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Abstract. It has been conjectured that four-dimensional N = 8 supergravity
may provide a suitable framework for a ‘theory of everything’, if its composite
SU(8) gauge fields become dynamical. We illustrate that supersymmetric three-
dimensional coset field theories, motivated by lattice models, provide toy
laboratories for aspects of this conjecture. They feature dynamical composite
supermultiplets made of constituent holons and spinons. We show how these
models may be extended to include N = 1 and N = 2 supersymmetry, enabling
dynamical conjectures to be verified more rigorously. We highlight some special
features of these three-dimensional models and mention open questions about
their relevance to the dynamics of N = 8 supergravity.
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1. Introduction

Once upon a time, four-dimensional N = 8 supergravity was touted as a possible ‘theory of
everything’ [1]. This suggestion was sparked by the observation that N = 8 supergravity has a
hidden, composite SU(8) gauge structure [2]. The interacting scalar fields ofN = 8 supergravity
have a non-compact E7(7) structure with 133 components that are reduced by the 63 generators
of the SU(8) symmetry to the 70 physical, on-shell scalar fields. Attention was drawn by the
realization that SU(8) is a gauge symmetry large enough to include a flavour symmetry as well
as an SU(5) grand-unification group. This motivated the suggestion that the composite SU(8)
gauge fields might become physical particles [1], as a result of some unspecified dynamical
mechanism. Already in the first papers on this subject, attention was drawn to two-dimensional
coset models in which the composite gauge fields became dynamical as a result of infrared
singularities [2].

However, the suggestion thatN = 8 supergravity was a promising framework for a ‘theory
of everything’ rapidly became unfashionable, for several reasons. One was that no convincing
mechanism for making the gauge fields dynamical came to mind, and another was that the
SU(8) gauge symmetry was thought to be anomalous [3]. However, the big blow was the
realization that ten-dimensional E8 × E8 and SO(32) heterotic string theories had no anomalies,
and could provide suitable frameworks for grand unification, after compactification to four
dimensions [4]. Subsequently, many promising four-dimensional models were derived from
string theory as understanding of string dynamics deepened. This deepening understanding led
to the realization that all string theories are linked and to the discovery that they are related
to 11-dimensional supergravity [5]. In turn, this theory may be related to N = 8 supergravity
by compactification to four dimensions [6]. However, there is no simple limit in which string
theory can be compactified to four-dimensional N = 8 supergravity without additional low-
mass fields [7].

Interest in N = 8 supergravity has recently revived, motivated by the realization that it
is very well behaved in the ultraviolet, and may well be finite in perturbation theory [8].
This development has brought back to the collective consciousness a ‘forgotten’ paper by
Marcus [9], in which he showed that the SU(8) gauge symmetry of N = 8 supergravity is,
in fact, anomaly-free. This paper had been overlooked in the euphoria surrounding string theory
but now, when coupled with the good ultraviolet behaviour of N = 8 supergravity, it motivates
a re-examination of the possibility that this might be a promising road towards a ‘theory of
everything’. This possibility is not necessarily in conflict with the candidacy of string theory as
the ‘theory of everything’, at least as long as the relation of string theory to N = 8 supergravity
remains to be elucidated.

In this paper, we review the relevant aspects of three-dimensional lattice models that
may serve as an inspiration for modelling the dynamics of N = 8 supergravity. In particular,
we display the role of dynamical composite supermultiplets made of constituent holons and
spinons. As we show explicitly, supersymmetry is an inessential complication, in the sense
that it does not alter the nature of the infrared behaviour. On the other hand, the elevation of
N = 1 supersymmetry to N = 2 does enable dynamical results to be placed on a more rigorous
basis. We finish by recalling some of the limitations of the three-dimensional models, and
highlighting some of the questions that arise before the existence of a similar mechanism in
N = 8 supergravity could be addressed.
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Figure 1. Left: the Fermi surface of underdoped cuprates consists of four
nodes, as indicated by the dashed lines. The continuum effective theory may
be obtained in a standard way by linearization about such nodes, which leads, at
the constituent level, to two flavours of four-component Dirac spinors for the
holon degrees of freedom (d.o.f.). These flavours are obtained by combining
the nodes along the diagonal lines, as indicated in the figure: nodes 1 + 3 yield
one flavour, and nodes 2 + 4 yield the other. Right: a simple antiferromagnetic
sublattice structure, which can be used to define local (spin) SU(2) gauge groups,
playing the role of ‘colour’. There are two coloured four-component spinors in
this construction, each obtained by taking the continuum limit in a sublattice.
The dynamical breaking of the local SU(2) with mass generation for fermions
implies suppression of inter-sublattice hopping in such models.

2. 2 + 1-dimensional condensed-matter models with dynamical gauge bosons

The understanding of field theories in three space–time dimensions has largely been driven by
the impetus to study condensed-matter systems formulated on a lattice. These field theories
become relativistic near nodes of the Fermi surface, see figure 1, and may exhibit dynamical
gauge bosons and supersymmetry, as we discuss below.

A classic model studied with antiferromagnetism and high-temperature superconductivity
has been the t − J Hamiltonian [13, 15], which is expressed in terms of electron creation
operators c†

a,i and their conjugates. As shown in [11, 12], when intersublattice hopping is
included, this Hamiltonian can be expressed in terms of field operators χ , whose structure we
discuss below. For example, the hopping term reads

Hhop = −

∑
〈i j〉

ti j c
†
α,i cα, j = −

∑
〈i j〉

ti j [χ
†
i,αγχ j,γ α +χ†

i,αγ (σ3)γβχ j,βα], (1)

where i denotes a lattice site, σ3 is a 2 × 2 Pauli matrix, and summation over the spin indices
is implied. Heisenberg interaction terms may be added to this, which can be written in the
following convenient form [13]:

HHI = −
1

8
J
∑
〈i j〉

tr[χiχ
†
j χ jχ

†
i ]. (2)
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The antiferromagnetic nature of such systems translates into the existence of more than
one sublattice (see figure 1), associated with the spin states of the hole excitations, with
intersublattice hopping nonzero but suppressed relative to the hopping inside a single sublattice.
As we review below, this results in internal gauge d.o.f. for the hole excitations, which becomes
a fully fledged dynamical non-Abelian gauge symmetry in the effective field theory. There is an
even number of sublattices or nodes in the Fermi surface of such systems, and hence an even
number of spinor d.o.f., which results in parity remaining unbroken. (We remind the reader that
in 2 + 1 dimensions a single fermion mass term breaks parity, but this can be restored if there is
an even number of fermionic species, with mass terms in pairs of opposite signs.)

To see this, as discussed in [11, 12], one may represent the field χ via a spin-charge
separation Ansatz in the case of a planar antiferromagnetic lattice with intersublattice hopping
for a particle–hole symmetric formulation away from half-filling:

χi ≡

(
ψ1 ψ2

−ψ
†
2 ψ

†
1

)
i

(
z1 −z̄2

z2 z̄1

)
i

. (3)

The fields za obey canonical bosonic commutation relations, and are associated with the spin
d.o.f. (‘spinons’), while the fields ψa are Grassmann variables on the lattice, which obey
fermionic statistics, and are associated with the electric charge d.o.f. (‘holons’).

The ansatz (3) admits a hidden non-Abelian local SU(2) spin symmetry at the constituent
level, as discussed in [11, 12]. This may readily be seen by considering the invariance of the χ
variable under simultaneous local SU(2) rotations of the spinon and holon components:

9i −→9i hi , where 9 ≡

(
ψ1 ψ2

ψ
†
2 −ψ

†
1

)
,

Z i −→ h†
i Z i , where Z ≡

(
z1 −z2

z2 z1

)
,

(4)

where hi ∈ SU(2). In three space–time dimensions, due to the fractional statistics of the planar
excitations, one has an additional Abelian phase rotation, forming a US(1) ‘statistical’ Abelian
gauge group (which should not be confused with the U(1) of electromagnetism). Hence, the
full local gauge group of the spin-separation ansatz is SU(2) ⊗US(1). In terms of the spin and
charge excitations appearing in (3), the hopping term in the Hamiltonian (1) may be written as

Hhop = −

∑
〈i j〉

ti j [zi,bψ
†

i,b,αψ j,c,αz j,c + zi,bψ
†

i,b,α(σ3)αβψ j,c,βz j,c], (5)

which has a trivial local SU(2) symmetry.
The Heisenberg interaction term (2) can be linearized in terms of the fermion bilinears

if one introduces in the path integral a Hubbard–Stratonovich field 1i j , in a standard fashion.
The result of the linearization for the combined hopping and interaction Hamiltonian is of the
form [11, 12]:

HHF =

∑
〈i j〉

Tr

[
8

J
1

†
i j 1 j i +

(
−ti j(1 + σ3)+1i j

)
9

†
j 〈Z j Z i〉9i

]
+
∑
〈i j〉

Tr
[

Z i〈9
†
i

(
−ti j(1 + σ3)+1i j

)
9 j〉Z j + h.c.

]
. (6)
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This Hamiltonian determines the nature of any spontaneous symmetry breaking that occurs and
the associated phase structure of the low-energy theory near the nodes of the Fermi surface.
Using the gauge symmetries of (3), we can write

〈Z j Z i〉 ≡ |A1| Vi j Ui j , 〈9
†
i

(
−ti j(1 + σ3)+1i j

)
9 j〉 ≡ |A2| Vi j Ui j , (7)

where V ∈ SU(2) and U ∈ US(1) are group elements. The group US(1) expresses the fractional
statistics of the three-dimensional excitations of spinons Z and holons 9. The fact that
apparently gauge non-invariant correlators are nonzero on the lattice is standard in gauge
theories, and does not violate Elitzur’s theorem [14], due to the fact that in order to evaluate
the physical correlators, one must follow a gauge-fixing procedure, which should be done prior
to any computation. The amplitudes |A1| and |A2| ≡ K > 0 are considered frozen, which is
a standard assumption in the gauge theory approach to strongly correlated electron systems
[13, 15]. The group elements V and U are phases of the above field bilinears and, to a first
(mean-field) approximation, can be considered as composites of the constituent spinons z and
holons ψ . Fluctuations about such ground states can then be considered by integrating over the
constituent fields.

The above lattice action does not contain kinetic terms for the SU(2) and US(1) groups,
which would take the form∑

p

[
βSU(2)(1 − TrVp)+βUS(1)(1 − TrUp)

]
, (8)

where the sum is over the plaquettes p of the lattice, and the coefficients

βUS(1) ≡ β1, βSU(2) ≡ β2 = 4β1 (9)

are the inverse square couplings of the US(1) and SU(2) groups, respectively. The specific
relation between the coefficients of the SU(2) and US(1) terms is a consequence of the
appropriate normalizations of the generators of the groups. The absence of gauge kinetic terms
in our case implies that we are in the limit of infinitely strong coupling for both gauge groups:

βUS(1) = βSU(2) = 0 ↔ gUS(1), gSU(2) → ∞. (10)

However, as discussed in detail in [11], integration of the Z -spinon fields results in kinetic
terms for gauge fields, which couple to the spinons 9 only. The analysis of [11] assumes that
the Z -spinons have a mass gap that is larger than the dynamical mass gap generated by the
holon fields through their interactions with the Abelian gauge group, so that one can define
the appropriate effective theory of the light d.o.f. by integrating out the heavy ones. (We recall
that the kinetic terms are the lowest terms in a derivative expansion, in which terms with more
than two derivatives are irrelevant operators in the infrared and hence can be ignored when one
considers the low-energy continuum limit of interest here.) In such a case, one obtains [11]

β1 =
1

Jηa
, (11)

where a is the (sub)lattice spacing, η denotes the doping concentration in the sample and J
is the Heisenberg interaction in the condensed-matter model (6), and group theory maintains
the relationship (9) between the SU(2) and US(1) couplings. The strong-US(1) coupling
corresponds formally to Jηa → ∞.

We now turn to the dynamical breaking of the SU(2) group [11], using a Schwinger–Dyson
treatment of dynamical symmetry breaking based on a large-N approximation, in which the
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SU(2) spin group is replaced by SU(N) with N large. In this case, the non-Abelian coupling is
related to the Abelian one through

βSU(N ) = 2NβUS(1) = 2Nβ1. (12)

This implies that, even in the case of strong US(1) coupling, β1 → 0, the large-N (large-spin)
limit may be implemented in such a way so that βSU(N ) is finite, and may be assumed weak.

As discussed in detail in [11] and references therein, the lattice Hamiltonian (6) after
integrating out the massive spinon Z fields can be expressed in the infrared limit as a lattice
spinor Hamiltonian for the holon fields 9 coupled to the US(1) and SU(2) gauge fields:

S =
1

2
K
∑
i,µ

[9 i(−γµ)Ui,µVi,µ9i+µ +9 i+µ(γµ)U
†
i,µV †

i,µ9i ]

+β1

∑
p

(1 − trUp)+βSU(N )

∑
p

(1 − trVp), (13)

where µ= 0, 1 and 2, Ui,µ = exp(iθi,µ) represents the statistical US(1) gauge field, Vi,µ =

exp(iσ a Ba) is the SU(2) gauge field, and the plaquette terms appear as a result of the z (spinon)
integration, as mentioned previously. Working in the large N -fermion flavour limit (N even
sublattices, N → ∞) and keeping the SU(N) coupling βSU(N) finite, according to (12), the
SU(2) gauge field becomes dynamical. The US(1) field, on the other hand, is assumed strongly
coupled: β1 → ∞, and hence its kinetic term is absent. The fact that kinetic terms for the
SU(2) gauge fields can be induced in the effective action by quantum corrections reflects the
existence of a nontrivial infrared fixed point in the (2 + 1)-dimensional Abelian gauge theory,
after the dynamical breaking of the SU(2). This was discussed in detail in [16], and has also
been discussed in the N = 1 supersymmetric case [17].

After integrating the effective spinon–gauge-field Lagrangian over the strongly coupled
statistical US(1) dynamical gauge group, one finds the following effective partition function:∫ [

dV d9d9
]

exp(−Seff), (14)

where

Seff = β2

∑
p

(1 − trVp)+
∑
i,µ

lnI0(
√

yiµ),

yiµ ≡ K 29 i(−γµ)Viµ9i+µ9 i+µ(γµ)V
†

iµ9i .

(15)

Here, K is the amplitude |A2| of the fermionic bilinears in the Hartree–Fock lattice action (6)
and I0 is the zeroth-order Bessel function. The quantity yiµ may be written in terms of the
bilinears

M (i)
ab,αβ ≡9i,b,β9 i,a,α, a, b = colour, α, β = Dirac, i = lattice site, (16)

with the result

yiµ = −K 2tr[M (i)(−γµ)ViµM (i+µ)(γµ)V
†

iµ]. (17)

In the language of particle physics, quantities analogous to the M (i) would represent
physical meson states. Converting from fermionic to bosonic variables, the low-energy (long-
wavelength) effective action may be written as a path integral in terms of gauge-boson and
meson fields [11]

Z =

∫
[dV dM]exp(−Seff +

∑
i

tr ln M (i)), (18)
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where the meson-dependent term in (18) comes from the Jacobian that arises when converting
the integral from fermion to meson variables.

A method was presented in [11] for identifying the symmetry-breaking patterns of the
gauge theory (18), by studying the dynamically generated mass spectrum. The method consists
of expanding

∑
i,µ lnI0(

√
yi,µ) in powers of yiµ and concentrating on the lowest orders, which

yield the gauge boson masses, while higher orders describe interactions. Keeping only the linear
term in the expansion yields

lnI0(
√

yiµ)'
1
4 yiµ = −

1
4 K 2tr[M (i)(−γµ)ViµM (i+µ)(γµ)V

†
iµ]. (19)

It is evident that the pattern of SU(2) breaking is determined by nonzero vacuum expectation
values (VEVs) for the meson matrices M (i). One has the following expansion for the meson
states in terms of SU(2) bilinears [11]:

M (i)
=A3(i)σ3 +A1(i)σ1 +A2(i)σ2 +A4(i)1

+i[B4,µγ
µ + B1,µ(i)γ

µσ1 + B2,µγ
µσ2 + B3,µγ

µσ3], (20)

with µ= 0, 1, 2, and

A1 ≡ −i[9192 −9291], A2 ≡9192 +9291, A3 ≡9191 −9292,

B1µ ≡91σµ92 +92σµ91 B2µ ≡ i[91σµ92 −92σµ91], B3µ ≡91σµ91 −92σµ92,

A4 ≡9191 +9292, B4,µ ≡91σµ91 +92σµ92, µ= 0, 1, 2. (21)

Here, A1, A2, A3, B1, B2 and B3 transform as triplets under SU(2) and A4 and B4 transform
as SU(2) singlets, the γµ are (anti-Hermitian) Dirac (space–time) 2 × 2 matrices and the σi ,
i = 1, 2, 3, are the (Hermitian) 2 × 2 SU(2) Pauli matrices.

Naively, the composite meson fields Ai and Bi transform under a global SU(2) group
[11, 18]. However, because of the Hartree–Fock form of the lattice Hamiltonian (6), these
composites realize a strongly coupled local (gauged) SU(2) ⊗US(1) group, which (following
the above discussion) enables the representation of the SU(2) gauge link variables in terms of
the Bi composites [11]:

Viµ = exp(iσ a Ba)= cos(|Biµ|)+ iσ · Biµ sin(|Biµ|)/|Biµ|, (22)

where a = 1, 2, 3 are SU(2) indices, and boldface letters indicate vectors in SU(2) space. (The
reader should bear in mind the trick (12), of working with large SU(N) instead of the SU(2)
group, so as to guarantee a finite βSU(N ) coupling while working with a strong US(1) group.)

The VEV of the matrix 〈M (i)
〉 = uσ3 is proportional to the chiral condensate u, which

is responsible for generating dynamically a (parity-conserving) mass gap for the holons [11].
Substituting (20) into (19) and performing a naive perturbative expansion over the fields B, one
finds

lnI0(
√

yiµ)∝ K 2u2[(B1
iµ)

2 + (B2
iµ)

2] + interaction terms. (23)

From this it follows that two of the SU(2) gauge bosons, namely the B1 and B2, become massive,
with masses proportional to K u, whereas the gauge boson B3 remains massless. These mass
terms break SU(2) down to a U(1) subgroup.

We draw the reader’s attention to the similarity of the above mechanism for symmetry
breaking with the situation in the adjoint gauge–Higgs model [19]. There, the SU(2) symmetry
is also broken down to a U(1) subgroup whenever the constant multiplying the Higgs–gauge
interaction is larger than a critical value. In our case the role of this constant is played by K 2, as
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can be seen by the formal analogy between the adjoint-Higgs–gauge interaction terms and (19).
In our approach, symmetry breaking was achieved via the infinitely strong US(1) coupling. In
view of the above analogy with the adjoint-Higgs model, however, one may speculate that an
interesting phase diagram for the symmetry breaking of SU(2) could also emerge due to the K 2

coupling, whatever the US(1) coupling is.
At this point we would like to clarify certain points concerning the above-mentioned mod-

els: the lattice systems we examined above are simplifications of the actual situation encountered
in realistic condensed-matter systems, where in some regions of their parameter space, the
Fermi surface is characterized by pockets of finite size rather than points. In such models, the
spin-charge separation ansatz is more subtle than the one presented here. The interested reader
can find more details of such issues in the recent literature [20], where detailed phase diagrams
are presented. However, for our purposes here, we are simply interested in the compositeness
aspects of the above decomposition of spin and charge d.o.f., which are merely used here as
a motivation for our particle-physics-oriented analysis rather than a rigorous study of realistic
condensed-matter systems and their properties. In this respect, in what follows we shall make
use of the above formalism in order to draw some useful lessons and thus be able to discuss the
notion of composite operators and their relevance to N = 8 supergravity phenomenology.

We conclude this section by mentioning the possibility of extending the above results to
other gauge groups, provided ansatz (3) for spin-charge separation in the simple SU(2) case that
represents the spin d.o.f. in an antiferromagnetic system is modified accordingly.

3. Supersymmetric 2 + 1-dimensional condensed-matter models with
dynamical gauge bosons

3.1. N = 1 supersymmetry

A further step was taken in [21, 22], where conditions were derived under which the continuum
low-energy limit of the above lattice Hamiltonian becomes supersymmetric. First, it was
observed, on the basis of an appropriate power counting of the fundamental spinon and holon
d.o.f. and taking into account the gauge freedom, that there are regions in the parameter space
of the underlying t − J model which exhibit dynamical N = 1 supersymmetry between the
fundamental constituents of the model, namely the spinons and holons za and ψa, a = 1 and 2,
in ansatz (3).

Mavromatos and Sarkar [22] considered the lattice t − J models discussed in the
previous section, but also included non-nearest-neighbour hopping and interaction terms in
the antiferromagnetic sublattices. Such models have been used in theoretical modelling of
d-wave high-temperature superconductors [23]. The analysis led to the following N = 1
supersymmetric continuum Lagrangian in terms of component spinon ψ and holon z fields:

L = g2
2∑

a=1

[
Dµ z̄a Dµza + iψa 6 Dψα + f̄a fa + 2i(ηψa z̄a −ψaηza)

]
, (24)

where Dµ denotes the gauge-covariant derivative with respect to the US(1) gauge field, and fa

is an auxiliary field. The field η is a Majorana fermion, which is viewed as the supersymmetric
partner of the Abelian US(1) gauge field, needed to reproduce (as an appropriate Lagrange
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multiplier field [22]), the CP1 σ -model constraint, which in superfield notation reads
2∑

a=1

φaφa = 1, (25)

with the superfield φa being given by

φa = za + θψa + 1
2θ

2 fa. (26)

This contains, for each colour, a complex scalar za, a Dirac spinor ψa and a complex auxiliary
field fa. We refer the reader to [22] for a detailed discussion on how this formalism can
actually describe realistic models of doped antiferromagnets in certain regions of parameter
space that guarantee N = 1 supersymmetry and under what circumstances one can have N = 2
supersymmetric extensions.

For our purposes we note that, in component form, the constraint (25) reads for physical
fields:

2∑
a=1

|za|
2
= 1 and

2∑
a=1

(
zaψα + zaψa

)
= 0, (27)

and these results can be generalized to non-Abelian cases, such as the broken SU(2) case
discussed previously.

In addition to supersymmetry between the constituent spinon and holons, it was suggested
in [24], motivated by the Hartree–Fock form (6) and the associated spinon and holon bilinears
(7) forming gauged group-link variables, that composite fields made out of the fundamental
constituents z and 9 exhibit an on-shell N = 2 supersymmetry, in the above-mentioned
regions of the parameter space where the constituent N = 1 supersymmetry exists. Since
these composite fields could constitute observable excitations of these materials, this kind
of composite supersymmetry could provide a way to obtain some exact results in the phase
diagrams of doped antiferromagnets and hence high-temperature superconductors.

This induced N = 2 supersymmetric structure in the low-energy composite theory
provides exact results on the phase structure of doped antiferromagnets in this regime of the
corresponding parameter space because the effective field theory is [24] N = 2 scalar quantum
electrodynamics, in which extra N = 1 matter multiplets may be present, with nontrivial
superpotentials. The moduli spaces of such theories have been studied extensively in [25],
following the pioneering work of Seiberg and Witten [26] in four dimensions, with the result
that there is a nontrivial non-perturbative infrared fixed point, induced by the matter multiplets.
We recall that a (2 + 1)-dimensional gauge theory is super-renormalizable, without ultraviolet
divergences, by elementary power counting. However, it has a nontrivial low-energy (infrared)
structure. There are increasing hints that four-dimensional N = 8 supergravity theory might
also lack the expected ultraviolet divergences. However, the low-energy (infrared) structure of
the four-dimensional N = 8 theory remains to be elucidated.

The nontrivial infrared structure of the (2 + 1)-dimensional theory was interpreted in [24]
as indicating a deviation from the trivial Landau-liquid fixed point, implying several observable
properties in the normal phase of the superconductor. In addition, these theories also exhibited
a superconducting phase [10, 24], associated with a phase in which the SU(2) non-Abelian
symmetry is broken down to an Abelian subgroup. The superconducting phase corresponds
to the Coulomb phase of the Abelian subgroup (not to be confused with electromagnetic
gauge symmetry), in which the corresponding gauge boson is massless. This leads to an
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anomalous current–current one loop diagram with a massless pole that, according to the
anomaly mechanism of [10], results in superconductivity (according to the Landau criterion)
upon coupling to a real external electromagnetic field. The Higgs phase of the Abelian
subgroup of the original SU(2) gauge group, in which the gauge field is massive, corresponds
to the pseudogap phase of the underdoped cuprates (in condensed-matter parlance), which
occurs for low doping. In addition, non-perturbative (monopole) configurations have also
been discussed in [24], in various supersymmetric effective gauge theories, following [25],
in an attempt to discuss the formation of domain-wall structures, such as the stripe phase
of high-temperature superconductors, in which the spin and charge are separated in spatial
domains in the underdoped (non-superconducting) regions of the material. Thus, the emergence
of dynamical composite gauge fields in supersymmetric 2 + 1 lattice models and nontrivial
aspects of its spontaneous breaking by composite scalar fields can, in principle, be subjected
to experimental tests.

This completes our review of relevant known exact results in condensed-matter systems in
which a composite gauge symmetry is realized dynamically.

3.2. N = 2 supersymmetry

Having in mind the N = 8 supergravity theory of interest, we now describe an N = 2
supersymmetric SU(2) coset field theory in 2 + 1 dimensions, in which the superpartners of
the theory are composite fields generalizing the previous construction out of fundamental
spinon and holon d.o.f. The latter are assumed to belong to N = 1 supermultiplets, but the
supersymmetry may be extended to N = 2, if the gauge condition ∂µAµ = 0 is satisfied.
Hlousek and Spector [27] needed this gauge condition in the Abelian–Higgs model in order to
identify the gauge field with a topologically conserved current, which was at the origin of their
elevation of the supersymmetry. The same condition was found for the CP1 model in [28], and
was generalized to Yang–Mills theory in [29]. Its recurrence suggests that this gauge condition
is necessary, model independently, for supersymmetry elevation in 2 + 1 dimensions.

Our starting point is to assume the existence of two complex N = 1 scalar supermultiplets
(i is now a flavour index)

φi = zi + θψi + 1
2θ

2 fi , i = 1, 2, (28)

where the two-component Grassman coordinate θ is real, and the complex field components
zi , ψi and fi are, respectively, the scalar, the two-component fermion and the auxiliary field.
Note that, in 2 + 1 dimensions, a real two-component fermion represents one d.o.f., such that,
in the supermultiplet (28), the complex scalar d.o.f. compensates for the complex fermionic
d.o.f., and the role of the auxiliary field is to balance the numbers of bosonic and fermionic
components in the superfield. We also remind the reader that in 2 + 1 dimensions there is no
chirality condition, as this would restrict the space–time dependence of the field components.

Based on these fundamental d.o.f., the following N = 1 composite supermultiplets were
considered in [24], where Dα = ∂/∂θα + i( /∂θ)α is the supercovariant derivative:

• Scalar supermultiplets, forming an SU(2) triplet,

81
= Dαφ1 Dαφ1,

82
= Dαφ2 Dαφ2,

83
= Dαφ1 Dαφ2.

(29)
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• Parity-conserving vector supermultiplets, forming an SU(2) triplet,

V 1
α = Re{φ1 Dαφ2 +φ2 Dαφ1},

V 2
α = Im{φ1 Dαφ2 +φ2 Dαφ1},

V 3
α = Re{φ1 Dαφ1 −φ2 Dαφ2}.

(30)

• A parity-violating composite vector supermultiplet, forming an SU(2) singlet,

V 4
α = Re{φ1 Dαφ1 +φ2 Dαφ2}. (31)

The next step is to gather the N = 2 supermultiplet d.o.f. into the following complex
superfields:

Ga
= Re{8a

} + iDαV a
α a = 1, 2, 3. (32)

Each of these contains a real scalar field, a gauge field, a complex two-dimensional gaugino and
a real auxiliary field. Let us denote by g the gauge coupling and by f abc the SU(2) structure
constants. Using the Wess–Zumino gauge for V a

α , it was shown in [29] that the following
Lagrangian describes the resulting N = 2 supersymmetric SU(2) gauge theory:

L=

∫
d2θ

∣∣∣∣DαGa + g f abc

(
GbV cα +

i

2
Dα(V bβV c

β )

)∣∣∣∣2 , (33)

provided the gauge condition

∂µAa
µ = 0 (34)

holds for any gauge index a. This gauge condition was found in [29] to be necessary to
cancel unwanted contributions proportional to ∂µAa

µ, when L is expanded in terms of the field
components. Although we exhibit here an SU(2) model, it is clear that this construction may be
extended to any SU(n) symmetry group and is not restricted to the ‘= 2’ case presented here.

An important question is how the above-described composite (‘meson-like’) fields become
dynamical. In section 2, we have seen that the SU(2) holon composites, which are obtained
by integrating out a non-dynamical (strongly coupled) U(1), can become dynamical, as a
result of their gauging, which is a direct consequence of the Hartree–Fock lattice Hamiltonian
(6) and the associated spinon and holon bilinears (7). A similar situation characterizes the
supersymmetric composites, where again there are lattice Hamiltonians of Hartree–Fock type,
as we discussed extensively in section 3. However, there are a few subtleties, which we now
outline. Unlike the non-supersymmetric case, where the mass gaps of the spinon z and holons
9 were different, in the supersymmetric case one is not allowed to integrate out the spinons,
which now are degenerate in mass with the holons. Hence both the groups US(1) and SU(2)
appear strongly coupled at the constituent level. However, we can apply here again the trick of
working with large-N SU(N), instead of the SU(2) group. This implies that, as in the non-
supersymmetric case, one can consider finite couplings for the non-Abelian part, in which
case one may demonstrate that the above-described N = 2 SU(N) supersymmetric composites
become dynamical.

Finally, the addition of matter in the fundamental representation necessitates two new
N = 1 scalar supermultiplets, made of composite field components, and containing different
d.o.f. from those considered so far

Q1 = φ2
1, Q2 = φ2

2, (35)
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which we represent as a two-component superfield Q = (Q1, Q2). We note that the matter
superfield components must be complex, since they transform according to the fundamental
representation of SU(2).

It is easy to see that the gauge–matter interaction then reads∫
d2θ

{
1

2

(
(DαQ)† − igQ†V aαT a

)
(DαQ + igV a

α T a Q)+ gQ†8aT a Q

}
, (36)

where the T a are the SU(2) generators in the fundamental representation.
In this respect, we note that, from the point of view of condensed-matter models, these

matter fields describe interactions external to the two sublattice structures depicted in figure 1,
e.g. by coupling the superconducting planes, etc. For our purposes however, such matter fields
may be integrated out, which renders the gauge multiplets dynamical, by inducing kinetic terms
for the gauge fields, in analogy with the z-spinon integration in the non-supersymmetric models
of section 2. In this way one still has formally a strongly coupled SU(N) gauge theory, but the
quantum corrections renormalize the effective coupling.

To summarize, starting from the two complex N = 1 scalar supermultiplets (28), we have
the following construction:

• Build three complex N = 1 scalar supermultiplets (29) and three N = 1 vector
supermultiplets (30), all composed of more elementary d.o.f.

• Gather these d.o.f. into three N = 2 supermultiplets (32), so as to obtain an N = 2
supersymmetric SU(2) gauge theory, which is possible if the gauge condition (34) is
imposed.

• Add the composite matter N = 1 supermultiplets (35) so as to generate an N = 2
supersymmetric SU(2) theory interacting with matter in the fundamental representation.

The theory obtained in the Lagrangians (33) and (36) can of course be expressed in a more
compact way using the N = 2 superspace formalism, but the point of the present derivation is
to start from N = 1 supersymmetry, using the N = 1 formalism, to arrive at a theory invariant
under N = 2 supersymmetry.

As mentioned in the previous section, one may use exact results on N = 2 gauge theories
to understand the dynamical behaviour of this model.

4. Summary and prospects

We have shown that supersymmetric models in 2 + 1 dimensions, formulated either at the lattice
level or as coset field theories, exhibit the emergence of dynamical gauge bosons realizing
an SU(N) gauge group. There are also composite scalar fields whose expectation values may
break this composite gauge symmetry spontaneously to a subgroup that is realized in the
Coulomb phase. Specifically, in the lattice models discussed in sections 2 and 3, the underlying
constituents are spinons and holons, and the composite scalars are in the adjoint representation
of the gauge group. In the coset field theories discussed in section 3, there may also appear
scalar fields in the fundamental representation of the SU(N) gauge group. By formulatingN = 2
supersymmetric versions of these lattice and coset field theories, the derivation of these results
may be placed on a rigorous basis.

An important feature of our models was that the gauge fields were strongly coupled, in
the sense of not having kinetic terms (i.e. plaquette terms in lattice models). However, we have
argued that, by working in the large N limit, where N is the number of species (i.e. sublattices
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or nodes) that must be even for reasons of parity conservation, one could formally reinstate a
finite value of the SU(N) gauge coupling, thus making the gauge fields dynamical.

Moreover, by using arguments based on a Hartree–Fock approximation in the microscopic
models, we have supported the idea that composite gauge fields made out of spinons and holons
can, also in the supersymmetric regions of the parameter space, become dynamical, leading
to full-fledged N = 2 supersymmetric SU(N) gauge theories. In (2 + 1)-dimensions these are
characterized by a nontrivial infrared fixed-point structure, which constitutes an additional,
more rigorous one for inferring the dynamical nature of the gauge fields from the effects of
the quantum corrections. Even if the bare action is characterized by infinite gauge couplings,
quantum loop corrections can generate such terms, thereby generating the dynamics of the gauge
fields. This feature has been seen explicitly in non-supersymmetric models, by the integration of
the spinon (magnon) fields z. In supersymmetric theories, formally one works with additional
matter multiplets, which can be integrated out, thereby inducing finite (renormalized) gauge
kinetic terms and hence rendering the strongly coupled gauge theory dynamical.

Although in this work we have dealt explicitly with unitary SU(N) gauge theories, in which
N must be even because of arguments based on the parity invariance that characterizes the
antiferromagnetic case, nevertheless other gauge groups are expected to lead to qualitatively
similar conclusions.

These features are exactly what one might like to see [1] in N = 8 supergravity in 3 + 1
dimensions [2], which has a non-anomalous SU(8) gauge symmetry [9]. If this gauge symmetry
would become dynamical, an adjoint scalar multiplet could break it spontaneously into a rank-7
subgroup such as SU(5)× U(1)3 or SU(3)× SU(2)× U(1)3, and scalars in fundamental
representations could, in principle, reduce the rank to the SU(2)× U(1) gauge group of the
standard model. However, infrared behaviour in 3 + 1 dimensions is different from that in 2 + 1
dimensions, and we have no real understanding of how the composite gauge fields might become
dynamical in this case. In this connection, we recall thatN = 8 supergravity cannot be obtained
simply as some limit of string theory without the appearance of additional low-mass fields, and
it is possible that these might play an essential role.

On the other hand, the results displayed here may be directly applicable to the
2 + 1-dimensional exceptional supergravity theories that can be obtained by truncations
of N = 8 supergravity in 3 + 1 dimensions, which have the following non-compact
coset structures: F4(4)/USp(6)× SU(2), E6(2)/SU(6)× SU(2), E7(−5)/SO(12)× SU(2) and
E8(−24)/E7 × SU(2). Since gravity in 2 + 1 dimensions is topological, it might be just an
‘inessential complication’ in the understanding of the dynamics of these theories. They could
be more complete laboratories for probing the dynamics of the 3 + 1-dimensional E7(7)/SU(8)
theory, though they still evade the tough issue of the infrared behaviour in 3+1 dimensions.

Our work is complementary to the mechanism for making dynamical the gauge fields of
three-dimensional N = 8 supergravity based on the maximal supersymmetric effective low-
energy theory of multiple M2 branes that was presented in [30] (and references therein). There,
the relevant non-Abelian gauge fields have no Maxwell term, but only mixed (parity-conserving)
Chern–Simons structures. Our approach is to suggest that a kinetic term for the gauge field
may be generated through renormalization-group effects in the infrared region of the effective
theory, in direct analogy to what happens in planar condensed-matter models on the lattice
and their continuum effective theories. It remains to be seen whether such an approach, which
works so well in three space–time dimensions, can describe correctly the properties of the
four-dimensional N = 8 supergravity theory.
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