atoms from a 20 µs lin–lin lattice pulse
as the laser wavelength is varied; the minimum near 790 nm is where the scalar ac
Stark shift vanishes. The red line is present to guide the eye. Images of diffracted
atoms in different spin states are shown in (b); two separate images are taken with
the same lattice pulse power and duration (20 µs). Data taken to calibrate the
lattice potential depth for the |2, −2〉(•) and |1, −1〉(�) states are shown in (c).
The data are fitted (solid lines) to a two-band model that determines an energy
difference between the ground and second-excited bands of 32.0 ± 0.5 kHz for
the |2, −2〉 atoms and 21.8 ± 5 kHz for the |1, −1〉 atoms. This corresponds to
lattice potential depths of 11.8 ± 0.3ER and 6.6 ± 0.3ER, respectively. The ratio
of the lattice potential depths is 1.8 ± 0.1, which is nearly consistent with the
prediction from (8). Part (d) shows the heating of |1, −1〉 atoms loaded into the
forward beam of a 10ER lattice (the retro-reflected beam is blocked).

shows that the lattice potential depth—measured by a fit to the diffracted fraction as the pulse
time is varied—scales as gFmF, as predicted by (8). Finally, we characterized heating due to the
lattice light by turning on only the forward beam of a 10ER lattice for a gas of thermal atoms.
By holding the atoms for a variable amount of time, we observe a heating rate of 52 ± 2 nK s−1,
which corresponds to a heating power of 0.88 ± 0.03ER s−1. This roughly matches the predicted
power of approximately 0.6ER s−1, which assumes equal power in the forward and retro beams.

To demonstrate the main principle behind spin-dependent thermometry—that atoms in the
|2, 0〉 state can be sensitive to the temperature of the |1, −1〉 atoms without being bound to
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the lattice potential—we use the lattice to heat |2, 0〉 atoms through their thermal contact with
|1, −1〉 atoms. To heat the atoms, the lattice potential depth is modulated at 24 kHz, which is
near the frequency separating the ground and second excited bands of the lattice (28.4 kHz). We
compare the resulting temperature of the gas when there is a 10% impurity of |2, 0〉 atoms to that
when all of the atoms have been transferred into the |2, 0〉 state. The lattice is turned on in 20 ms
to 10ER (calibrated using the |1, −1〉 atoms), the amplitude is modulated for 6 ms at 24 kHz,
the lattice is turned off in 10 ms and the atoms are permitted to thermalize for 220 ms. The
temperature of the two components is measured simultaneously via time-of-flight expansion
velocity using a magnetic field gradient to separate the spin states. The measured temperature
for different modulation amplitudes is shown in figure 7. The |2, 0〉 atoms are heated only when
the |1, −1〉 atoms are present. This is the first step toward thermometry using the |2, 0〉 atoms,
and a useful technique for selectively heating or exciting motion for one state.

6. A three-dimensional spin-dependent lattice

In this section, we present the first demonstration of atoms trapped in a 3D spin-dependent
lattice in the strongly correlated regime. A requirement for creating a 3D spin-dependent lattice
is that k̂ · B̂ 6= 0 for all lattice wavevectors. Because of this condition EB cannot point directly
along any of the wavevectors, as was the case in previous experiments with spin-dependent
lattices [31]–[33]. In our experiment, we satisfy this condition using the geometry

k̂1 =
1

2

 1
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√
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√
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1
0
1

 , B̂ =

1
0
0

 , (18)
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Figure 8. Time-of-flight images for two different spin mixtures transferred into a
3D lin-perp-lin lattice. The lattice potential depth for each set of images is given
on the left, calibrated for the |1, −1〉 atoms. The lattice is turned on using an
exponential ramp in 50 ms. Images were taken using a single shot, and the spin
states were separated using a magnetic field gradient during expansion. Empty
space between the different spin states in the images has been cropped out.

where ẑ is opposite to gravity and we image along ŷ. In this configuration, k̂ · B̂ is 1/2
for two of the beams and 1/

√
2 for the other, so that per unit intensity the lattice along

one direction is 40% larger. This configuration is fairly close to the ideal case, for which
k̂ · B̂ = 1/

√
3 ≈ 0.58.

Using this arrangement of lattice beams, we load two different spin mixtures into the
lattice: an approximately equal mixture of |2, −2〉 and |1, −1〉 atoms, and an approximately
equal mixture of |2, 0〉 and |1, −1〉 atoms. The former is an interesting state because it has
imposed anti-ferromagnetic spin ordering due to the potential. Density profiles measured after
suddenly shutting off the lattice and 15 ms of expansion are shown in figure 8. The different
spin states are separated by a magnetic field gradient, and images are shown for different lattice
potential depths calibrated for the |1, −1〉 atoms.
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For a mixture of |2, −2〉 and |1, −1〉 atoms, the time-of-flight images for both components
are consistent with the transition from a superfluid to a Mott insulator [72] state, which is
predicted from mean field theory to occur at s = 12.7 ER. Because the |2, −2〉 atoms experience
twice the lattice potential depth at the same intensity, this transition occurs at half of the lattice
intensity as for the |1, −1〉 atoms. If we slowly turn off the lattice in 10 ms from s = 16 (for
the |1, −1〉) atoms, we recover approximately 10% condensate fraction for each component,
indicating that the transfer into the lattice was partially reversible.

For a mixture of |2, 0〉 and |1, −1〉 atoms, the time-of-flight images are consistent with
the |1, −1〉 atoms experiencing a lattice and the |2, 0〉 atoms only being trapped harmonically.
Extremely weak diffraction features can be seen in several of the |2, 0〉 images, which may be
due to interactions with the |1, −1〉 atoms, as discussed in section 3. We checked that these
features are not directly the result of the lattice potential in 1D. Recent results [20] suggest
that these features may be due to interactions between |2, 0〉 and |1, −1〉 atoms during time-of-
flight. Unlike the |1, −1〉 and the |2, −2〉 mixture, which are nearly physically separated since
the lattice potentials are 180◦ out of phase, the |2, 0〉 atoms are free to interact with the |1, −1〉

atoms. Although a more careful study is needed, there is no obvious change in the |1, −1〉

images induced by the presence of the |2, 0〉 atoms.

7. Conclusions

Spin-dependent lattices are a promising system for thermometry of strongly correlated phases.
We have demonstrated proof-of-principle experiments for thermometry in which a weakly
interacting gas of atoms in a state with gFmF = 0 can be used to determine the temperature
of a strongly correlated, lattice-bound gas. We have also shown that spin-dependent lattices can
be realized in 3D and in the strongly correlated limit. Thermometry using gFmF = 0 atoms in
such a system remains to be demonstrated. Several experimental and theoretical challenges are
also unresolved, such as accurately measuring the effect of heating in the lattice, measuring and
calculating thermalization rates and determining the minimal impurity size required for accurate
time-of-flight thermometry. Demonstration of this technique will be an important step toward
quantum simulation in lattices, and will complement other thermometry techniques and ongoing
efforts to cool atomic gases to ever lower temperatures in a lattice.
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