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Abstract. By using different recent state-of-the-art numerical techniques, such
as the OFLI2 chaos indicator and a systematic search of symmetric periodic
orbits, we get an insight into the dynamics of open Hamiltonians. We have found
that this kind of system has safe bounded regular regions inside the escape region
that have significant size and that can be located with precision. Therefore, it is
possible to find regions of nonzero measure with stable periodic or quasi-periodic
orbits far from the last KAM tori and far from the escape energy. This finding has
been possible after a careful combination of a precise ‘skeleton’ of periodic orbits
and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations
and the regular regions near them. Besides, these two techniques permit one
to classify the different kinds of orbits that appear in Hamiltonian systems with
escapes and provide information about the bifurcations of the families of periodic
orbits, obtaining special cases of bifurcations for the different symmetries of the
systems. Moreover, the skeleton of periodic orbits also gives the organizing set
of the escape basin’s geometry. As a paradigmatic example, we study in detail
the Hénon–Heiles Hamiltonian, and more briefly the Barbanis potential and a
galactic Hamiltonian.
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1. Introduction

In the past few years the interest in the study of open Hamiltonians has been growing [1]–[3],
looking at particular properties of the fractal exit basins and locating the chaotic regions.
These studies have applications in several applied fields such as plasma physics [4], modeling
the dynamics of ions in electromagnetic traps [5], computational chemistry (by instance,
in [6] the example chosen to apply the transition state theory for laser-driven reactions is a
driven Hénon–Heiles (HH) system and the Barbanis potential is extensively used in quantum
dynamics [7] and to model fluorescence excitation of benzophenone [8]), and so on.

In this paper, we are interested in studying the dynamics of open Hamiltonians. When
the energy of these systems goes beyond the escape energy most of the orbits escape, and
in the Hamiltonians we study, as there are several exits, it is possible that a test particle
escapes through any of them. As a test example, we have chosen first to study the paradigmatic
HH Hamiltonian [9]. Note that this system has received much attention in the last few years
establishing, for instance, some results on cascades of pitchfork bifurcations [10]–[12] or
studying in detail the fractal structures in the regular and escape regions [3, 13]. In order to
generalize the results, we have also carried out a short analysis of two other open Hamiltonians
with two and four exits [14].

The main goal of the present paper is to obtain new results on these systems by using
some new techniques for the study of 2DOF Hamiltonian systems, which permit us to analyze
them in much more detail. We combine the use of a fast chaos indicator (OFLI2) [15, 16]
to indicate regular regions on the (y, E) plane and a systematic search of symmetric periodic
orbits [17]–[22] that permits us to obtain with great precision the ‘skeleton’ of periodic orbits
of the system. Both techniques provide complementary results, which permit one to state the
existence of bounded stable regular regions of a significant size and located with precision
inside the escape region. These regions are far from the KAM regime; therefore, they are quite
interesting as they provide safe bounded regular regions inside the escape region. Note that it
is well known that undoubtedly hyperbolic systems are unlikely to exist and that everywhere
in parameter space of bounded systems there may be stability islands [23] after the KAM tori
disappear but of extremely small size and extremely difficult to locate. Therefore, a precise
location of bounded stable regions permits their use in practical applications because they may
serve as safe regions in the ‘escape sea’. Besides, we show how the normal modes 5i and the
skeleton of periodic orbits configure the geometry of the exit basins of any problem of this kind.
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Figure 1. Level curves of the HH potential, exits, limit of bounded motion, and
the eight 5i nonlinear normal modes on the (x, y) plane for E < Ee (on the left)
and E > Ee (on the right).

The organization of the paper is as follows. In section 2 we describe how to classify the
orbits according to type. In section 3 we obtain the skeleton of periodic orbits, and in section 4
we show several interesting bifurcations of the HH Hamiltonian. In section 5 we perform a short
analysis for other open Hamiltonians. Finally, we present some conclusions.

2. Types of orbits: regular, chaotic and escape

We plan to explore the types of orbits that appear on open Hamiltonians. To do so we fix initially
as our test problem the most famous open Hamiltonian, the classical [9] HH Hamiltonian, which
is given by

H= 1
2(X 2 + Y 2) + 1

2(x2 + y2) +
(
yx2
−

1
3 y3

)
. (1)

The HH system presents different symmetries, its complete symmetry group being D3× T
(D3 is a dihedral group and T is a Z2 symmetry, the time-reversal symmetry). This Hamiltonian
has attracted a large number of researchers and in the past few years more papers have
appeared [2, 13], [24]–[28]. It has been studied mainly for energy values below the escape
energy Ee = 1/6 (for energy values below Ee the level curves are closed and all the orbits are
bounded, exhibiting chaotic or regular motion, whereas the equipotential lines corresponding to
the escape energy form an equilateral triangle, and for higher values the vertices of the triangle
open and most of the orbits are unbounded escape orbits). Due to the D3 symmetry of the
system, there are three exits [1, 2]: Exit 1 (y→ +∞), Exit 2 (y→−∞, x→−∞) and Exit
3 (y→−∞, x→ +∞). For energies greater than Ee, there exist three orbits L i , known as
Lyapunov orbits, one corresponding to each exit, which act as frontiers: any orbit that crosses
them with an outward-oriented velocity must go to infinity.

In figure 1 we show a scheme of the level potential curves, the three exits, and the
eight nonlinear normal modes 5i for energy values E < Ee and E > Ee (note that from
Weinstein’s theorem [29] there are at least two and due to the D3 symmetry there are eight [30]).
These nonlinear normal modes are described (using the terminology of Churchill et al [30])
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as follows: the projections of the 51,2,3 orbits lie on the gradient lines of the potential that
passes through the origin, and they are directed towards Exits 1, 2 or 3. Therefore, 51,2,3

orbits disappear at the escape energy, when the Lyapunov orbits L i appear. The projections
are symmetric with respect to the D3 group. The 54,5,6 orbits start at a point with a given energy
E and intersect the gradient line 5i−3 perpendicularly. Finally, 57 is a periodic orbit whose
trajectory is counterclockwise forming perpendicular intersections with all three gradient lines
51,2,3. Due to the T symmetry, 58 coincides with 57, but it goes clockwise.

Now, focusing on our goal of classifying the orbits we use two methods. On the one hand,
we study the problem with a chaos indicator. This allows us to determine the regular and chaotic
regions that appear in the problem. On the other hand, we propagate the initial conditions and
we study if they give rise to escape or bounded orbits. This will permit us to obtain the exit
basins and to study their character. We use both methods to complement each other.

First, we analyze the regular and chaotic regions using OFLI2 [15, 16], which is a fast chaos
indicator. It detects the set of initial conditions where we may expect sensitive dependence on
initial conditions. The value of the OFLI2 indicator at the final time tf is given by

OFLI2 := sup
0<t<tf

ln ‖{ξ(t) + 1
2 δξ(t)}⊥‖, (2)

where ξ and δξ are the first- and second-order sensitivities with respect to carefully chosen
initial vectors, and x⊥ represents the orthogonal component to the flow of the vector x. See
[15, 16] for a complete description of the method. All the numerical calculations are done using
a variable-stepsize, variable-order extended Taylor series method [31]. In the OFLI2 plots of
figure 2, orange coincides with the more regular regions, whereas white denotes chaos (note
that above the escape energy, black and white denote escape orbits without and with transient
chaos, respectively).

In figure 2, we show three OFLI2 plots. Plots A and B are drawn on the (y, E) plane and
plot C on the (x, E) plane. Plots A and C show that the regular behavior appears mainly below
the escape energy. As the energy approaches the escape value Ee, the chaotic behavior increases.
Above that value the escape region increases but there are transient chaos zones corresponding
to the fractal boundaries. A very interesting fact of the studied open Hamiltonians is that it is also
possible to find small regular regions far from the KAM regime (the last KAM torus disappears
on the y-axis around E ' 0.2113 (plot A)), as shown by the magnification plot B. These regular
and bounded regions placed far from the escape energy (as in plot B) are generated from saddle-
node bifurcations of periodic orbits. Therefore, it is possible to find regions of nonzero measure
with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape
energy. So, these regions act as safe bounded regular regions inside the escape region, giving
the only initial conditions of these systems that exhibit this behavior for large values of the
energy. For energy values greater than E ' 0.27, the escape regions dominate and the saddle-
node generation stops.

Now we compare with the information given by the exit basins. As already known, the
exit basin [1, 3, 32] of a particular exit is the set of initial conditions that yield escape through
such an exit. As expected, the geometry of the exit basins is fractal [3]. In [13], we calculated
its fat-fractal exponent. In figure 2, we show the exit basins on the (y, E) plane by fixing
x = Y = 0. The color codes for the exit basins are as follows: green—bounded motion, blue—
Exit 1, yellow—Exit 2, and red—Exit 3. We observe a simplification of the geometry as the
energy grows, giving an asymptotic band structure as shown in plot D. The structure becomes
simpler with sharper bounds; therefore, we expect the fat-fractal exponent to increase.
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Figure 2. Left: (A) OFLI2 plot on the (y, E) plane, (B) magnification of a
bounded region and (C) OFLI2 plot on the (x, E) plane around 51. Orange
or black color indicates regular movement (bounded or escape) and white
color corresponds to chaotic areas. Right: (E) exit basins on the (y, E) plane.
(D) shows the behavior of the exits for large values of the energy. Bottom right:
different types of orbits (from left to right: a KAM orbit in the bounded region,
two periodic orbits with D3 or time-reversal symmetry and an escape orbit).

On the bottom right part of figure 2, we have plotted from left to right several examples
of the kinds of orbits that may appear in this problem: a KAM orbit, a periodic orbit with D3

symmetry, a periodic orbit without D3 symmetry but with time-reversal symmetry and an escape
orbit through Exit 3 after a transient phase.

3. Skeleton of periodic orbits

Once we have located the regions with different behavior, we look for invariants of the systems
that configure the regions. In our case, the invariants are families of symmetric periodic orbits
(s.p.o.), and so we look for a complete skeleton of s.p.o.

We have used a systematic search method [17, 28] that allows an easy detection of s.p.o.
for 2DOF Hamiltonian systems with some symmetries. The origin of the method is quite old; in
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fact it was introduced by Birkhoff [18], DeVogelaere [20], Hénon [21, 22] and Strömgren [19]
(among others) and used to find s.p.o. An updating of the method is described in detail in [17]
(and references therein), but for completeness it can be summarized as follows. The HH system
is symmetric with respect to the variable x and it is time-reversible. If {x(t), y(t)} is a solution,
then {−x(−t), y(−t)} is also a solution. Therefore, if an orbit starts at the y-axis perpendicular
to it,

(x(0), y(0), X (0), Y (0))= (0, y0, X0, 0), (3)

and crosses again the y-axis perpendicularly, then the orbit is closed and symmetric and so it is
a symmetric periodic orbit with period T (twice the crossing time). Therefore the condition for
a symmetric periodic orbit is

x(0, y0, X0, 0; T/2)= Y (0, y0, X0, 0; T/2)= 0. (4)

Since the symmetric periodic orbit could have a multiplicity m greater than one, we look for the
crossing conditions after m crossings of the y-axis. According to these symmetry conditions,
we choose for the Poincaré map the plane y–Y (with x = 0, so we compute X from the energy).
To find the crossing conditions, we perform a mesh on the E or y plane and look for the changes
of sign of Y at the crossings. So we need two root-finding processes.

Once a symmetric periodic orbit has been calculated, we analyze the stability of the orbit.
The linear stability is studied by means of the eigenvalues of the monodromy matrix 5(T ), that
is, the solution at time T (one period of the periodic orbit) of the matrix linear differential system
given by the first-order variational equations. For a periodic orbit in a Hamiltonian system we
always have two eigenvalues equal to one, corresponding to perturbations along the periodic
orbit and perpendicular to the energy shell on the phase space T ∗Q2. In fact, we just need the
trace of the monodromy matrix, which is the sum of the diagonal elements, and it is therefore
equal to the sum of the eigenvalues. Following Hénon [21, 22] we use instead the trace minus
two defining the stability index κ := κ(5(T ))= Tr (5(T ))− 2. Thus a periodic orbit is linearly
stable (elliptic periodic orbit) iff |κ|< 2, unstable iff |κ|> 2 and critical iff |κ| = 2.

According to Meyer [33], an elementary periodic solution (i.e. with κ 6= 2) in a system
depending on a parameter P with a non-degenerate integral can be continued when the
parameter is changed. Therefore, for autonomous Hamiltonian systems the periodic orbits
appear in families. Note that if we have a non-elementary periodic solution the periodic orbit
may appear or disappear. A family of periodic orbits is represented by a continuous curve (the
characteristic curve) in the plane of initial conditions or parameters. We use the energy E as the
parameter P to be continued.

In figure 3, we show a joint OFLI2 and s.p.o. plot on the (y, E) plane. Note that in such a
plot any point corresponds to the initial conditions of one orbit. We can see how both techniques
complement each other. Each figure consists of a regular grid of 1000× 1000 points (106

orbits) and we have used double precision with an error tolerance Tol= 10−14. In figures A,
C and E, we have used a color code for the different multiplicities of the periodic orbits. In
plot A, we show the s.p.o. (x(0)= Y (0)= 0) versus the energy constant E up to multiplicity
m = 5. In plots B, D and F, we show the stability of the orbits (in green the stable and in
red the unstable ones). Plots C and D show the region below the escape energy, but now up to
multiplicities m = 12. The forbidden region is located outside the thick black line. Plots E and F
present a regular region well above the escape energy Ee. It corresponds to plot B of figure 2.

We note the presence of the families of the normal modes 54,7,8 (the black lines originating
at E = 0) that configure the behavior for large E as the other families of periodic orbits
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in different colors according to their multiplicity up to m = 5 and the code for
the bifurcations is SN—saddle-node, TG—touch-and-go, IC—tripled 2-period
island chain and Pm stands for an m-multiplicity bifurcation.

accumulate around them and define the boundaries of the exit basins (compare figures 2(A),
2(E) and 3(A)).

4. Bifurcations

When we have a family of periodic orbits we are interested in knowing when it appears,
disappears or bifurcates. If κ 6= 2 then a periodic orbit is a member of a smooth one-parameter
family of periodic orbits. Moreover, the converse gives quite an important result: periodic orbits
can only appear or disappear when their stability index is κ = 2. Therefore [17], a periodic orbit
of multiplicity m (or a subharmonic bifurcation) can appear or disappear at points of the main
periodic orbit (m-bifurcation points) such that

κ = 2 cos(2πk/m), k < m (5)

with k and m coprime natural numbers (note that the bifurcated orbit will have κ = 2). The ratio
k/m is called the rotation or winding number. At this point the main periodic orbit bifurcates in
periodic orbits of multiplicity m. This can only happen when the main p.o. is stable or critical
|κ|6 2.

Figure 4 shows several subharmonic bifurcations on the plot of families of s.p.o. up to
multiplicity m = 5. Each color corresponds to a different multiplicity. Plot B is a zoom of the
region marked as SN in plot A. In plot A, we indicate with labels some bifurcations explained
later with greater detail in figure 6. In plot B we do the same thing with bifurcations of figure 5.
There is good agreement with the expected values according to equation (5). Note that Meyer’s
classification of generic bifurcations is not enough for systems with symmetry. The generic
bifurcations are the only typical bifurcations [33] after a family of periodic orbits has lost all
the symmetries. Other bifurcations can occur only in the presence of symmetries and involve a
loss of some symmetries in the new families of periodic orbits. Kurosaki [34] and Ozakin and
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orbit shown on the left is created at the SN bifurcation and has no D3 symmetry.
On the right, schematic Poincaré surface sections.

Kurosaki [35] also found some of these bifurcations for values of nonlinear modes below the
escape energy. From the skeleton of s.p.o. on plot B, we observe that this regular and bounded
region originates from the stable branch of s.p.o. coming from a saddle-node bifurcation. It
continues until a pitchfork bifurcation is found. If we continue the stable branch, on the right, a
period-doubling bifurcation appears (in blue in picture 3(E)) around energy E = 0.2534, giving
a new small region of stability. If we continue this family, this time on the left, another further
period-doubling bifurcation appears, leading to a new and smaller stability zone. Thus, we have
a self-similar chain of connected regions, more and more smaller, that are created due to a
sequence of pitchfork and period-doubling bifurcations.

Figures 5 and 6 are presented just to illustrate some of the bifurcations on this problem,
without doing a complete study of Hamiltonian bifurcations under symmetries, which is out of
the scope of the present paper. We note that a complete classification of bifurcation orbits in
the presence of one symmetry appears in [36], and with more symmetries in [37]. See also the
extensive literature on this subject [33], [38]–[40]. In the plots on the left we show the OFLI2
plots of just the bounded regular regions on color scale, and on the right we present a schematic
Poincaré section computed from the normal form of the different bifurcations. We suppose that
the bifurcation occurs at the value of the parameter PB and we write P = PB + ε. Note that we
only show one direction, from ε < 0 to ε > 0, but it could be the opposite depending on the
particular bifurcation.

Figure 5 shows an example of generic bifurcations. In the picture on the left, we plot
some families of symmetric periodic orbits on plane (y, E). It corresponds to the region of
figure 4(B), but to illustrate the bifurcations we are interested in, we plot only some of the
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families. In the middle figure, we show the stability index κ versus the energy E (left). The
main family of multiplicity m = 1 is the one in black. The other families bifurcate from this
on the points marked with a circle (points given by (5)). Note that the bifurcated families
always begin with a value of κ = 2. This regular region above the escape energy Ee is also
shown in figures 2(B), 3(E) and 3(F), and the main family of periodic orbits does not present
D3 symmetry. It appears with a saddle-node bifurcation (SN), which is a non-elementary
periodic solution (κ = 2) and corresponds to the case where two periodic orbits are created
(or destroyed), one stable and another one unstable. This is the only way of creating new families
of periodic orbits, apart from the boundaries of the domain of definition of the Poincaré map.
The stable branch changes its stability index until it reaches κ = 2 again, where an isochronous
pitchfork bifurcation (P) appears. It is a symmetric pitchfork bifurcation: from a symmetric
periodic orbit two new isochronous periodic orbits are created but with fewer symmetries
(the symmetry in this case is on the y-axis, not D3) and the main symmetric periodic orbit
changes its stability character after the bifurcation. Besides, we plot the generic touch-and-go
bifurcation, as an example of a known generic bifurcation [38] (and to compare it with the non-
generic case explained later) where an unstable periodic orbit of multiplicity m = 3 touches
the center m = 1 periodic orbit and ‘bounces’ while the main orbit remains stable. None of the
orbits disappear.

Figure 6 shows some examples of non-generic bifurcations. Orbit 58 presents the D3

symmetry, and the family of multiplicity m = 2 coming after a period-doubling generic
bifurcation keeps the D3 symmetry. However, the subsequent period-doubling giving birth to
the family of multiplicity m = 4 is a non-generic bifurcation and due to the D3 symmetry the
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resonant islands created around the main orbit are tripled and three unstable and stable periodic
orbits appear (IC—tripled 2-period island chain). Besides, the main orbit, i.e. the m = 2 family,
is still stable. Note that, just looking at the Poincaré surface of section, this bifurcation may be
confused with a different island chain bifurcation, but, obviously, if you know the multiplicity
of the different orbits involved there is no confusion at all. Later, there is an isochronous touch-
and-go bifurcation: three unstable orbits of m = 2 collapse with the main family and then
reappear again as unstable orbits with the Poincaré surface of section rotated. This is different
from the generic version of this bifurcation described above. Note that there is another generic
period-doubling (and so different from the IC described previously) for an energy value of about
E ' 0.207 when the stability index κ =−2, but we have not drawn the family which arises from
that bifurcation to avoid cluttering the figure.

5. Other systems with escapes

In the above sections, we have studied the HH potential as a paradigmatic example of open
Hamiltonians, but the study is applicable to any 2DOF Hamiltonian system with escapes. In this
section, we have chosen two other different Hamiltonians [9, 14, 41] with two and four escapes,
such as:

H2 =
1
2(X 2 + Y 2) + 1

2(x2 + y2)− xy2, (6)

H4 =
1
2(X 2 + Y 2) + 1

2(x2 + y2)− x2 y2. (7)

These Hamiltonians present different symmetries from the HH Hamiltonian. The first
HamiltonianH2 is symmetric with respect to y 7→ −y and has two exits for values of the energy
E > 1/8. Its potential is called the Barbanis potential in the chemistry community (just the
potential) and it is extensively used in quantum dynamics [7] and to model S1← S0 fluorescence
excitation of benzophenone [8]. The second Hamiltonian H4 is invariant under x 7→ −x or
y 7→ −y and has four escapes for values of the energy E > 1/4. It is used in modeling galactic
movements [14, 42].

In figure 7, we show combined OFLI2 and s.p.o. plots and exit basin plots for both
Hamiltonians. Plots A and C belong to the equation (6) Hamiltonian and are drawn on the (x, E)

plane, and plots B and D belong to equation (7) Hamiltonian and are drawn on the (y, E) plane.
The color code is the same as for HH (since the equation (7) Hamiltonian has an extra escape,
plot D uses cyan to indicate that additional exit). There is a correspondence between the several
numeric methods as before. Since they do not have the same threefold symmetry as HH, we
do not have those non-generic bifurcations. In this figure, we show instead some of the generic
and y-axis symmetric bifurcations that we have previously shown in figure 5. We also remark
that as occurs in the HH Hamiltonian, after the KAM regime there are small bounded regular
regions originating from generic saddle-node bifurcations. This very interesting phenomenon
is illustrated in the magnifications on the top, where we show the OFLI2 plot (now the main
region of blue color indicates bounded regular orbits and the red color corresponds to transient
unbounded chaotic orbits) and the main family of periodic orbits created on the bifurcation.
Also, as occurs in the HH case, the normal modes behave as the organizing families of p.o. as
all the other p.o. approach them and also configure the exit basin regions for large values of the
energy.
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Figure 7. Combined s.p.o. and OFLI2 plots (A) and exit basins (C) on the (x, E)

plane of the equation (6) Hamiltonian. Combined s.p.o. and OFLI2 plots (B) and
exit basins (D) on the (y, E) plane of the equation (7) Hamiltonian.

6. Conclusions

The results presented here are of general interest in describing how the different kinds of orbits
in open Hamiltonians are organized. Moreover, we have shown how two powerful numerical
techniques, such as the OFLI2 chaos indicator [15] and a systematic search of s.p.o. [17, 21],
provide us with two very useful tools: the location of the regular/chaotic orbits and the skeleton
of periodic orbits. A careful combination of both techniques has been the key tool in detecting
interesting phenomena in these systems. Note that without the combination of both tools some
small regions of interest are completely undetectable.

We have seen that this kind of system has safe bounded regular regions of a significant size
inside the escape region. Therefore, it is possible to find regions of nonzero measure with stable
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periodic or quasi-periodic orbits far from the KAM regime and far from the escape energy.
So, these regions act as safe bounded regular regions inside the escape region, giving the only
initial conditions of these systems that exhibit this behavior for large values of the energy. We
have identified the mechanism of creation of these regions, the sudden appearance of chains
of saddle-node bifurcations of periodic orbits that form regular regions near them. To locate
these regions we need a highly precise skeleton of periodic orbits and a 2D plate of the OFLI2
chaos indicator (or any similar tool). We have illustrated this kind of region in the classical HH
Hamiltonian, the Barbanis potential and a galactic Hamiltonian.

Moreover, we have shown that the simultaneous use of the OFLI2 and the skeleton of
periodic orbits provides us with some descriptive plates, showing the organization of the regular
regions around the families of periodic orbits and how the exit basins and the skeleton of s.p.o.
are guided by the normal modes. Besides, we have obtained some special cases of bifurcations
for the different symmetries of the systems. This is quite an interesting topic to extend the results
of our work.
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