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Abstract. This paper proposes a new robust control method for quantum
systems with uncertainties involving sliding mode control (SMC). SMC is a
widely used approach in classical control theory and industrial applications. We
show that SMC is also a useful method for robust control of quantum systems. In
this paper, we define two specific classes of sliding modes (i.e. eigenstates and
state subspaces) and propose two novel methods combining unitary control and
periodic projective measurements for the design of quantum SMC systems. Two
examples including a two-level system and a three-level system are presented
to demonstrate the proposed SMC method. One of the main features of the
proposed method is that the designed control laws can guarantee the desired
control performance in the presence of uncertainties in the system Hamiltonian.
This SMC approach provides a useful control theoretic tool for robust quantum
information processing with uncertainties.
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1. Introduction

Controlling quantum phenomena has been an implicit goal ever since the establishment of
quantum mechanics [1]–[3]. Many practical tasks arising from atomic physics [3], molecular
chemistry [2], [4]–[7] and quantum optics [8] can be formulated as quantum control problems.
It is desired to develop quantum control theory to establish a firm theoretic footing for the
active control of quantum systems. Quantum control theory has played an important role
in guiding the control of chemical reactions [2, 7]. Recently, the development of quantum
control theory has been recognized as a key task required to establish practical quantum
information technology [8]–[11]. Some useful tools from classical control theory, such as
optimal control theory [12, 13] and feedback control approaches [14]–[22] have been applied
to problems of population transfer, quantum state preparation, quantum error correction (QEC)
and decoherence control [23].

Although some useful results have already been obtained, research on quantum control
is still in its infancy. From the perspective of practical applications, it is inevitable that there
exist uncertainties and disturbances in external fields, system Hamiltonians or initial states [24].
Many cases of unknown information and errors can also be treated as uncertainties. Hence, the
requirement of a certain degree of robustness in the presence of uncertainties and noises has been
recognized as one of the key aspects for developing practical quantum technologies [25]–[35].
Several approaches have been introduced to enhance the robustness of quantum systems. For
example, Zhang and Rabitz [26] used a minmax approach to analyze the robustness of molecular
systems. In [36], James et al have formulated and solved a quantum robust control problem
using a H∞ method for linear quantum stochastic systems. In this paper, we develop a new
sliding mode control (SMC) approach to enhance the robustness of quantum systems. SMC is
a useful robust control strategy in classical control theory and industrial applications [37]–[39].
Dong and Petersen [40] and Vilela Mendes and Man’ko [41] have briefly discussed the possible
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application of SMC to quantum systems. This paper will formally present SMC methods for
quantum systems to deal with uncertainties.

The SMC approach generally includes two main steps: selecting a sliding surface (sliding
mode) and controlling the system state to and maintaining it in this sliding surface. The sliding
surface guarantees that the quantum system has desired dynamics in this surface. We will select
an eigenstate of the free Hamiltonian or a state subspace of the controlled quantum system
as a sliding mode. To control the system state to and then maintain it in this sliding surface,
most feedback control methods in classical control theory are not directly applicable since we
generally cannot acquire measurement feedback information without destroying the quantum
system state. It is necessary to develop new approaches to accomplish this task. Hence, we
propose two new unique methods for this task: one method involves combining time-optimal
control design and periodic projective measurements for the case where an eigenstate is taken
as the sliding mode; the other method is implemented through quantum amplitude amplification
and periodic projective measurements for the case where a state subspace is identified as a
sliding mode. It is worth noting that an important assumption required in the proposed methods
is that accurate projective measurements (using the eigenstates of the free Hamiltonian as the
measurement basis) are possible. A connection to the quantum Zeno effect is briefly discussed
and two specific examples are presented to demonstrate the proposed methods. The main feature
of our methods is their robustness to uncertainties in system Hamiltonians. The SMC method
has potential applications to preparation of quantum states and QEC.

This paper is organized as follows. Section 2 defines two classes of candidate sliding
modes and formulates the two quantum control problems considered in this paper. In section 3,
we present an SMC method combining time-optimal control design and periodic projective
measurements for quantum systems where an eigenstate is identified as a sliding mode. An
illustrative example of a two-level quantum system is analyzed in detail. Section 4 proposes
a control design method using quantum amplitude amplification and periodic projective
measurements for controlling quantum systems when the sliding mode is a state subspace. An
example of a three-level system is presented to demonstrate the proposed method. Concluding
remarks are given in section 5.

2. Sliding modes and problem formulation

In this paper, we consider finite-dimensional (N -level) quantum systems whose dynamic
evolution is described as follows (setting h̄ = 1 in this paper):

i
∂

∂t
|ψ(t)〉 = H0|ψ(t)〉 +

∑
k

uk(t)Hk|ψ(t)〉, |ψ(t = 0)〉 = |ψ0〉, (1)

where H0 is the free Hamiltonian, uk(t) ∈ R is the external control and {Hk} is a set of time-
independent Hamiltonian operators. If the eigenvalues and corresponding eigenstates of H0

are denoted as λ j and |φ j〉( j = 1, 2, . . . , N ) (i.e. H0|φ j〉 = λ j |φ j〉), respectively, |ψ(t)〉 can
be expanded as

|ψ(t)〉 =

N∑
j=1

c j(t)|φ j〉. (2)

In equation (1), H = H0 +
∑

k uk(t)Hk is Hermitian, which ensures that the transition from
a pure state |ψ(0)〉 to another |ψ(t)〉 can be accomplished through a unitary transformation
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U (t), i.e. |ψ(t)〉 = U (t)|ψ(0)〉. The control problem is converted into the problem that given
an initial state and a target state, find a set of controls {uk(t)} in (1) or a unitary transformation
U (t) to drive the controlled system from the initial state into the target state.

2.1. Sliding modes

SMC is a useful approach to robust controller design for electromechanical systems [39]. In
SMC, a sliding surface (sliding mode) and a switching function are determined [38]. A sliding
mode is generally defined as a specified state region where the system has desired dynamic
behavior. A switching function is designed to control the system state to the sliding mode. SMC
has two main advantages [38]: (i) the dynamic behavior of the system may be determined by the
particular choice of switching function; (ii) the closed-loop response becomes totally insensitive
to a particular class of uncertainties. It is the order reduction property and low sensitivity to
uncertainty that makes SMC an efficient tool for controlling complex high-order systems subject
to uncertainties [39].

To apply the idea of SMC to quantum systems, we first need to define a sliding mode where
the quantum system has desired dynamics. A sliding mode can be represented as a functional
of the state |ψ〉 and Hamiltonian H , i.e. S(|ψ〉, H)= 0. For example, an eigenstate |φ j〉 of H0

can be selected as a sliding surface. In this case, we can define S(|ψ〉, H)= 1 − |〈ψ |φ j〉|
2. If

the initial state |ψ0〉 is in the sliding mode, i.e. S(|ψ0〉, H)= 1 − |〈ψ0|φ j〉|
2
= 0, we can easily

prove that the quantum system will maintain its state in this surface under the action of the free
Hamiltonian H0 only. In fact, |ψ(t)〉 = e−iH0t

|ψ0〉 and
S(|ψ(t)〉, H)= 1 − |〈ψ(t)|φ j〉|

2
= 1 − |〈ψ0|e

iH0t
|φ j〉|

2
= 1 − |〈ψ0|φ j〉e

iλ j t |
2

= 1 − |〈ψ0|φ j〉|
2
|eiλ j t |

2
= 0.

That is, an eigenstate of H0 can be identified as a sliding mode.
More generally, an invariant state subspace of a quantum system satisfying S(|ψ〉, H)= 0

can be defined as a sliding mode. For example, the wavefunction controllable subspace
considered in [40] can be identified as a sliding mode. Considering a simple control u(t) (i.e.
k = 1 in (1)) and substituting (2) into (1), we denote C(t)= {c1(t), c2(t), . . . , cN (t)} and can
obtain [42, 43]:

iĊ(t)= AC(t)+ u(t)BC(t), C(t = 0)= C0, (3)

C0 = (c0 j)
N
j=1, c0 j = 〈φ j |ψ0〉,

N∑
j=1

|c0 j |
2
= 1, (4)

where A and B correspond to the operators H0 and H1 (i.e. k = 1 in (1)), respectively. Consider
the Model I presented in [40],

iĊ(t)= AC(t)+ u(t)BC(t)= (A + u(t)B)C(t), C(t = 0)= C0, (5)

where the free Hamiltonian of the five-level system is A = diag{1.0, 1.2, 1.3, 2.0, 2.15} [44]
and the control Hamiltonian Hu = u(t)B is as follows:

Hu =


0 0 0 u(t) u(t)
0 0 0 0 0
0 0 0 0 0

u(t) 0 0 0 u(t)
u(t) 0 0 u(t) 0

 . (6)
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In [40], we have proven that the subspace� spanned by {|φ1〉, |φ4〉, |φ5〉} is a wavefunction
controllable subspace [45]. We may select� as a sliding surface. We can easily prove that if the
initial state of this system is in this sliding surface, its state will be maintained in this surface
under the action of Hamiltonian H = A + u(t)B. In fact, we can express the sliding mode as
follows:

S(|ψ〉, H)= 1 − (|〈ψ |φ1〉|
2 + |〈ψ |φ4〉|

2 + |〈ψ |φ5〉|
2)= 0.

If S(|ψ0〉, H)= 0, we can obtain S(|ψ(t)〉, H)= 0. From S(|ψ0〉, H)= 0, it is clear that we

can obtain |c01|
2 + |c04|

2 + |c05|
2
= 1. Now we obtain the following equation from (5):ċ1(t)

ċ4(t)
ċ5(t)

 =

 −i −iu(t) −iu(t)
−iu(t) −2.0i −iu(t)
−iu(t) −iu(t) −2.15i

 c1(t)
c4(t)
c5(t)

 . (7)

After straightforward calculations we obtain the following relationship:

d

dt
(|c1(t)|

2 + |c4(t)|
2 + |c5(t)|

2)= 0. (8)

From this, it is clear that |c1(t)|2 + |c4(t)|2 + |c5(t)|2 = |c01|
2 + |c04|

2 + |c05|
2
= 1. That is,

S(|ψ(t)〉, H)= 0; i.e. the state of this system will be maintained in this surface under the action
of Hamiltonian H = A + u(t)B.

Some other state subspaces such as decoherence-free subspace (DFS) [46, 47] can also be
defined as sliding modes. However, this paper will focus on two particular classes of sliding
modes. The first class corresponds to a sliding mode that is an eigenstate. The second class
corresponds to a sliding mode that is a wavefunction controllable subspace.

2.2. Problem formulation

In the above subsection we have presented two candidate sliding modes. If a quantum system
state is driven into a sliding mode, the state will be maintained in the sliding surface under the
action of some class of Hamiltonians determined by the sliding mode. However, in practical
applications, it is inevitable that there exist noises and uncertainties in system Hamiltonians,
initial states or control fields. An important advantage of SMC is its robustness against
uncertainties. Our main motivation of introducing SMC to quantum systems is to deal with these
uncertainties. In this paper, we focus on the class of uncertainties that can be approximated
as a perturbation in the system Hamiltonian. For example, the unitary error in [25] and the
operational error in a quantum logic gate can be classified into this class of uncertainties. We also
suppose that the uncertainties are bounded. We represent the uncertainties as H1 =

∑
l εl(t)Hl ,

where εl(t) ∈ R,
√∑

l ε
2
l (t)6 ε̄ (ε̄ ∈ R+) and {Hl} is a set of time-independent Hamiltonian

operators. We further suppose that the system is completely controllable [48].
The control problem under consideration is stated as follows: for a given initial state,

design a control law to steer the quantum system state into and then maintain the state in a
sliding mode domain (a neighborhood containing the sliding mode) in the presence of bounded
uncertainties in the system Hamiltonian. This quantum SMC problem is greatly different from
the traditional SMC. Once the uncertainties take the state slightly away from the sliding mode,
there is always a finite probability (we call it the probability of failure) that the system state
will collapse out of the sliding mode domain when one makes a measurement on this system.
Hence, if the allowed probability of failure is p0, we may define the sliding mode domain
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D = {|ψ〉 : |〈ψ |8〉|
2 > 1 − p0, |8〉 ∈ {|8〉 : S(|8〉, H)= 0}}. We expect that the control law can

ensure that the system state remains in the sliding mode domain D except that a measurement
operation may take it away from D with a small probability (not greater than p0). The quantum
SMC problem includes three main subtasks: (I) for any initial state (assumed to be known),
design a control law to drive the system state into a defined sliding mode domain D; (II) design
a control law to maintain the system state in D and (III) design a control law to drive the system
state back to D if a measurement takes it away from D. For convenience, we suppose that there
exist no uncertainties during the control processes (I) and (III). In particular, we consider the
following two quantum control problems.

1. Quantum control problem 1 (QCP1): for an uncertain quantum system in which an
eigenstate |φ j〉 of H0 defines a sliding mode (i.e. S(|ψ〉, H)= 1 − |〈ψ(t)|φ j〉|

2
= 0),

(I) drive the controlled quantum system state into the sliding mode domain D = {|ψ〉 :
|〈ψ |φ j〉|

2 > 1 − p0}; (II) maintain the system state in D except that measurements may
take it away from D with at most probability p0 and (III) if the system state is taken away
from D, design a control law to drive it back to D.

2. Quantum control problem 2 (QCP2): for an uncertain quantum system in which a
wavefunction controllable subspace � defines a sliding mode (i.e. S(|ψ〉, H)= 1 −

|〈ψ(t)|8〉|
2
= 0, where |8〉 ∈�), (I) drive the controlled quantum system state into the

sliding mode domain D = {|ψ〉 : |〈ψ |8〉|
2 > 1 − p0, |8〉 ∈�}; (II) maintain the state in D

except that measurements may take it away from D with at most probability p0 and (III) if
the system state is taken away from D, design a control law to drive it back to D.

3. SMC based on time-optimal design and periodic measurements

3.1. The general method

In this section, we consider QCP1, in which an eigenstate is identified as a sliding mode.
Our first task is to design a control law to drive the system state to this chosen sliding
surface. Since we ignore the effect of uncertainties during the control processes (I) and (III),
we wish to accomplish this task as quickly as possible. Hence, we will use a time-optimal
control approach for this task. For the subtask (II), we use periodic projective measurements to
achieve our goal. In coherent control, measurement is usually regarded as having deleterious
effects. Recent results have shown that quantum measurements can be combined with unitary
transformations to complete some quantum manipulation tasks and enhance the capability
of quantum control [41], [49]–[55]. For example, Vilela Mendes and Man’ko [41] showed
that nonunitarily controllable systems might become controllable by using ‘measurement plus
evolution’. Roa et al [53] have used sequential measurements to control quantum systems.
Rabitz and co-workers [50]–[52] have demonstrated that projective measurements can serve
as a control tool. In this section, we will combine time-optimal control and periodic projective
measurements to accomplish SMC of quantum systems.

The steps of the control algorithm for QCP1 are as follows:

(i) Select an eigenstate |φ j〉 of H0 as a sliding mode S(|ψ〉, H)= 0.

(ii) For a known initial state |ψ0〉, design a time-optimal control law that can drive |ψ0〉 to the
sliding mode S.
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(iii) For eigenstates |φk〉 (k 6= j), design corresponding time-optimal control laws that can drive
|φk〉 to S using a similar method to that in (ii).

(iv) For given p0 and ε, design the period T for the projective measurements.

(v) Use the designed control law to drive the system state to S, then implement periodic
projective measurements with the period T to maintain the system state in D = {|ψ〉 :
|〈ψ |φ j〉|

2 > 1 − p0}. If the state collapses to |φk〉 due to a measurement, we use the
corresponding control law to drive it to S and then continue to make periodic projective
measurements.

From the above, we can see that the design of a time-optimal control law and the selection
of the period T for projective measurements are the two most important tasks in this control
algorithm. The time-optimal control problem has been an interesting topic in quantum control,
in which it is required to design a control law to achieve a desired state transfer in a minimum
time in order to minimize the effects of relaxation and decoherence [13, 56]. Khaneja et al [13]
have studied time-optimal control of spin systems under the assumption of unbounded controls.
Boscain and Mason [57] have investigated the time-optimal control problem for a spin-1/2
system with bounded controls. For several simple quantum systems (e.g. two-level systems),
it is possible to obtain analytical results. However, it is generally difficult to find a complete
solution for high-dimensional quantum systems. In these cases, it may be useful to develop a
numerical simulation method to find an approximate solution.

Another important task is to design the measurement period T so that the control law can
guarantee control performance. An extreme case occurs when T → 0. That is, after the quantum
system state is driven into the sliding mode, we make frequent measurements. This corresponds
to the quantum Zeno effect [58], which can guarantee that the state is maintained in the sliding
mode in spite of the existence of uncertainties. However, it is a difficult task to make such
frequent measurements in practical applications. We may think that the smaller T is, the bigger
the cost of measurements becomes. Hence, we wish to design a period T which is as large as
possible, when we have a bound ε̄ on the uncertainties and require a probability of failure p0.
In the following subsection, we will present a specific example of a two-level quantum system
to demonstrate how to design the period T.

Remark 1. It is clear that the SMC approach can be used in the preparation and protection of
quantum states under uncertainty conditions. Moreover, if the initial state is unknown, we can
first make a projective measurement. If the result is the eigenstate |φ j〉, we would continue to
implement periodic projective measurements to maintain the system state in D. Otherwise, we
would use a corresponding control law to drive the system state to S. This slight amendment to
our approach enables our method to achieve robustness against variations in the initial state as
well as robustness to uncertainties in the system Hamiltonian.

3.2. An illustrative example: two-level system

To demonstrate the proposed method, here we consider a two-level quantum system, which
can be used as a quantum bit (qubit) and has important potential applications in quantum
information. In practical applications, we often use the density operator ρ to describe the state
of a quantum system. For a pure state |ψ〉, the corresponding density operator is ρ ≡ |ψ〉〈ψ |.
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For a two-level quantum system, the state ρ can be represented in terms of the Bloch vector
r = (x, y, z)= (tr{ρσx}, tr{ρσy}, tr{ρσz}):

ρ =
1
2(I + r · σ), (9)

where σ = (σx , σy, σz) are the Pauli matrices described as follows:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (10)

The evolution of ρ can be described by the equation

ρ̇ = −i[H, ρ], (11)

where H = H0 +
∑

k=x,y,z uk(t)Ik , H0 = Iz =
1
2σz, Ix =

1
2σx and Iy =

1
2σy .

Without loss of generality, we select the sliding mode as S(|ψ〉, H)= 1 − |〈ψ |0〉|
2
= 0.

This means that we select the eigenstate |0〉 of H0 as the sliding mode. If we have driven the
system state to the sliding mode at time t0, it will be maintained in this sliding mode using only
the free Hamiltonian H0, i.e. S(|ψ(t>t0)〉, H0)≡ 0. We assume that the possible uncertainties in
the system Hamiltonian are represented by H1 = εx(t)Ix + εz(t)Iz, where

√
ε2

x (t)+ ε2
z (t)6 ε̄.

Now we use the control algorithm in section 3.1 to accomplish the robust control design.
For simplicity, we assume |ψ0〉 = |1〉 (this makes the subtasks (I) and (III) in QCP1 become

the same) and consider Hu = u(t)Ix . If u(t) is not bounded, it is convenient to design a time-
optimal control law to drive |1〉 to the sliding mode |0〉 using the results in [13, 59]. From
theorem 1 in [59], we learn that the minimum time required to accomplish this task is 0. If u(t)
is bounded (i.e. |u(t)|6 V , V ∈ R+), we can use the method in [57] to design a time-optimal
control law to drive |1〉 to |0〉.

Now we consider the design of the measurement period T . First consider an uncertainty
represented by H1 = εz(t)Iz (where |εz(t)|6 ε̄ ). If S(|ψ0〉, H)= 0, for H1 = εz Iz we have

S(|ψ(t), H)= 1 − |〈ψ(t)|0〉|
2
= 1 − |〈ψ0|e

i(H0+εz Iz)t |0〉|
2

= 1 − |〈ψ0|0〉|
2

∣∣∣∣ exp

[
i

(
1

2
+

1

2
εz

)
t

]∣∣∣∣2

= 0

This uncertainty does not take the system state away from the sliding mode. Hence, we may
ignore this uncertainty in the following analysis.

Now consider a bit-flip type uncertainty of the form ε(t)Ix(|ε(t)|6 ε̄). We have the
following theorem.

Theorem 1. For a two-level quantum system with the initial state (x0, y0, z0)= (0, 0, 1)( i.e.
|0〉), the system evolves to (xa

t , ya
t , za

t ) and (xb
t , yb

t , zb
t ) under the action of the Hamiltonians

H a
= Iz + ε(t)Ix (where |ε(t)|6 ε̄) and H b

= Iz + ε̃ Ix (where ε̃ = +ε̄ or −ε̄), respectively. Then
for arbitrary t ∈ [0, π/

√
1 + ε̄2], za

t > zb
t .

The proof of this theorem is presented in the appendix. Theorem 1 shows that zb
t can be

taken as an estimate of the bound on za
t . From the proof, it follows that when t = π/

√
1 + ε̄2, the

probability of failure is p′
= ε̄2/(1 + ε̄2). If p0 6 p′, using (34) in the appendix, we can choose

T according to the following relationship:

p0 =
1 − zT

2
=

ε̄2

1 + ε̄2

1 − cos
√

1 + ε̄2T

2
. (12)
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Hence, we may choose the measurement period T as follows:

T =


1

√
1 + ε̄2

arccos

[
1 −

2p0(1 + ε̄2)

ε̄2

]
, if p0 6

ε̄2

1 + ε̄2
,

π
√

1 + ε̄2
otherwise.

(13)

In quantum computation, an important result is the fact that arbitrarily accurate quantum
computation is possible provided that the error per operation is below a threshold value [60]. In
this application, the uncertainties under consideration may come from quantum gate errors. If
we define the gate fidelity as follows [9, 30]:

F(U0,U )= min
|ψ〉

|〈ψ |U †
0 U |ψ〉|,

a straightforward calculation shows that the gate fidelity is not less than 1/
√

1 + ε̄2 under our
control strategy. If we define the quantum gate error as Ge = 1 −F(U0,U ), the gate error is not
greater than 1 − (1/(

√
1 + ε̄2)). Hence, the proposed method can be used in the design of robust

quantum gates.
Now we consider a specific case. Suppose that the control is bounded |u(t)|6 10, the

bound of uncertainties is ε̄ = 0.1, and the allowed probability of failure is p0 = 1.00%.
According to [57], the time-optimal control from |1〉 to |0〉 is bang–bang control and the number
of switchings required is 1. A straightforward calculation using the method in [57] leads us to the
conclusion that we use u(t)= −10 in t ∈ [0, 0.1573] and use u(t)= 10 in t ∈ (0.1573, 0.3146].
Since p0 > ε̄

2/(1 + ε̄2), using (13) we can obtain the measurement period T = 3.1260. The
corresponding maximum gate error is not greater than Ge = 1 − (1/

√
1.01)= 0.50%.

4. SMC based on amplitude amplification and periodic measurements

In this section, we identify a state subspace as a sliding mode and employ the quantum amplitude
amplification method to design the control laws. We will first introduce the quantum amplitude
amplification method, then present the control algorithm, and finally give an illustrative
example.

4.1. Amplitude amplification

The quantum amplitude amplification method is a powerful approach used in many quantum
algorithms [61]–[64]. The central task in quantum amplitude amplification is to find a suitable
operator Q whose repeated action on the initial state can increase the probability of chosen
eigenstates. If we denote X= {|0〉, . . . , |x〉, . . . , |N − 1〉} as a set of orthonormal basis in the
N -dimensional complex Hilbert spaceH, a pure state |ψ〉 of an N -level quantum system can be
represented as |ψ〉 =

∑N−1
x=0 cx |x〉, where

∑N−1
x=0 |cx |

2
= 1. A Boolean function χ : X→ {0, 1}

defines two orthogonal subspaces of H: the ‘good’ subspace and the ‘bad’ subspace. The good
subspace is spanned by the set of basis states |x〉 ∈ X satisfying χ(x)= 1 and the bad subspace
is its orthogonal complement in H. We may decompose |ψ〉 as |ψ〉 = |ψg〉 + |ψb〉, where
|ψg〉 = Pg|ψ〉 denotes the projection of |ψ〉 onto the good subspace with the corresponding
projector Pg, and |ψb〉 = (I − Pg)|ψ〉 denotes the projection of |ψ〉 onto the bad subspace
(here I is the identity matrix). It is clear that the occurrence probabilities of a ‘good’ state
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|x〉 [χ(x)= 1] and a ‘bad’ state |x〉 [χ(x)= 0] upon measuring |ψ〉 are g = 〈ψg|ψg〉 and
b = 〈ψb|ψb〉 = 1 − g, respectively.

Let |ψ〉 = U |0〉. Given two angles 06 ϕ1, ϕ2 6 π , quantum amplitude amplification can
be realized by the following operator [61]:

Q = Q(U, χ, ϕ1, ϕ2)= −UPϕ1
0 U

−1Pϕ2
χ . (14)

The operators Pϕ1
0 and Pϕ2

χ conditionally change the phases of state |0〉 and the good states,
respectively [61], and they can be expressed as [52]

Pϕ1
0 = I − (1 − eiϕ1)|0〉〈0|, (15)

Pϕ2
χ = I − (1 − eiϕ2)

∑
χ(x)=1

|x〉〈x |. (16)

The action of Q can be described by the following relationship [52]:

Q|ψ〉 = [(1 − eiϕ1)(1 − g + geiϕ2)− eiϕ2]|ψg〉 + [g(1 − eiϕ1)(eiϕ2 − 1)− eiϕ1]|ψb〉. (17)

Thus, we can amplify (or shrink) the amplitude of |ψg〉 (or |ψb〉) by a suitable selection of the
parameters ϕ1, ϕ2 in Q.

4.2. The control algorithm

The main steps in SMC based on amplitude amplification and periodic projective measurements
for QCP2 are as follows:

(i) Select a state subspace � as a sliding mode S(|ψ〉, H)= 0.

(ii) For a known initial state |ψ0〉, identify � as a ‘good’ subspace and construct an amplitude
amplification operator Q(|ψ0〉, S) to amplify the probability of projecting |ψ0〉 into �.

(iii) Using the probability p0 and Q(|ψ0〉, S), determine a number L0 of iterations required
to guarantee that the control law drives the system state into the sliding mode domain
D = {|ψ〉 : |〈ψ |8〉|

2 > 1 − p0, |8〉 ∈�}.

(iv) For other eigenstates |φk〉 not in the ‘good’ subspace, first apply a unitary transformation
Uk on |φk〉 to obtain a superposition state |ψk〉. Then construct a corresponding amplitude
amplification operator Q(|ψk〉, S) and choose the required number Lk of iterations using a
similar method as used in (ii) and (iii).

(v) Using p0 and ε, choose the period T for the periodic projective measurements.

(vi) Use the designed control law to drive the system state into D, then implement periodic
projective measurements with the period T to maintain the system state in D. If a
measurement result is |φk〉 which is not in �, use the corresponding control law in (iv)
to drive the system state into D .

Remark 2. Here we use amplitude amplification as an important part of our control algorithm
for the SMC of quantum systems. This is similar to the idea in [52]. However, [52] does
not consider the issue of robustness. Here, our goal is to develop a new method to deal with
uncertainties in the system Hamiltonian. From the above control algorithm, it is clear that we
can design different controllers offline. Hence, this is a convenient approach to be applied to
different control tasks.
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Remark 3. In the above control algorithm, the construction of amplitude amplification operator
Q is dependent on the initial state, i.e. the initial state must be known. When the initial state
is an eigenstate |φk〉, we usually need apply a unitary transformation Uk to drive |φk〉 to a
superposition state before constructing Q. Here Uk may be a small perturbation or an easily
realized unitary transformation. If the initial state is unknown or is a mixed state, we can
construct a Kraus map to control the initial state to a specified pure state (for details, see,
e.g. [65]) and then use the proposed control algorithm to accomplish the control task.

Remark 4. In quantum information, QEC is an important problem. Two important paradigms
for QEC have been proposed: active error correction and passive error avoidance. The main idea
for active error correction is encoding quantum information using redundant qubits, detecting
possible errors and then correcting the error [9, 66, 67]. In the paradigm of error avoidance, one
may encode quantum information in a decoherence-free (noiseless) subspace [28, 46, 47]. Our
control method presented above provides a possible unified framework for the two paradigms
of QEC. We may identify a DFS as a sliding mode. In the sliding mode, the system is robust
against some specified uncertainties (errors). However, some other classes of errors may break
the specific symmetry in the system–environment interaction and take the system state away
from the DFS. In that case, we can design a control law to drive the system state back to the
sliding mode. A schematic demonstration of the relationships between SMC and QEC is shown
in figure 1. From this discussion it can be seen that SMC has the potential to provide a new
method for QEC. The detailed development of this idea is an area for future research.

4.3. An illustrative example: three-level system

We now consider a three-level quantum system. In (3), let u(t)= 1 and A = diag{−1, 0, 1}. The
matrix B and the uncertainty matrix H1 are as follows:

B =

0 1 0
1 0 0
0 0 0

 , H1 =

 0 0 ε(t)
0 0 0
ε(t) 0 0

 , (18)

where |ε(t)|6 ε̄. This leads to the following equation of the form (3):

i

ċ1(t)
ċ2(t)
ċ3(t)

 =

−1 1 ε(t)
1 0 0
ε(t) 0 1

 c1(t)
c2(t)
c3(t)

 . (19)

The three eigenstates {|φ1〉, |φ2〉, |φ3〉} are denoted as {|1〉, |2〉, |3〉}, respectively. Suppose
that the initial state is |1〉, i.e. {c1(0), c2(0), c3(0)} = {1, 0, 0}. The three-level system
corresponding to (18) can be represented schematically as shown in figure 2. The form of the
B matrix implies that there is a direct coupling between states |1〉 and |2〉. The form of the
uncertainty matrix H1 implies that a disturbance coupling ε(t) exists between |1〉 and |3〉. It
is easy to check using the method in section 2.1 that the subspace spanned by {|1〉, |2〉} can
be used as a sliding mode, i.e. S(|ψ〉, H)= 1 − (|〈ψ |1〉|

2 + |〈ψ |2〉|
2)= 0. Hence, our control

problem may correspond to a practical problem in quantum information. For example, the two-
level system with levels |1〉 and |2〉 can be used as a qubit, and the uncertainty matrix H1 may
represent a possible leakage into states outside the qubit subspace [68].
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Figure 1. A representation of the relationships between SMC in QCP2 and a
unified framework of QEC. The sliding mode (SM HSM) corresponds to the DFS;
the complement space H⊥

SM corresponds to the effect of the environment in QEC;
and the uncertainties in SMC correspond to possible errors in QEC. The subtask
(I) in SMC corresponds to the initialization of QEC; the subtask (II) in SMC
corresponds to the protection of DFS in QEC; and the control law (CL) in the
subtask (III) of SMC corresponds to the process of correcting errors (CE) in
QEC.

Figure 2. A three-level system. The subspace spanned by {|1〉, |2〉} corresponds
to the sliding mode (SM). The uncertainty ε(t) exists between |1〉 and |3〉.

We now consider the design of period T for the periodic projective measurements.
Let c j(t)= x j(t)+ iy j(t)( j = 1, 2, 3), where x j(t), y j(t) ∈ R. Also, let the vector η(t) denote
η(t)= (x1(t), y1(t), x2(t), y2(t), x3(t), y3(t))T. From (19), we obtain

η̇(t)= F(ε(t))η(t) (20)
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where

F(ε(t))=


0 −1 0 1 0 ε(t)
1 0 −1 0 −ε(t) 0
0 1 0 0 0

−1 0 0 0 0 0
0 ε(t) 0 0 0 1

−ε(t) 0 0 0 −1 0

 (21)

and η(0)= (x1(0), y1(0), x2(0), y2(0), x3(0), y3(0))T = (1, 0, 0, 0, 0, 0)T.
We now introduce the co-state vector λ(t)= (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t))T and

obtain the corresponding Hamiltonian function as follows:

H(η(t), ε(t), λ(t), t)= λT(t)F(ε(t))η(t)= ε(t)M(t)+ N (t), (22)

where M(t)= λ5(t)y1(t)− λ6(t)x1(t)− λ2(t)x3(t)+ λ1(t)y3(t) and N (t)= λ2(t)x1(t)−
λ4(t)x1(t)− λ1(t)y1(t)+ λ3(t)y1(t)− λ2(t)x2(t)+ λ1(t)y2(t)− λ6(t)x3(t)+ λ5(t)y3(t). Accord-
ing to Pontryagin’s minimum principle [69], a necessary condition for ε̃(t) to minimize the
functional J (ε)= x2

3(t f )+ y2
3(t f ) is

H(η̃(t), ε̃(t), λ̃(t), t)6H(η̃(t), ε(t), λ̃(t), t). (23)

Hence,
ε̃(t)= −ε̄sgnM(t). (24)

That is, the optimal control is a bang–bang control strategy, i.e. ε̃(t)= ε̃ = +ε̄ or − ε̄.
Without loss of generality, now we let ε̃(t)= ε̄ and focus on

η̇(t)= F(ε̄)η(t), (25)

where η(0)= (1, 0, 0, 0, 0, 0)T.
Consider the optimal control with a fixed final time tf and a free final state η(tf)=

(x1(tf), y1(tf), x2(tf), y2(tf), x3(tf), y3(tf))
T. Let J (t)= x2

3(t)+ y2
3(t). According to Pon-

tryagin’s minimum principle, λ̃(tf)= (∂/∂η)J (t)|t=tf . From this, we obtain (λ1(tf),

λ2(tf), λ3(tf), λ4(tf), λ5(tf), λ6(tf))= (0, 0, 0, 0, 2x3(tf), 2y3(tf)). Now we consider another
necessary condition λ̇(t)= −∂H(η(t), ε(t), λ(t), t)/∂η which leads to the following relation-
ships:

λ̇(t)= F(ε̄)λ(t). (26)

By simulation of (25) and (26), for different values of ε̄, we find the sign of M(t) does
not change over the first interval for which J (t) is monotonically increasing with respect
to t . Hence, we can estimate the required period T by considering the first interval on which
J (t) is monotonic. For example, if we consider ε̄ = 0.1, we obtain the simulation results
shown in figure 3. From this, we obtain tf = 1.1160, x3(tf)= −0.0055, y3(tf)= −0.0705 and
J (tf)= 0.0050. Then we can check that M(t) indeed does not change sign on t ∈ [0, tf] as
shown in figure 4. Now we can design the period T using the following relationship:

T =

{
t1 (where t1 ∈ [0, tf) and J (t1)= p0), if p0 < J (tf),

tf, otherwise.
(27)

For example, if p0 = 0.50%, we have p0 6 J (tf). From figure 3 and (27), we obtain T = 1.1160.

New Journal of Physics 11 (2009) 105033 (http://www.njp.org/)

http://www.njp.org/


14

Figure 3. The curve of J (t)= x2
3(t)+ y2

3(t) corresponding to (25).

Figure 4. The curve of M(t) corresponding to the first monotonic interval of
J (t) in figure 3.

Now we design a control law for the subtask (III) using the quantum amplitude
amplification method introduced in section 4.1. For simplicity, we use a simple choice of
Q where ϕ1 = π , ϕ2 = π and the subspace spanned by {|1〉, |2〉} corresponds to the ‘good’
subspace. When the measurement result is |φk〉 = |3〉, we first apply a unitary transformation
(a perturbation) U3 on |3〉 to obtain |ψ3〉 = U3|3〉 = 0.0600|1〉 + 0.0800|2〉 + 0.9950|3〉. Now,
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using a similar method to the example in [52], we obtain the state |ψ ′

3〉 = 0.5986|1〉 +
0.7981|2〉 + 0.0682|3〉 after seven iterations of Q. Now we make a measurement on |ψ ′

3〉, and
the probability of failure is p′

0 = 0.47% (6 0.50%).

5. Concluding remarks

This paper focuses on a robust control problem for quantum systems with uncertainties. The
main contributions are as follows: (i) we propose a new robust control framework based
on SMC to deal with uncertainties in quantum control. SMC is a powerful methodology in
classical control theory and has many industrial applications. Hence, the proposed method
has the potential to open a new avenue for robust control design of quantum systems, which
will provide a new useful tool for quantum information processing with uncertainties. (ii) This
paper presents two specific control algorithms for two classes of quantum control problems.
In particular, several approaches such as time-optimal control, projective measurements and
quantum amplitude amplification are combined to design quantum control algorithms. Two
examples are also analyzed in detail using the proposed algorithms.

It should be pointed out that the results in this paper are only a first step in developing
systematic SMC approaches for quantum systems. Much further work is required and several
open problems are listed as follows: (i) the measurement period T designed in this paper
is relatively conservative and it may be possible to obtain a larger value of T when p0 is
relatively large. (ii) The connection between the proposed methods and QEC and quantum state
preparation has been discussed. However, the specific applications still require to be developed
in detail. Moreover, we use two model systems as the examples to illustrate the proposed
methods. A future task is to connect such model systems to specific quantum systems (e.g.
quantum optical systems and spin systems) and to consider the experimental implementation of
the proposed methods for such real quantum systems. (iii) We only consider a simple amplitude
amplification operator Q in our example, and the questions of how to determine an optimal Q
and how to realize Q using specific control fields are still open problems. (iv) We have ignored
the uncertainties during the control processes (I) and (III), which require a relatively short time
to accomplish the two control objectives. An improvement worth exploring is to consider the
effect of uncertainties in all three subtasks. (v) We have constrained the type of uncertainties to
be dealt with, so future research could be directed torward extending the SMC approaches to
deal with other types of uncertainties for quantum systems.
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Appendix. The proof of theorem 1

For H = Iz + ε(t)Ix , using ρ̇ = −i[H, ρ] and (9), we haveẋt

ẏt

żt

 =

0 −1 0
1 0 −ε(t)
0 ε(t) 0

 xt

yt

zt

 , (28)

where (x0, y0, z0)= (0, 0, 1).
We now consider ε(t) as a control input and select the performance measure as

J (ε)= ztf . (29)

Also, we introduce the co-state vector λ(t)= (λ1(t), λ2(t), λ3(t))T and obtain the corresponding
Hamiltonian function as follows [69]:

H(r(t), ε(t), λ(t), t)= −λ1(t)yt + λ2(t)xt + ε(t)(λ3(t)yt − λ2(t)zt). (30)

According to Pontryagin’s minimum principle [69], a necessary condition for ε̃(t) to minimize
J (ε) is

H(r̃(t), ε̃(t), λ̃(t), t)6H(r̃(t), ε(t), λ̃(t), t). (31)

Hence the optimal control ε̃(t) should be chosen as follows:

ε̃(t)= −ε̄sgn(λ3(t)yt − λ2(t)zt). (32)

That is, the optimal control strategy for ε(t) is bang–bang control; i.e. ε̃(t)= ε̃ = +ε̄ or − ε̄.
Now we consider the systemẋt

ẏt

żt

 =

0 −1 0
1 0 −ε̃

0 ε̃ 0

 xt

yt

zt

 , (33)

where (x0, y0, z0)= (0, 0, 1). Define ω =
√

1 + ε̄2. The corresponding solution to (33) is

xt

yt

zt

 =


−

ε̃

1 + ε̄2
cos ωt +

ε̃

1 + ε̄2

−
ε̃

√
1 + ε̄2

sin ωt

ε̄2

1 + ε̄2
cos ωt +

1

1 + ε̄2


. (34)

Now consider the optimal control problem with a fixed final time tf and a free final
state rt f = (xt f, yt f, zt f). According to Pontryagin’s minimum principle, λ̃(tf)=

∂

∂r zt |t=tf . From
this, it is straightforward to verify that (λ1(tf), λ2(tf), λ3(tf))= (0, 0, 1). Now let us consider
another necessary condition λ̇(t)= −∂H(r(t), ε(t), λ(t), t)/∂r which leads to the following
relationships:

λ̇(t)=

λ̇1(t)
λ̇2(t)
λ̇3(t)

 =

0 −1 0
1 0 −ε̃

0 ε̃ 0

 λ1(t)
λ2(t)
λ3(t)

 , (35)
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where (λ1(tf), λ2(tf), λ3(tf))= (0, 0, 1). The corresponding solution to (35) is

λ1(t)
λ2(t)
λ3(t)

 =



−
ε̃

1 + ε̄2
cos ω(tf − t)+

ε̃

1 + ε̄2

ε̃
√

1 + ε̄2
sin ω(tf − t)

ε̄2

1 + ε̄2
cos ω(tf − t)+

1

1 + ε̄2


. (36)

We obtain

λ3(t)yt − λ2(t)zt =
−ε̃

ω3/2
[sin ωt + ε̄2 sin ωtf + sin ω(tf − t)]. (37)

It is easy to show that the quantity (λ3(t)yt − λ2(t)zt) occurring in (32) does not change its
sign when tf ∈ [0, π/

√
1 + ε̄2] and t ∈ [0, tf]. That is to say, ε(t)= ε̃ is the optimal control when

t ∈ [0, π/
√

1 + ε̄2]. Hence za
t = zt(ε(t))> zt(ε̃)= zb

t .
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