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Abstract. We will present a brief overview of the electronic and transport
properties of graphene nanoribbons focusing on the effect of edge shapes and
impurity scattering. The low-energy electronic states of graphene have two non-
equivalent massless Dirac spectra. The relative distance between these two Dirac
points in the momentum space and edge states due to the existence of zigzag-type
graphene edges is a deciding factor in the electronic and transport properties
of graphene nanoribbons. In graphene nanoribbons with zigzag edges (zigzag
nanoribbons), two valleys related to each Dirac spectrum are well separated
in momentum space. The propagating modes in each valley contain a single
chiral mode originating from a partially flat band at the band center. This
feature gives rise to a perfectly conducting channel in the disordered system, if
impurity scattering does not connect the two valleys, i.e. for long-range impurity
(LRI) potentials. Ribbons with short-range impurity potentials, however, display
ordinary localization behavior through inter-valley scattering. On the other
hand, the low-energy spectrum of graphene nanoribbons with armchair edges
(armchair nanoribbons) is described as the superposition of two non-equivalent
Dirac points of graphene. In spite of the lack of two well separated valley
structures, the single-channel transport subjected to LRIs is nearly perfectly
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conducting, where the backward scattering matrix elements in the lowest order
vanish as a manifestation of internal phase structures of the wave function. For
the multi-channel energy regime, however, conventional exponential decay of the
averaged conductance occurs. Symmetry considerations lead to the classification
of disordered zigzag ribbons into the unitary class for LRIs, and the orthogonal
class for short-range impurities. Since inter-valley scattering is not completely
absent, armchair nanoribbons can be classified into the orthogonal universality
class irrespective of the range of impurities.
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1. Introduction

Recently, graphene, a single-layer hexagonal lattice of carbon atoms, has emerged as a
fascinating system for fundamental studies in condensed matter physics, as well as a promising
candidate material for future applications in nanoelectronics and molecular devices [1]. The
honeycomb crystal structure of single-layer graphene consists of two non-equivalent sublattices
and results in a unique band structure for the itinerant π -electrons near the Fermi energy
that behave as massless Dirac fermions. The valence and conduction bands touch conically
at two non-equivalent Dirac points, called K + and K− points, which form a time-reversed
pair, i.e. opposite chirality. The chirality and a Berry phase of π at the two Dirac points
provide an environment for highly unconventional and fascinating two-dimensional electronic
properties [2], such as the half-integer quantum Hall effect [3], the absence of backward
scattering [4, 5], and π -phase shift of the Shubnikov–de Haas oscillations [6].

The successive miniaturization of graphene electronic devices inevitably demands
clarification of the edge effects on the electronic structures and electronic transport properties
of nanometer-sized graphene. The presence of edges in graphene has strong implications for
the low-energy spectrum of the π -electrons [7]–[9]. There are two basic shapes of edges,
armchair and zigzag, that determine the properties of graphene ribbons. It was shown that
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ribbons with zigzag edges (zigzag ribbons) possess localized edge states with energies close to
the Fermi level [7]–[10]. These edge states correspond to non-bonding wave functions, where
the amplitudes of the edge states reside on one sublattice only [7]. In contrast, edge states are
completely absent for ribbons with armchair edges. Recent experiments support the evidence
for edge-localized states [11, 12]. Also, graphene nanoribbons can experimentally be produced
by using lithography techniques and chemical techniques [13]–[17].

The electronic transport through graphene nanoribbons shows a number of intriguing
phenomena such as zero-conductance Fano resonances [18, 19], valley filtering [20], half-
metallic conduction [21], the spin Hall effect [22] and a perfectly conducting channel
(PCC) [23]. Recent studies also clarify the unconventional transport through graphene junctions,
quantum point contact and heterojunctions [19], [24]–[44]. It is also expected that the edge states
play an important role in the magnetic properties in nanometer-sized graphite systems, because
of their relatively large contribution to the density of states at the Fermi energy [7, 9], [45]–[56].
Recent studies explore the robustness of edge states to size and geometries [56]–[58], [60], and
various edge structures and modifications [56, 59].

Since graphene nanoribbons and carbon nanotubes can be viewed as a new class of
quantum wires, one might expect that random impurities inevitably cause Anderson localization,
i.e. conductance decays exponentially with increasing system length L and eventually vanishes
in the limit of L → ∞. However, it was shown that zigzag nanoribbons and armchair
nanotubes subjected to long-range impurities (LRIs) possess a PCC [23, 61]. Recent studies
show that PCCs can be stabilized in two standard universality classes. One is the symplectic
universality class with an odd number of conducting channels [61]–[63], and the other is the
unitary universality class with an imbalance between the numbers of conducting channels
in two propagating directions [23, 64, 65]. The symplectic class consists of systems having
time-reversal symmetry (TRS) without spin-rotation invariance, while the unitary class is
characterized by the absence of time-reversal symmetry [66].

In this paper, we will give a brief overview of the electronic transport properties of
disordered graphene nanoribbons. In zigzag nanoribbons, the edge states play an important
role, since they appear as special modes with partially flat bands and, under certain conditions,
lead to chiral modes separately in the two valleys. There is one such mode of opposite
orientation in each of the two valleys of propagating modes, which are well separated in
k-space. The key result of this study is that for disorder without inter-valley scattering a single
PCC emerges introduced by the presence of these chiral modes. This effect disappears as soon
as inter-valley scattering is possible. On the other hand, the low-energy spectrum of graphene
nanoribbons with armchair edges (armchair nanoribbons) is described as the superposition of
two non-equivalent Dirac points of graphene. In spite of the lack of two well separated valley
structures, the single-channel transport subjected to LRIs is nearly perfectly conducting, where
the backward scattering matrix elements in the lowest order vanish as a manifestation of internal
phase structures of the wave function [67]. For the multi-channel energy regime, however,
conventional exponential decay of the averaged conductance occurs. Symmetry considerations
lead to the classification of disordered zigzag ribbons into the unitary class for LRIs, and
the orthogonal class for short-range impurities (SRIs). Since inter-valley scattering is not
completely absent, armchair nanoribbons can be classified into the orthogonal universality class
irrespective of the range of impurities.
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Figure 1. Structure of graphene nanoribbon with (a) armchair edges (armchair
ribbon) and (b) zigzag edges (zigzag ribbon). The lattice constant is a and N
defines the ribbon width. The circles with dashed lines indicate the missing
carbon atoms for the edge boundary condition of the massless Dirac equation.
The disordered region with randomly distributed impurities lies in the shaded
region and has the length L (see text in section 3). Randomly distributed circles
schematically represent the LRIs.

2. Electronic states of graphene and nanoribbons

2.1. Tight-binding model and edge states

There are two typical shapes of a graphene edge, called armchair and zigzag. The two edges
have 30◦ difference in their cutting direction. Here we briefly discuss the way that the graphene
edges drastically change the π -electronic structures [7]. In particular, a zigzag edge provides
the localized edge state, while an armchair edge does not show such localized states.

A simple and useful model to study the edge and size effect is one of the graphene ribbon
models as shown in figures 1(a) and (b). We define the width of graphene ribbons as N , where
N stands for the number of the dimer (two carbon sites) lines for the armchair ribbon and by
the number of the zigzag lines for the zigzag ribbon, respectively. It is assumed that all dangling
bonds at graphene edges are terminated by hydrogen atoms, and thus make no contribution to
the electronic states near the Fermi level. We employ a single-orbital tight-binding model for
the π -electron network. The Hamiltonian is written as,

H = −t
∑
〈i, j〉

c†
i c j +

∑
i

Vi c
†
i ci , (1)

where the operator c†
i creates a π -electron on the site i . 〈i, j〉 denotes the summation over the

nearest-neighbor sites. t , the transfer integrals between all the nearest-neighbor sites, are set
to be unity for simplicity. This is sufficient to show the intrinsic difference in the electronic
states originating from the topological nature of each system. The value of t is considered to be
about 2.75 eV in a graphene system. The second term in equation (1) represents the impurity
potential; Vi = V (r i) is the impurity potential at a position r i. The effect of impurity potential
on the electronic transport properties will be discussed in the next section.

Prior to the discussion of the π -electronic states of graphene nanoribbons, we shall briefly
review the π -band structure of a graphene sheet [68]. To diagonalize the Hamiltonian for a
graphene sheet, we use a basis of the two-component spinor, c†

k = (c†
Ak, c†

Bk), which is the Fourier
transform of (c†

i∈A, c†
i∈B). Let τ1, τ2 and τ3 be the displacement vectors from a B site to its three
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Figure 2. (a) A graphene sheet in real space, where the black (white) circles
mean the A(B)-sublattice site. a is the lattice constant. Here τ1 = (0, a/

√
3),

τ2 = (−a/2, −a/2
√

3), and τ3 = (a/2, −a/2
√

3). (b) First BZ of graphene.
K+ =

2π

a (1
3 ,

1
√

3
), K− =

2π

a (2
3 , 0), 0 = (0, 0). (c) The π band structure and (d)

the density of states of the graphene sheet. The valence and conduction bands
make contact at the degeneracy point K±.

nearest-neighbor A sites, defined so that ẑ · τ1 × τ2 is positive (figure 2(a)). ẑ is the normal
vector to the graphene sheet. In this representation, the Hamiltonian is written as H =

∑
k c†

k
Hkck and

Hk = −t
3∑

i=1

(
cos (k · τi))σ̂x + sin(k · τi))σ̂y

)
, (2)

where σ̂ = (σ̂x , σ̂y, σ̂z) are the Pauli matrices. Then, the energy eigenvalues are E±

k =

±t |
∑3

i=1 exp(k · τi)|. Since one carbon site has one π -electron on average, only the E−

k -band
is completely occupied.

In figures 2(b)–(d), the first Brillouin zone (BZ) of the graphene lattice, the energy
dispersion of π -bands in the first BZ and the corresponding density of states are depicted,
respectively. Near the 0 point, both valence and conduction bands have the quadratic form
of kx and ky , i.e. Ek = ±(3 − 3|k|

2/4). At the M points, the middle points of the sides of the
hexagonal BZ, the saddle point of energy dispersion appears and the density of states diverges
logarithmically. Near the K point of the corner of the hexagonal first BZ, the energy dispersion
is linear in the magnitude of the wave vector, Ek = ±

√
3ta|k|/2, where the density of states

linearly depends on the energy. Here a(=
√

3|τi |(i = 1, 2, 3)) is the lattice constant. The Fermi
energy is located at the K points and there is no energy gap at these points, since Ek vanishes at
these points by hexagonal symmetry.

The energy band structures of armchair ribbons are shown in figures 3(a)–(c), for three
different ribbon widths, together with the density of states. The wavenumber k is normalized
by the length of the primitive translation vector of each graphene nanoribbon, and the energy
E is scaled by the transfer integral t . The top of the valence band and the bottom of the
conduction band are located at k = 0. It should be noted that the ribbon width decides whether
the system is metallic or semiconducting. As shown in figure 3(b), the system is metallic when
N = 3M − 1, where M is an integer. For semiconducting ribbons, the direct gap decreases
with increasing ribbon width and tends to zero in the limit of very large N . For narrow non-
doped metallic armchair nanoribbons, an energy gap can develop due to Peierls instabilities
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Figure 4. Energy band structure E(k) and density of states D(E) of zigzag
ribbons of various widths ((a) N = 4, (b) 5 and (c) 30).

toward low temperatures [69], which is consistent with the recent density functional theory
calculation [56, 70].

For zigzag ribbons, however, a remarkable feature arises in the band structure, as shown in
figures 4(a)–(c). We see that the highest valence band and lowest conduction band are always
degenerate at k = π . It is found that the degeneracy of the center bands at k = π does not
originate from the intrinsic band structure of the graphene sheet. These two special center bands
get flatter with increasing ribbon width. A pair of partial flat bands appears within the region of
2π/36 |k|6 π , where the bands sit in the vicinity of the Fermi level.

The electronic state in the partial flat bands of the zigzag ribbons can be understood as
the localized state near the zigzag edge by examining the charge density distribution [7]–[9],
[11, 12]. Here we show that the puzzle for the emergence of the edge state can be solved by
considering a semi-infinite graphite sheet with a zigzag edge. First, to show the analytic form,
we depict the distribution of charge density in the flat band states for some wavenumbers in
figure 5(a)–(d), where the amplitude is proportional to the radius. The wave function has non-
bonding character, i.e. finite amplitudes only on one of the two sublattices, which includes
the edge sites. It is completely localized at the edge site when k = π , and starts to gradually
penetrate into the inner sites as k deviates from π reaching the extended state at k = 2π/3.

Considering the translational symmetry, we can start constructing the analytic solution
for the edge state by letting the Bloch components of the linear combination of atomic orbitals
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Figure 5. Charge density plot for analytic solution of the edge states in semi-
infinite graphite, when (a) k = π , (b) 8π/9, (c) 7π/9 and (d) 2π/3. (e) An
analytic form of the edge state for a semi-infinite graphite sheet with a zigzag
edge, emphasized by bold lines. Each carbon site is specified by a location index
n on the zigzag chain and by a chain order index m from the edge. The magnitude
of the charge density at each site, such as x , y and z, is obtained analytically (see
text). The radius of each circle is proportional to the charge density on each site,
and a drawing is given for k = 7π/9.

(LCAO) wave function be . . . , eik(n−1), eikn, eik(n+1), . . . on successive edge sites, where n denotes
a site location on the edge. Then the mathematical condition necessary for the wave function to
be exact for E = 0 is that the total sum of the components of the complex wave function over the
nearest-neighbor sites should vanish. In figure 5(e), the above condition is eik(n+1) + eikn + x = 0,
eikn + eik(n−1) + y = 0 and x + y + z = 0. Therefore, the wave function components x , y and z
are found to be Dkeik(n+1/2), Dkeik(n−1/2) and D2

k eikn, respectively. Here Dk = −2 cos(k/2). We
can thus see that the charge density is proportional to D2(m−1)

k at each non-nodal site of the
mth zigzag chain from the edge. Then the convergence condition of |Dk|6 1 is required, for
otherwise the wave function would diverge in a semi-infinite graphite sheet. This convergence
condition defines the region 2π/36 |k|6 π where the flat band appears.

2.2. Massless Dirac equation

We briefly discuss here the relation between the massless Dirac spectrum of graphene and low-
energy electronic states of nanoribbons. The electronic states near the two non-equivalent Dirac
points (K±) can be described by 4 × 4 Dirac equation, i.e.

Hk· p F(r) = ε F(r) (3)

with

Hk· p =


0 γ (k̂x − ik̂y) 0 0

γ (k̂x + ik̂y) 0 0 0
0 0 0 γ (k̂x + ik̂y)

0 0 γ (k̂x − ik̂y) 0

 (4)
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and

F(r) =


F K+

A (r)

F K+
B (r)

F K−

A (r)

F K−

B (r)

 . (5)

Here, k̂x(k̂y) is a wavevector operator, and can be replaced by k̂ → −i∇̂ in the absence of
magnetic field. γ is a band parameter, which satisfies γ =

√
3ta/2. F K±

A (r) and F K±

B (r) are
the envelope functions near K± points for A and B sublattices, which slowly vary in the length
scale of the lattice constant. We can rewrite the above effective mass Hamiltonian by using the
Pauli matrices τ x,y,z for valley space (K±) as

Hk· p = γ
[
k̂x(σ

x
⊗ τ 0) + k̂y(σ

y
⊗ τ z)

]
. (6)

Here, τ 0 is the 2 × 2 identity matrix. We can easily obtain the linear energy spectrum for
graphene as

ε = sγ |k| with s = ±1, (7)

and the corresponding wave functions with the definition of 8K±
= [F K±A

, FK±B] are

8K±
=

1
√

2

(
s

e±iφk

)
eik·r . (8)

Here

e±iφk =
kx ± iky

|kx + iky|
. (9)

2.2.1. Zigzag nanoribbons. The low-energy electronic states for zigzag nanoribbons can also
be described starting from the Dirac equation [10, 71]. Since the outermost sites along the first
(N th) zigzag chain are B(A)-sublattice, an imbalance between two sublattices occurs at the
zigzag edges leading to the boundary conditions

φK±A(r [0]) = 0, φK±B(r [N+1]) = 0, (10)

where r [i] stands for the coordinate at the i th zigzag chain. The energy eigenvalue and
wavenumber is given by the following relation:

ε = ±(η − k)eηW , (11)

where η =
√

k2 − ε. It can be shown that the valley near k = 3π/2a in figure 1(b) originates
from the K +-point, the other valley at k = −3π/2a from the K−-point [10, 71].

2.2.2. Armchair nanoribbons. The boundary condition of armchair nanoribbons projects K +

and K− states into the 0 point in the first BZ as can be seen in figure 2(b). Thus, the low-
energy states for armchair nanoribbons are the superposition of K + and K− states. The boundary
condition for armchair nanoribbons [71] can be written as

[F+
A(x, y) + F−

A (x, y)]|x=0,W = 0, (12)

[F+
B (x, y) − F−

B (x, y)]|x=0,W = 0. (13)
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If the ribbon width W satisfies the condition of W = (3/2)(Nw + 1)a with Nw = 0, 1, 2, . . . , the
system becomes metallic with the linear spectrum. The corresponding energy is given by

εn,k,s = sγ
√

κ2
n + k2, (14)

where κn =
2πn

3(Nw+1)a , n = 0, ±1, ±2, . . . and s = ±. The n = 0 mode is the lowest linear subband
for metallic armchair ribbons. The energy gap (1s) to the first parabolic subband of n = 1 is
given as

1s = 4πγ/3(Nw + 1)a, (15)

which is inversely proportional to ribbon width. It should be noted that a small energy gap can
be acquired due to the Peierls distortion for half-filling at low temperatures [69, 70], but such
an effect is not relevant for single-channel transport in the doped energy regime.

2.3. Edge boundary condition and inter-valley scattering

Now we discuss the relation between the inter-valley scattering and edge boundary condition.
According to [5], the impurity potential can be included in the massless Dirac equation by
adding the following potential term Ûimp described as

Ûimp =


uA(r) 0 u′

A(r) 0
0 uB(r) 0 −u′

B(r)
u′

A(r)∗ 0 uA(r) 0
0 −u′

B(r)∗ 0 uB(r)

 , (16)

with

u X(r) =

∑
RX

g (r − RX) ũ X (RX), (17)

u′
X(r) =

∑
RX

g (r − RX) e−i2K ·RX ũ X (RX), (18)

where ũ X(RX) is the local potential due to impurities for X = A or B. Here g(R) with the
normalization condition of

∑
R g(R) = 1 is a real function, which has an appreciable amplitude

in the region where |R| is smaller than a few times of the lattice constant, and decays rapidly
with increasing |R|. For convenience we distinguish the impurity into two types by the range
of the impurity potential: one is LRI if the range of impurity potential is much larger than the
lattice constant and the other is SRI if the range of impurity is smaller than the lattice constant.

If only the LRIs are present, we can approximate uA(r) = uB(r) ≡ u(r) and u′

A(r) =

u′

B(r) ≡ u′(r). In the case of carbon nanotubes and zigzag nanoribbons, u′

X(r), u′

X(r) vanishes
after the summation over RX in equation (18) since the phase factor e−i2K ·RX strongly oscillates
in the x-direction. This means that the two valleys are independent and one can only focus
on either the K + or K− valley. Thus LRIs do not induce inter-valley scattering for zigzag
nanoribbons.

However, this cancelation is not complete in an armchair nanoribbon because the averaging
over the x-direction is restricted to the finite width of W . This means that we cannot neglect the
contribution from scatterers particularly in the vicinity of the edges to u′

X(r). This means that
inter-valley scattering does not vanish even in the case of LRI in the armchair nanoribbons.
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mode exists for the K− point, but a single excess left-going mode exists for
the K− point. Here nc = 0, 1, 2, . . . .

3. Electronic transport properties

We numerically discuss the electronic transport properties of the disordered graphene
nanoribbons. In general, electron scattering in a quantum wire is described by the scattering
matrix [66]. Through the scattering matrix S, the amplitudes of the scattered waves O are related
to the incident waves I ,(

OL

OR

)
= S

(
IL

IR

)
=

(
r t ′

t r ′

) (
IL

IR

)
. (19)

Here, r and r ′ are reflection matrices, t and t ′ are transmission matrices, L and R denote
the left and right lead lines. The Landauer–Büttiker formula [73] relates the scattering
matrix to the conductance of the sample. The electrical conductance is calculated using the
Landauer–Büttiker formula,

G(E) =
e2

π h̄
Tr(t t†) =

e2

π h̄
g(E). (20)

Here the transmission matrix t(E) is calculated by means of the recursive Green function
method [18, 74]. For simplicity, throughout this paper, we evaluate electronic conductance in
units of quantum conductance (e2/π h̄), i.e. dimensionless conductance g(E). We would like to
mention that recently the edge disorder effect on the electronic transport properties of graphene
nanoribbons was studied using a similar approach [75]–[77].

3.1. One-way excess channel system

In this subsection, we consider the conductance of zigzag nanoribbons in the clean limit, which
is simply given by the number of the conducting channel. As can be seen in figure 6(a), there
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is always one excess left-going channel in the right valley (K +) within the energy window of
|E |6 1. Analogously, there is one excess right-going channel in the left valley (K−) within the
same energy window. Although the number of right-going and left-going channels are balanced
as a whole system, if we focus on one of two valleys, there is always one excess channel in one
direction, i.e. a chiral mode.

Now let us consider the injection of electrons from left to right through the sample.
When the chemical potential is changed from E = 0, the quantization rule of the dimensionless
conductance (gK +) in the valley of K + is given as

gK+ = n, (21)

where n = 0, 1, 2, . . . . The quantization rule in the K−-valley is

gK+ = n + 1. (22)

Thus, conductance quantization of the zigzag nanoribbon in the clean limit near E = 0 has the
following odd-number quantization, i.e.

g = gK+ + gK−
= 2n + 1. (23)

Since we have an excess mode in each valley, the scattering matrix has some peculiar
features, which can be seen when we explicitly write the valley dependence in the scattering
matrix. By denoting the contribution of the right valley (K +) as +, and that of the left valley (K−)
as −, the scattering matrix can be rewritten as

O+
L

O−
L

O+
R

O−
R

 =

(
r t ′

t r ′

) 
I+

L

I−
L

I+
R

I−
R

. (24)

Here we should note that the dimension of each column vector is not identical. Let us denote the
number of the right-going channel in the valley K + or the left-going channel in the valley K−

as nc. For example, nc = 1 at E = E0 in figure 6(a). Figure 6(b) shows the schematic figure of
scattering geometry for K + and K− points. Thus the dimension of the column vectors is given
as follows: {

dim(I+
L) = nc, dim(I+

R) = nc + 1,

dim(I−
L ) = nc + 1, dim(I−

R ) = nc,
(25)

and {
dim(O+

L) = nc + 1, dim(O+
R) = nc,

dim(O−
L ) = nc, dim(O−

R ) = nc + 1.
(26)

Subsequently, the reflection matrices have the following matrix structures:

r =

( nc nc + 1
nc + 1 r++ r+−

nc r−+ r−−

)
, (27)

r ′
=

( nc + 1 nc

nc r ′
++ r ′

+−

nc + 1 r ′
−+ r ′

−−

)
. (28)
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The reflection matrices become non-square when the inter-valley scattering is suppressed, i.e.
the off-diagonal submatrices (r+−, r−+ and so on) are zero.

When the electrons are injected from the left lead of the sample and the inter-valley
scattering is suppressed, a system with an excess channel is realized in the K−-valley. Thus,
for single valley transport, the r−− and r ′

−−
are nc × (nc + 1) and (nc + 1) × nc matrices,

respectively, and t−− and t ′

−−
are (nc + 1) × (nc + 1) and nc × nc matrices, respectively. Noting

the dimensions of r−− and r ′

−−
, we find that r†

−−r−− and r ′

−−
r ′†

−−
have a single zero eigenvalue.

Combining this property with the flux conservation relation (S† S = SS†
= 1), we arrive at the

conclusion that t−−t†
−− has an eigenvalue equal to unity, which indicates the presence of a

PCC only in the right-moving channels. Note that t ′

−−
t ′†

−−
does not have such an anomalous

eigenvalue. If the set of eigenvalues for t ′

−−
t ′†

−−
is expressed as {T1, T2, . . . , Tnc}, that for t−− t†

−−

is expressed as {T1, T2, . . . , Tnc, 1}, i.e. a PCC. Thus, the dimensionless conductance g for the
right-moving channels is given as

gK−
=

nc+1∑
i=1

Ti = 1 +
nc∑

i=1

Ti , (29)

while that for the left-moving channels is

g′

K−
=

nc∑
i=1

Ti . (30)

We see that gK−
= g′

K−
+ 1. Since the overall TRS of the system guarantees the following

relation:
g′

K+
= gK−

,

g′

K−
= gK+,

(31)

the conductance g = gK + + gK−
(right-moving) and g′

= g′

K +
+ g′

K−
(left-moving) are equivalent.

If the probability distribution of {Ti} is obtained as a function L , we can describe the statistical
properties of g as well as g′. The evolution of the distribution function with increasing
L is described by the DMPK (Dorokhov–Mello–Pereyra–Kumar) equation for transmission
eigenvalues [65].

In the following, the presence of a PCC in disordered graphene nanoribbons will be
demonstrated with the help of numerical calculation. Recently Hirose et al pointed out that
the Chalker–Coddington model, which possesses non-square reflection matrices with unitary
symmetry, gives rise to a PCC [64]. However, systems with an excess channel in one direction
were believed difficult to realize. Therefore disordered graphene zigzag nanoribbons with LRI
might constitute the first realistic example. It is possible to extend the discussion to a generic
multiple-excess channel model, where the m-PCCs (m = 2, 3, . . .) appear [65]. Such systems
can be realized by stacking zigzag nanographene ribbons [78]. The electronic transport due
to PCC resembles the electronic transport due to a chiral mode in the quantum Hall system.
However, it should be noted that PCC due to edge states in zigzag ribbons occurs even without
the magnetic field [79, 80].

3.2. Model of impurity potential

As shown in figure 1, the impurities are randomly distributed with a density nimp in the
nanoribbons. In our model, we assume that the each impurity potential has a Gaussian form
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Figure 7. L-dependence of the averaged dimensionless conductance 〈g〉 for a
zigzag nanoribbon with N = 10, (a) d/a = 1.5 (no inter-valley scattering), (b)
d/a = 0.1 (inter-valley scattering). Here u0 = 1.0, and nimp = 0.1. More than
9000 samples with different impurity configurations are included in the ensemble
average.

of a range d

V (r i) =

∑
r0(random)

u exp

(
−

|r i − r0|
2

d2

)
, (32)

where the strength u is uniformly distributed within the range |u|6 uM . Here uM satisfies the
normalization condition:

uM

(full space)∑
r i

exp(−r2
i d2)/(

√
3/2) = u0. (33)

In this work, we set nimp = 0.1, u0 = 1.0 and d/a = 1.5 for LRI and d/a = 0.1 for SRI.

3.3. PCC: absence of Anderson localization

We focus first on the case of LRI using a potential with d/a = 1.5, which is already sufficient
to avoid inter-valley scattering. Figure 7(a) shows the averaged dimensionless conductance as
a function of L for different incident energies (Fermi energies), averaging over an ensemble
of 40 000 samples with different impurity configurations for ribbons of width N = 10. The
potential strength and impurity density are chosen to be u0 = 1.0 and nimp = 0.1, respectively.
As a typical localization effect, we observe that 〈g〉 gradually decreases with increasing length L
(figure 7). However, 〈g〉 converges to 〈g〉 = 1 for LRIs (figure 7(a)), indicating the presence of
a single PCC. It can be seen that 〈g〉(L) has an exponential behavior as

〈g〉 − 1 ∼ exp(−L/ξ) (34)

with ξ as the localization length.
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Figure 8. (a) Average conductance 〈g〉 as a function of the ribbon length L in the
presence of LRIs for several different Fermi energies E . Conductance is almost
unaffected by impurities for single-channel transport (E = 0.1, 0.2 and 0.3),
while it shows a conventional exponential decay for multi-channel transport
(E > 0.4). Here, N = 14, nimp = 0.1 and d/a = 1.5. Ensemble average is taken
over 104 samples. (b) The Fermi energy dependence of 〈g〉 for LRI. (c) The same
as (a) for SRIs. Here, N = 14, nimp = 0.1 and d/a = 0.1.

We performed a number of tests to confirm the presence of this PCC. First of all,
it exists up to L = 3000a for various ribbon widths up to N = 40 for the potential range
(d/a = 1.5). Moreover the PCC remains for LRI with d/a = 2.0, 4.0, 6.0, 8.0, and u0 = 1.0,
nimp = 0.1 and N = 10. As the effect is connected with the subtle feature of an excess mode
in the band structure, it is natural that the result can only be valid for sufficiently weak
potentials. For potential strengths comparable to the energy scale of the band structure, e.g.
the energy difference between the transverse modes, the result should be qualitatively altered
[81]. Deviations from the limit 〈g〉 → 1 also occur, if the incident energy lies at a value
close to the change between g = 2n − 1 and 2n + 1 for the ribbon without disorder. This is
for example visible in the above calculations for E = 0.4 where the limiting value 〈g〉 < 1
(figure 7(a)).

Turning to the case of SRI the inter-valley scattering becomes sizable enough to ensure
TRS, such that the perfect transport supported by the effective chiral mode in a single valley
ceases to exist. In figure 7(b), the nanoribbon length dependence of the averaged conductance
for SRIs is shown. Since SRI causes inter-valley scattering for any incident energy, the electrons
tend to be localized and the averaged conductance decays exponentially, 〈g〉 ∼ exp(−L/ξ),
without developing a perfect conduction channel.

In this subsection, we have completely neglected the effect of electron–electron interaction,
which may acquire the energy gap for non-doped zigzag nanoribbons at very low temperatures
accompanying edge spin polarization [7, 21, 45]. In such a situation, a small transport gap will
appear near E = 0. Since the edge states have less Fermi instability for the doped regime, the
spin polarized states might be less important for the doped system.

3.4. Nearly pefect single-channel transport in disordered armchair nanoribbons

Now we turn to the discussion of the electronic transport properties of disordered metallic
armchair nanoribbons. Figure 8(a) shows the averaged conductance 〈g〉 as a function of
the ribbon length L in the presence of LRI for several different Fermi energies E . As we
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can clearly see, the averaged conductance subjected to LRI in the single-channel transport
(E = 0.1, 0.2 and 0.3) is nearly equal to one even in the long wire regime. This result is
contrary to our expectation that electrons are scattered even by LRI, since wave functions at
K + and K− points are mixed in armchair nanoribbons as we have already seen in section 2.2.2.
For multi-channel transport (E > 0.4), the conductance shows a conventional decay. The
robustness of single-channel transport can be clearly viewed from the Fermi energy dependence
of conductance for several different ribbon lengths L as shown in figure 8(b). It should be
noted that the energy dependence in the vicinity of E = 0 is quite different from that in zigzag
nanoribbons. The conductance decays rapidly due to the finite ribbon width effect in zigzag
ribbons [23], while the conductance around E = 0 remains unity in armchair ribbons
(figure 8(b)).

Now let us see the effect of SRIs. Figure 8(c) shows the average conductance 〈g〉 as a
function of the ribbon length L in the presence of SRI for several different Fermi energies E .
In this case, the conductance decays exponentially even for single-channel transport. This result
is similar to that previously obtained in zigzag nanoribbons. However, the rate of decay in the
low-energy single-channel regime (E = 0.1 and 0.2) is slower than that for the multi-channel
transport regime (E > 0.4) in this case. Similar results are obtained in [75], but in which only
short-range disorder at the edge of ribbons is considered.

3.5. T -matrix analysis

The absence of localization in the single-channel region can be understood from the Dirac
equation including the impurity potential term Ûimp with armchair edge boundary. To consider
the amplitude of backward scattering, we introduce the T -matrix defined as

T = Ûimp + Ûimp
1

E − Ĥ0

Ûimp + · · · . (35)

We can evaluate the matrix elements of Ûimp for the eigenstate |n, k, s〉 with the eigenenergy of
equation (14) which can be written as

|n, k, s〉 =
1

√
4W L


(

s
e−iθ(n,k)

)
eiκn x(

−s
e−iθ(n,k)

)
e−iκn x

 eiky , (36)

with the phase factor

e−iθ(n,k)
=

κn − ik√
κ2

n + k2
. (37)

Here it should be noted that the phase structure in equation (36) is different between K + and
K− states, and these internal phase structures are critical for the scattering matrix elements
of armchair nanoribbons, as we discuss in the following. Using the above expression, we can
obtain the scattering matrix element

〈n, k, s|Ûimp|n
′, k ′, s ′

〉 =

(
ss ′ + ei(θ(n,k)−θ(n′,k′))

)
V

(
n, k; n′, k ′

)
, (38)
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with

V
(
n, k; n′, k ′

)
=

1

4W L

∫ W

0
dx

∫ L

0
dy e−i(k−k′)y

[
u(r)

(
e−i(κn−κn′ )x + c.c.

)
−

(
u′(r)e−i(κn+κn′ )x + c.c.

)]
. (39)

It should be emphasized that equation (38) has the same form as that obtained for carbon
nanotubes without inter-valley scattering (u′

X(r) = 0) [5]. Interestingly, in spite of the fact that
armchair nanoribbons inevitably suffer from inter-valley scattering due to the armchair edges
(u′

X(r) 6= 0), we can express the matrix element for backward scattering as equation (38) by
including u′

X(r) into V (n, k; n′, k ′) in equation (39). This is due to the different phase structure
between K + and K− in equation (36).

We focus on the single-channel regime where only the lowest subband with n = 0
crosses the Fermi level. From equation (38), the scattering amplitude from the propagating state
|0, k, s〉 to its backward state |0, −k, s〉 in the single-channel mode becomes identically
zero, i.e.

〈0, −k, s|Ûimp|0, k, s〉 = 0. (40)

Thus, since the lowest backward scattering matrix element of T -matrix vanishes, the decay of
〈g〉 in the single-channel energy regime is extremely slow as a function of the ribbon length as
we have seen in figure 8. However, the back-scattering amplitude in the second and much higher
order does not vanish. Hence the single-channel conduction is not exactly perfect like carbon
nanotubes [5], but nearly perfect in armchair nanoribbons.

4. Universality class

According to random matrix theory, ordinary disordered quantum wires are classified into
the standard universality classes, orthogonal, unitary and symplectic. The universality classes
describe transport properties, which are independent of the microscopic details of disordered
wires. These classes can be specified by time-reversal and spin–rotation symmetry. The
orthogonal class consists of systems having both time-reversal and spin–rotation symmetries,
while the unitary class is characterized by the absence of TRS. The systems having TRS without
spin–rotation symmetry belong to the symplectic class. These universality classes have been
believed to inevitably cause Anderson localization although typical behaviors are different from
class to class.

In the graphene system, the presence or absence of inter-valley scattering affects the
TRS of the system. If inter-valley scattering is absent, i.e. u′

X(r) = 0, the Hamiltonian
Ĥ0 + Ûimp becomes invariant under the transformation of S = −i(σ y

⊗ τ 0)C , where C is the
complex-conjugate operator. This operation corresponds to the special time-reversal operation
for pseudospins within each valley, and supports that the system has symplectic symmetry.
However, in the presence of inter-valley scattering due to SRI, the invariance under S is broken.
In this case, the TRS across two valleys described by the operator T = (σ z

⊗ τ x)C becomes
relevant, which indicates orthogonal universality class. Thus as noted in [72], graphene with
LRI belongs to symplectic symmetry, but that with SRI belongs to orthogonal symmetry (see
figure 9).
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Figure 9. Summary concerning the universality crossover. On increasing the
range of the impurity potential, graphene is known to be orthogonal for SRIs and
symplectic for LRIs. However, zigzag nanoribbons are unitary class for SRIs.
Armchair ribbons are classified into orthogonal class for the whole impurity
range. Lφ is the phase coherence length. W is the width of graphene ribbons.

However, in the zigzag nanoribbons, the boundary conditions, which treat the two
sublattices asymmetrically leading to edge states give rise to a single special mode in each
valley. Considering now one of the two valleys separately, say the one around k = k+, we see
that the pseudo TRS is violated in the sense that we find one more left-moving than right-
moving mode. Thus, as long as disorder promotes only intra-valley scattering, the system has
no TRS. On the other hand, if disorder yields inter-valley scattering, the pseudo TRS disappears
but the ordinary TRS is relevant making a complete set of pairs of time-reversed modes across
the two valleys. Thus we expect to see qualitative differences in the properties if the range of
the impurity potentials is changed.

The presence of one PCC has been recently found in disordered metallic carbon nanotubes
with LRI [61]. The PCC in this system originates from the skew-symmetry of the reflection
matrix, t r = −r [61], which is special to the symplectic symmetry with an odd number of
channels. The electronic transport properties of such systems have been studied on the basis
of the random matrix theory [62, 63]. On the other hand, zigzag ribbons without inter-valley
scattering are not in the symplectic class, since they break TRS in a special way. The decisive
feature for a PCC is the presence of one excess mode in each valley as discussed in the previous
section.

In view of this classification we find that the universality class of the disordered zigzag
nanoribbon with LRI potential (no inter-valley scattering) is the unitary class (no TRS). On the
other hand, for SRI potentials with inter-valley scattering the disordered ribbon belongs to the
orthogonal class (with overall TRS). Consequently, we can observe a crossover between two
universality classes when we change the impurity range continuously.

However, in the disordered armchair nanoribbons, the special TRS within each valley is
broken even in the case of LRI. This is because u′

X(r) 6= 0 as we have seen in section 2.3. Thus,
irrespective of the range of impurities, the armchair nanoribbons are classified into orthogonal
universality class. Since the disordered zigzag nanoribbons are classified into unitary class for
LRI but orthogonal class for SRI [23], it should be noted that the universality crossover in a
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nanographene system can occur not only due to the range of impurities but also due to the edge
boundary conditions (see figure 9).

The application of a magnetic field enforces the above arguments. In figure 10, the
magnetic field dependence of the averaged conductance for disordered zigzag nanoribbons
with (a) LRIs and (b) SRIs is presented. Similarly, the case for armchair nanoribbons with
(c) LRIs and (d) SRIs is presented. Here we have included the magnetic field perpendicular to
the graphite plane, which is incorporated via the Peierls phase: γi, j → γi, j exp [i2π e

ch

∫ j
i dl · A],

where A is the vector potential. Since the time-reversal symmetry within the valleys for zigzag
ribbons is already broken, the averaged conductance 〈g〉 for LRIs (absence of inter-valley
scattering) is quite insensitive to the application of magnetic field as can be seen in figure 10(a).
This is consistent with the behavior in the unitary class. For higher energies, weak magnetic field
dependence appears due to inter-valley scattering. For all the other cases a weak magnetic field
improves the conductance, i.e. weak localization behavior, which is typical for the orthogonal
class.

5. Summary

In this paper, we have presented a brief overview of the electronic and transport properties
of graphene nanoribbons focusing on the effect of edge shapes and impurity scattering.
Concerning transport properties of disordered systems the most important consequence is the
presence of a PCC in zigzag nanoribbons, i.e. the absence of Anderson localization that is
believed to inevitably occur in the one-dimensional electron system. The origin of this effect
lies in the single-valley transport, which is dominated by a chiral mode. On the other hand,
large momentum transfer through impurities with short-range potentials involves both valleys,
destroying this effect and leading to the usual Anderson localization. The obvious relation
between chiral mode and TRS leads to the classification into unitary and orthogonal classes
depending on the range of impurity potential. On the other hand, in spite of the lack of two
well separated valley structures, the single-channel transport subjected to LRIs shows nearly
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perfect transmission, where the backward scattering matrix elements in the lowest order vanish
as a manifestation of internal phase structures of the wave function. These results are in contrast
with the mechanism of PCC in disordered zigzag nanoribbons and metallic nanotubes where the
well separation between two non-equivalent Dirac points is essential to suppress the inter-valley
scattering.
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