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Abstract. In evolutionary game dynamics, reproductive success increases with
the performance in an evolutionary game. If strategy A performs better than
strategy B, strategy A will spread in the population. Under stochastic dynamics,
a single mutant will sooner or later take over the entire population or go extinct.
We analyze the mean exit times (or average fixation times) associated with this
process. We show analytically that these times depend on the payoff matrix of the
game in an amazingly simple way under weak selection, i.e. strong stochasticity:
the payoff difference 1π is a linear function of the number of A individuals i ,
1π = u i + v. The unconditional mean exit time depends only on the constant
term v. Given that a single A mutant takes over the population, the corresponding
conditional mean exit time depends only on the density dependent term u. We
demonstrate this finding for two commonly applied microscopic evolutionary
processes.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 013012
1367-2630/09/013012+18$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:altrock@evolbio.mpg.de
mailto:traulsen@evolbio.mpg.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Fermi process 3
3. Fixation probabilities and fixation times 5
4. Neutral selection 6
5. Weak selection 6
6. Frequency dependent Moran process 7
7. Discussion 8

7.1. Dominance of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.2. Coexistence of A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.3. Coordination games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Acknowledgments 12
Appendix A. Finite double sums 12
Appendix B. Fixation times under weak selection 13
Appendix C. Finite triple sums 15
References 17

1. Introduction

Systems in which successful strategies spread by imitation or genetic reproduction can be
described by evolutionary game theory. Such models are routinely analyzed in evolutionary
biology, sociology, anthropology and economics. Recently, the application of methods from
statistical physics to these systems has led to many important insights [1]–[5].

Traditionally, the dynamics is described by the replicator equations, where the growth rate
of a strategy is associated with its relative success compared with the population average [6, 7].

In the past few years, research has focused on stochastic evolutionary game dynamics in
finite populations [8]–[22]. In this context, a connection to the weak selection limit of population
genetics has been established [8]. Weak selection means that the payoff differences based on
different strategic behavior in interactions represent only a small correction to otherwise random
dynamics, similar to high temperature expansions in physics. Weak selection is considered
as a relevant limit in biology, as most evolutionary changes are driven by small fitness
differences [23]. Moreover, it allows analytical approximations that are often impossible when
selective differences in payoffs are large [8, 24, 25].

Most of the recent work that uses the weak selection approximation has been focusing
on the probability that a certain strategy takes over. The time associated with this process has
been calculated [26], but it received considerably less attention so far. Here, we present the
weak selection corrections to the conditional and unconditional mean exit or fixation times in
evolutionary 2 × 2 games with N players.

The conditional average time to fixation t A
1 is the expected time a single mutant needs to

take over the population, given that such a takeover occurs at all. The unconditional average
time of fixation t1 is the expectation value for the time until the population is homogeneous
again after the arrival of a single mutant. This is regardless of whether the mutant type takes
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over the population or becomes extinct. Equivalently, the average fixation times for such one-
dimensional random walks can also be interpreted as mean first passage times or mean exit
times [27]–[29].

Throughout this paper, we use the payoff matrix

( A B
A a b
B c d

)
. (1)

An A player interacting with another A receives a. If it interacts with B, it obtains b. Similarly,
B receives c from A and d from other Bs. Thus, the average payoffs are

πA(i) =
i − 1

N − 1
a +

N − i

N − 1
b, (2)

πB(i) =
i

N − 1
c +

N − i − 1

N − 1
d. (3)

A quantity that is of particular interest is the difference between the average payoffs,

1π(i) = πA(i) − πB(i) = u i + v, (4)

where

u =
a + d − (b + c)

N − 1
, (5)

v =
N (b − d) − (a − d)

N − 1
. (6)

We show that under weak selection, the conditional time (t A
1 ) during which a single mutant

takes over the whole population depends only on u (and, of course, on the population size).
The unconditional time (t1) during which the mutant either takes over the population or reaches
extinction depends only on v (and the population size). See figure 1 for an illustration of the
relevant quantities.

Our paper is organized as follows: in section 2, we introduce a particular evolutionary
process for our analysis. Although our results are valid for a broader class of processes, we
only present the full calculation for this evolutionary process. In section 3, we recall the
general form of fixation probabilities and times. We discuss neutral selection in section 4 as
a prerequisite to the weak selection expansion, which we explore in section 5. In section 6, we
address the frequency-dependent Moran process to underline the generality of our findings. The
consequences of our analytical results are discussed in section 7.

2. Fermi process

In a finite population of size N with two possible strategies A and B, the state of the system is
characterized by the number of type A individuals i . In general, the dynamics is stochastic. In
each time step, a randomly chosen individual evaluates its success. It compares this payoff with
a second, randomly chosen individual. If this second individual has a higher payoff, the first
one switches strategies with probability p > 1

2 . Otherwise, it switches with p < 1
2 . We assume
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B A

Number of A players

0 Ni1

t1(β,N, v)

T−i (β,N, u, v) T+i (β,N, u, v)

tA1 (β,N,u)
φ1(β,N, u, v)

Figure 1. Illustration of the most relevant quantities. We are interested in the
evolutionary fate of a single A player. All quantities depend on the intensity of
selection β and the population size N . The payoff difference between A and
B players is given by 1π = u i + v, with i as the number of A players. Both
the transition probabilities T +

i and T −

i and the probability that a single A player
takes over the population φ1 depend on u and v. But for weak selection, β � 1,
the conditional time t A

1 during which a single A player takes over a population
of B players only depends on u, whereas the unconditional time t1 until either A
or B has taken over the population only depends on v.

that the switching probability is given by the Fermi distribution. Its shape is controlled by the
intensity of selection β, which can be interpreted as an inverse temperature,

p±

i =
1

1 + e∓β(πA(i)−πB(i))
=

1

1 + e∓β1π(i)
. (7)

In previous work [30]–[32], there is a different strategy update procedure. The first individual
switches to the second’s strategy with probability p±

i . The second individual can also switch
to the first individual’s strategy with probability 1 − p±

i . This yields a factor 2 in the transition
probabilities (and, as will become clear later, a factor 1

2 in the fixation times). This process also
has a proper strong selection limit, i.e. it is possible to examine β → ∞. In this latter case, we
have p±

i → 2(1π(i)), where 2(x) is the step function.
The population size is constant in time, in each time step the state of the system can at most

change by one, i.e. from i to i − 1 or to i + 1. The transition probabilities T ±

i to move from i to
i ± 1 are

T ±

i =
i

N

N − i

N
p±

i . (8)

The probability to stay in the current state is 1 − T +
i − T −

i . An important measure of where the
system is more likely to move is their ratio,

γi =
T −

i

T +
i

= e−β 1π(i). (9)

This is a quantity that describes the tendency to move from the state i to i ∓ 1, depending on
whether γi ≷ 1. Of course, T +

i > 0 is required, which follows from β < ∞. The T ±

i and thus the
γi are invariant under adding a value to each of the payoffs given in (1), whereas multiplying
the payoff matrix with a factor λ results in a change in the intensity of selection β̃ = β λ.
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Let us now focus on weak selection, β � 1. In this case, we have

p±

i ≈
1

2
±

β

4
1π(i). (10)

Weak selection corresponds to high temperature in Fermi statistics. A Taylor expansion of the
γi up to first order in β yields γi ≈ 1 − β 1π(i). In this case, the probability to move from i to
i + 1 is very similar to the probability to move from i to i − 1. Weak selection links the Fermi
process to a variety of birth–death processes, cf [8, 33].

3. Fixation probabilities and fixation times

From equation (8) it follows that the two pure states all A or all B are absorbing, T ±

0 = T ±

N = 0.
In a finite population, we can calculate the probability φi that the system will fixate to the
pure state all A, starting with the mixed state i . Obviously, we have φ0 = 0 and φN = 1. For
0 < i < N , there is a balance equation for the fixation probabilities, φi = T −

i φi−1 + (1 − T +
i −

T −

i )φi + T +
i φi+1. This recursion leads to an expression for the fixation probabilities in terms of

the γi [34]–[36],

φi =
1 +

∑i−1
k=1

∏k
l=1 γl

1 +
∑N−1

k=1

∏k
l=1 γl

, (11)

which is valid for any birth–death process.
For the Fermi process, the exact equation (9) simplifies matters in an elegant way because

the products in equation (11) can be solved,
k∏

l=1

γl = exp

{
−β

k∑
l=1

1π(l)

}
= exp

{
−β

[
k2 u

2
+ k

(u

2
+ v

)]}
. (12)

Hence, equation (11) simplifies to

φi =
1 +

∑i−1
k=1 exp

{
−β

[
k2 u

2 + k( u
2 + v)

]}
1 +

∑N−1
k=1 exp

{
−β

[
k2 u

2 + k(u
2 + v)

]} . (13)

For large N , the sums in equation (13) can be approximated by integrals, which yields a closed
expression for the probabilities φi [33, 37].

General expressions for the unconditional and conditional mean exit times or average times
of fixation, t1 and t A

1 , are well known, especially for simple, translational invariant random
walks [26, 27, 38]. A complete derivation for the average times of fixation in finite systems
without translational invariance can be found in [26, 35, 39].

In the following, we will focus on the fixation of a single A mutant in a population of B.
Accordingly, the unconditional and conditional fixation times read

t1 = φ1

N−1∑
k=1

k∑
l=1

1

T +
l

k∏
m=l+1

γm (14)

and

t A
1 =

N−1∑
k=1

k∑
l=1

φl

T +
l

k∏
m=l+1

γm, (15)
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respectively. Time is measured in elementary time steps here. Thus, in each time step one
reproductive event occurs. In biological contexts, it is often more convenient to measure time
in generations, such that each individual reproduces once per generation on average. Time in
generations is obtained by dividing the number of time steps by the population size N . It is well
known that the variance of the exit times under weak selection can be large [39], which has
important biomedical implications [40]. Nonetheless, here we concentrate on the expectation
values and do not address the distribution of the exit times.

4. Neutral selection

An important reference case is neutral selection, which results from vanishing selection intensity
β = 0 [41]. Neutral selection is a very general limit, which is typically not affected by the details
of the evolutionary process. For neutral selection we have γi = 1, that is T +

i = T −

i in any state i .
However, we still have T ±

i 6= T ±

j for i 6= j , although the system is symmetric, T ±

i = T ±

N−i . This
is a difference to the simple random walk in one dimension, which is invariant with respect to
translation [29].

For the Fermi process, the neutral transition probabilities are

T ±

i

∣∣∣
β=0

=
1

2

i

N

N − i

N
. (16)

We have T +
i = T −

i , which leads to γi = 1. From equation (11), it is thus clear that the probability
of fixation to A is given by the initial abundance of A,

φi

∣∣∣
β=0

=
i

N
. (17)

For the neutral unconditional time of fixation t1 we get

t1

∣∣∣
β=0

=
1

N

N−1∑
k=1

k∑
l=1

2 N 2

l(N − l)
= 2 N HN−1. (18)

Details for this calculation can be found in appendix A. We introduced the shorthand notation
for the harmonic numbers HN−1 =

∑N−1
l=1

1
l , which diverge logarithmically with N . In the same

way we can solve

t A
1 |

β=0
=

N−1∑
k=1

k∑
l=1

l

N

2 N 2

l(N − l)
= 2 N (N − 1). (19)

For neutral selection, the conditional average time of fixation of a single mutant diverges
quadratically with the system size.

5. Weak selection

In this section, we will calculate the linear corrections of the mean exit times or fixation times
t1 and t A

1 under weak selection, β � 1. Of course, all weak selection approximations are valid
only if the term linear in β is small compared with the constant term.

The fixation probabilities for small β are

φi ≈
i

N
+

i

N
(N − i)

(N + i)u + 3v

6
β, (20)

which has been derived for a variety of evolutionary processes before [8, 10, 12, 35, 36, 42].
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Next, we address the weak selection approximation of the fixation times. The expectation
value of the unconditional fixation time of a single A mutant in a population of B is in general
given by the exact equation (14). With the transition and fixation probabilities of the Fermi
process, the unconditional fixation time of absorption at any boundary simplifies to

t1 = φ1

N−1∑
k=1

k∑
l=1

N 2

l(N − l)

(
1 + e−β(u l+v)

)
exp

{
−β

k∑
m=l+1

1π(m)

}
. (21)

The weak selection approximation takes the remarkably simple form (see appendix B for
details)

t1 ≈ 2 N HN−1 + v N (N − 1 − HN−1) β (22)

with v given in (6). Thus, t1 depends only on the constant term of the payoff difference. For
large N , this yields v ≈ b − d. That is, for large populations under weak selection, the linear
correction of the average fixation time only depends on the advantage (or disadvantage) of the
A mutants in the resident population. For b > d, invasion of A mutants is likely and slows down
the time until the population is homogeneous again. For d > b, it is difficult for A to invade
a B population and extinction of the mutants is faster than in the neutral case. Note that the
payoff entries a and c have no influence on the unconditional fixation time under weak selection
corrections. Since fixation is unlikely for weak selection (the probability of fixation of a single
A mutant is approximately N−1), the unconditional fixation time is dominated by the fixation to
B. In this case, it is enough to discuss the invasion of A mutants.

Next, we address the average time to fixation given that the A mutant takes over the
population. With the general result (15) the conditional fixation time of the Fermi process to
all A reads

t A
1 =

N−1∑
k=1

k∑
l=1

φl
N 2

l(N − l)

(
1 + e−β(u l+v)

)
exp

{
−β

k∑
m=1+l

1π(m)

}
. (23)

Its linear approximation turns out to be dependent on the payoffs in a very simple way as well,

t A
1 ≈ 2 N (N − 1) − u N (N − 1)

N 2 + N − 6

18
β (24)

with u(N − 1) = a − b − c + d. The detailed calculation can be found in appendix B. Since
during the fixation process all payoffs are of importance, it is obvious that they all enter here.
For example, when it is easy to invade because few mutants have an advantage (b > d), but
difficult to reach fixation because mutants are disadvantageous once they are frequent (c > a),
we have u < 0 and the conditional time to fixation is larger than neutral. In the last section,
we discuss special classes of games to show that, under weak selection, the conditional mean
exit times of fixation (or absorption) do not always follow the intuition based on the payoff
matrix (1).

6. Frequency dependent Moran process

In this section, we address the generality of the previous findings discussing an alternative
evolutionary process. The first model that connects payoffs from a 2 × 2 game to reproductive
fitness using a weak selection approach in finite populations is the frequency dependent Moran
process [8, 9]. In this process, an individual is chosen for reproduction with probability
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proportional to its fitness f (i). The offspring replaces a randomly chosen individual. The
average payoffs (2) and (3) are mapped to the fitness such that f A(i) = 1 − β + β πA(i) and
fB(i) = 1 − β + β πB(i), where the selection intensity β > 0 is so small that f A(i) > 0 and
fB(i) > 0. The transition probabilities of the standard Moran process read

T +
i =

i f A(i)

i f A(i) + (N − i) fB(i)

N − i

N
, (25)

T −

i =
(N − i) fB(i)

i f A(i) + (N − i) fB(i)

i

N
. (26)

Although these transition probabilities are different from those of the Fermi process, they also
yield γi ≈ 1 − 1π(i) and

∏k
m=l+1 γm ≈ 1 − β

∑k
m=l+1 1π(m) for weak selection, β � 1. Thus,

the weak selection approximations of the fixation probabilities φl of the Moran process and the
Fermi process are identical, see equation (20). But the weak selection approximations of the
transition probabilities are not identical, which leads consequently to different mean exit times.
Nevertheless, the results have the same, remarkably simple connection to the payoff matrix (1).
The mean exit times or fixation times of the frequency-dependent Moran process are

t1 ≈ N HN−1 + v
N

2
(N + 1 − 2HN ) β, (27)

t A
1 ≈ N (N − 1) − u

N 2(N 2
− 3N + 2)

36
β. (28)

Qualitatively, the dependence on the payoff matrix via u and v is the same as for the Fermi
process. Their calculation is analogous to the findings of the previous section, details can be
found in appendix B. Note that, comparing with the Fermi process, there is a factor of 2 missing
in the neutral terms. However, this can be avoided by rescaling the transition probabilities,
without changing the properties of the different processes.

7. Discussion

Finally, let us discuss the implications of our results for general 2 × 2 games. While we
concentrate on the Fermi process here, the discussion is equally valid for the frequency
dependent Moran process. An important question is whether the linear correction for weak
selection is compatible with the general features of the game and the known asymptotic behavior
for large N of the mean exit or fixation times derived by Antal and Scheuring [26]. Clearly, this
depends on the payoff matrix of the 2 × 2 game,

( A B
A a b
B c d

)
, (29)

as the payoffs enter the first exit times of absorption linearly. To analyze the difference from
the neutral case we consider the rescaled average times of fixation, τ1(β) = t1(β)/t1(0) and
τ A

1 (β) = t A
1 (β)/t A

1 (0). The rescaled unconditional fixation time reads

τ1 ≈ 1 +
1

2

N (b − d) − a + d

N − 1

(
N − 1

HN−1
− 1

)
β. (30)
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Accordingly, the rescaled conditional fixation time for absorption at all A is

τ A
1 ≈ 1 −

a − b − c + d

N − 1

N 2 + N − 6

36
β. (31)

Note that for population sizes N > 2 and sufficiently small β, we always have t1(0) < t A
1 (0).

In other words, the average time until the A individual has reached fixation or gone extinct
is smaller than the conditional average time until the A individual has reached fixation. For
β → ∞, the process follows deterministically the intensity of selection and thus both fixation
times may coincide, t1(β → ∞) ≈ t A

1 (β → ∞). This ordering of the fixation times is blurred
by our rescaling, as we focus only on the change relative to the neutral case.

In the following, we discuss these two expressions for the three generic types of 2 × 2
games, namely dominance of A (a > c and b > d), coexistence of A and B (a < b and c > d)
and a coordination game (a > c and b < d).

7.1. Dominance of A

Consider a game where strategy A is always dominant, i.e. it obtains a larger payoff than B,
regardless of the fraction of A in the population. This is the case for a > c and b > d. One
special case is the Prisoner’s dilemma with b > d > a > c. The interesting feature of this game
is that the social optimum d is not the Nash equilibrium, which is a. For neutral selection, a
single A individual goes extinct with probability 1 − N−1. Thus, the unconditional fixation time
τ1 is dominated by the extinction of A. Since strategy A is favored by selection, increasing
the intensity of selection decreases the probability of the extinction of A. Since fixation takes
at least N − 1 time steps, τ1 increases with increasing intensity of selection β. For large N ,
this is obvious from our equation (30), because in this case the quantity N (b − d) − a + d is
positive. However, once extinction of A becomes unlikely, increasing β further will lead to a
decrease of τ1.

The discussion of the conditional fixation time τ A
1 is not as straightforward, because the

sign of a − b − c + d can be positive or negative. The sign of this quantity is also decisive for the
evolutionary dynamics in other contexts, see, e.g., [43]. When the advantage of an A individual
is initially large and decreases with the abundance of A (a − c > b − d > 0), then the sign of
a − b − c + d is positive and τ A

1 decreases with increasing intensity of selection. But when the
advantage of strategy A decreases with the number of A individuals (b − d > a − c > 0), then
τ A

1 increases with increasing intensity of selection. However, this apparently counterintuitive
phenomenon (after all, A dominates B) can only be observed for weak selection. For strong
selection, τ A

1 decreases again. These results are compatible with the observation that the
conditional fixation time scales as N ln N for large N [26]. In figure 2(a), we show a numerical
example for the rescaled average times. We include averages from numerical simulations of the
evolutionary process, our linear approximation as well as the exact result that can be obtained
from dividing equation (14) by (18) and equation (15) by (19), respectively. The payoff matrix
is chosen such that a + d > b + c, which means that with increasing intensity of selection τ A

1
decreases and τ1 increases.

7.2. Coexistence of A and B

As a second class, we consider games in which B is the best reply to A (c > a), but A is the
best reply to B (b > d). Important examples for such games are the Hawk–Dove game [44]
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Figure 2. See figure caption on next page.
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Figure 2. Expectation values of the rescaled fixation times starting with a single
A mutant in a population of B as a function of the selection intensity β. Full lines
show the normalized exact solution originating from the exact results (21) and
(23). Colored dashed lines are the linear approximations (30) and (31). Symbols
show the results from simulations based on 107 realizations, which agree nicely
with the exact results. Diamonds are for the unconditional averages, circles are
for the conditional averages. On the right-hand side, we show the payoff matrices
of the three games and illustrate the direction of selection in these games.
(a) In a game with dominance of strategy A, the unconditional fixation time
increases with the intensity of selection, but the conditional fixation time
decreases. (b) For games with stable coexistence, both fixation times increase
with the intensity of selection. (c) For coordination games, the two fixation times
become shorter when the intensity of selection is increased. In all examples, the
population size is N = 100.

or the Snowdrift game [45]. For infinite populations, the replicator dynamics predicts a stable
coexistence of A and B. In finite populations, the system typically fluctuates around that point
until eventually, fluctuations lead to absorption in one of the boundaries [46, 47]. Consequently,
the conditional fixation times increase exponentially with the population size [26]. Since
a − b − c + d is negative, we also have an increase of τ A

1 with the selection intensity for weak
selection. Further, N (b − d) − a + d is positive in large populations, such that also τ1 increases
with the selection intensity. Figure 2(b) shows that the divergence of the exact results is faster
than the linear approximation even for weak selection.

7.3. Coordination games

Finally, let us discuss coordination games in which a > c and b < d. In these games, A is
the best reply to A and B is the best reply to B. The replicator equation of such systems
exhibits a bistability: if the fraction of A individuals is sufficiently high in the beginning,
the A individuals will reach fixation. Otherwise, B individuals will take over the system. The
stronger the intensity of selection, the less likely it is that a single A individual can take over a B
population. Consequently, τ1 should decrease with β. This also follows from our weak selection
approximation: in large populations, N (b − d) − a + d is negative and thus τ1 decreases with the
intensity of selection, see equation (30). Perhaps less intuitive, also τ A

1 decreases with β, which
results from a − b − c + d > 0, cf (30). However, this is again consistent with the observation
that τ A

1 scales as N ln N in large populations. Although the fixation probability of a single A
decreases with β, if such an event occurs, it is faster than in the neutral case. A numerical
example for this behavior is shown in Figure 2(c).

The numerical examples indicate that the convergence radius of our weak selection
expansion is of the order of N−1, which is also known for many systems in population genetics.
Although N−1 might appear small, this kind of weak selection is the most relevant limit in
evolutionary biology, as evolutionary change is typically only connected with small selective
differences. We stress that we have made no assumptions on the population size, such that our
results are valid for arbitrary N .
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Our approach shows under which circumstances the general features of the game are
reflected in the fixation times under weak selection. Although the weak selection expansion
of the mean exit or fixation times is technically rather tedious, the resulting asymptotic behavior
shows remarkable simplicity.
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Appendix A. Finite double sums

Here, we collect some helpful calculations for double sums as they appear in the mean exit
times. An important observation is

N−1∑
k=i

k∑
l=1

fl

N − l
= (N − i)

i−1∑
l=1

fl

N − l
+

N−1∑
l=i

fl (A.1)

for any function fl < ∞ and l = 1, . . . , N − 1. This can be seen by writing the left-hand side
term by term, i.e.
N−1∑
k=i

k∑
l=1

fl

N − l
=

f1

N − 1
+ · · · +

fi

N − i

+
f1

N − 1
+ · · · +

fi

N − i
+

fi+1

N − (i + 1)

+ · · ·

+
f1

N − 1
+ · · · +

fi

N − i
+ · · · +

fN−1

N − (N − 1)
(A.2)

= (N − i)
i∑

l=1

fl

N − l
+ (N − i − 1)

fi+1

N − (i + 1)
+ · · · + fN−1

= (N − i)
i−1∑
l=1

fl

N − l
+

N−1∑
l=i

fl .

For the case i = 1, the result is especially simple, since the first sum of the right-hand side of
equation (A.1) vanishes. This case is of special interest for the computation of t A

1 under neutral
selection with fl = 1 and for t1 with fl = 1/ l.

Another finding for double sums with M ∈ N and two bounded functions fk and gl is

M∑
k=1

k∑
l=1

fk gl =

M∑
l=1

gl

M∑
k=l

fk. (A.3)
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This becomes clear by resorting the terms again,
M∑

k=1

k∑
l=1

fk gl = f1g1 + f2(g1 + g2) + · · · + fM(g1 + g2 + . . . + gM)

= g1( f1 + · · · + fM) + g2( f2 + · · · + fM) + · · · + gM fM

=

M∑
l=1

gl

M∑
k=l

fk. (A.4)

Appendix B. Fixation times under weak selection

Here, we calculate the linear corrections of the mean exit times t1 and t A
1 for the Fermi

process in detail, compare equations (21) and (23). We aim at finding these times for weak
selection, e.g.

t1 ≈ [t1]β=0 + β

[
∂

∂β
t1

]
β=0

. (B.1)

The first term follows directly from the calculation in appendix A, see equation (18). Our goal

here is to compute the linear term
[

∂

∂β
t1

]
β=0

.[
∂

∂β
t1

]
β=0

=

N−1∑
k=1

k∑
l=1

[
1

T +
l

∂φ1

∂β
+ φ1

∂

∂β

1

T +
l

]
β=0

−

N−1∑
k=1

k∑
l=1

[
φ1

T +
l

k∑
m=l+1

1π(m)

]
β=0

, (B.2)

where we applied [
∏k

m=l+1 γm]β=0 = 1 and [ ∂

∂β

∏k
m=l+1 γm]β=0 = −

∑k
m=l+1 1π(m). For the

fixation probability under weak selection and with 1π(l) = u l + v, we have[
∂φl

∂β

]
β=0

=
l

N
(N − l)

(N + l)u + 3v

6
. (B.3)

The weak selection approximation of the inverse of the transition probability T +
l , compare

equation (8), yields[
∂

∂β

1

T +
l

]
β=0

= −
N 2

l(N − l)
(u l + v). (B.4)

This leads to[
∂

∂β
t1

]
β=0

=

N−1∑
k=1

k∑
l=1

(N − 1)((N + 1)u + 3v)

6N

2N 2

l(N − l)

−

N−1∑
k=1

k∑
l=1

1

N

N 2

l(N − l)
(u l + v)

−

N−1∑
k=1

k∑
l=1

1

N

2N 2

l(N − l)

k∑
m=1+l

(u m + v). (B.5)

While the first two double sums can be solved with the help of appendix A, the third term is
more complicated. For this more tedious calculation, we refer to appendix C. Eventually, the
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solution of the double and triple sums leads to[
∂

∂β
t1

]
β=0

= N (N − 1)
(N + 1)u + 3v

3
HN−1 − N (N − 1)u − N HN−1v

−N (N − 1)

(
((N + 1)u + 3v)

3
HN−1 − u − v

)
= v N (N − 1 − HN−1), (B.6)

where the last step is elementary. Combining this with equation (18) leads finally to the
unconditional mean exit time under weak selection, equation (22).

For the conditional fixation time t A
1 , the linear term

[
∂

∂β
t A
1

]
β=0

reads[
∂

∂β
t A
1

]
β=0

=

N−1∑
k=1

k∑
l=1

[
1

T +
l

∂φl

∂β
+ φl

∂

∂β

1

T +
l

]
β=0

−

N−1∑
k=1

k∑
l=1

[
φl

T +
l

k∑
m=l+1

1π(m)

]
β=0

. (B.7)

The only difference compared with the unconditional fixation time, equation (B.2), is the
fixation probability φl instead of φ1. The linear term of the weak selection expansion of φl

is given in equation (B.3). This yields[
∂

∂β
t A
1

]
β=0

=

N−1∑
k=1

k∑
l=1

l(N − l)((N + l)u + 3v)

6N

2N 2

l(N − l)
−

N−1∑
k=1

k∑
l=1

l

N

N 2

l(N − l)
(u l + v)

−

N−1∑
k=1

k∑
l=1

l

N

2N 2

l(N − l)

k∑
m=l+1

(u m + v). (B.8)

Again, the first two double sums can be solved using the results from appendix A. The third term
follows from a calculation which is similar to appendix C, but simpler. This last term reduces to

N−1∑
k=1

k∑
l=1

l

N

2N 2

l(N − l)

k∑
m=l+1

(u m + v) = N
(N − 2)(N − 1)

18
((5N + 3)u + 9v) . (B.9)

Finally, combining the three terms again results in[
∂

∂β
t A
1

]
β=0

=
N 2(N − 1)

18
((4N + 1)u + 9v) −

N (N − 1)

2
(Nu + 2v)

−(N − 2)
N (N − 1)

18
((5N + 3)u + 9v)

= −u N (N − 1)
N 2 + N − 6

18
. (B.10)

In combination with equation (19), this results in the conditional mean exit time under weak
selection, equation (24).

For completeness, we briefly repeat this calculation for the mean exit times of the
frequency-dependent Moran process. With the transition probabilities (25) and (26), the fixation
probabilities under weak selection are identical to those of the Fermi process, see equation (20).
However, the inverse transition probability is different in the weak selection regime, i.e. the
linear correction is[

∂

∂β

1

T +
l

]
β=0

= −
N

l
1π(l) = −N

u l + v

l
. (B.11)
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Hence, for the unconditional mean exit time we have the same starting equation (B.2). But with
equation (B.11) this gives[

∂

∂β
t1

]
β=0

=

N−1∑
k=1

k∑
l=1

(N − 1)((N + 1)u + 3v)

6N

N 2

l(N − l)
−

N−1∑
k=1

k∑
l=1

1

N
N

u l + v

l

−

N−1∑
k=1

k∑
l=1

1

N

N 2

l(N − l)

k∑
m=1+l

(u m + v), (B.12)

which differs from equation (B.5) only in the second double sum. With the previous findings
for the Fermi process times, the required calculation is straightforward and results in[

∂

∂β
t1

]
β=0

= v
N

2
(N + 1 − 2HN ) . (B.13)

That is, this linear correction has a different dependence on the system size N .
For the conditional mean exit time the situation is similar. In difference to equation (B.8),

the linear correction reads[
∂

∂β
t A
1

]
β=0

=

N−1∑
k=1

k∑
l=1

l(N − l)((N + l)u + 3v)

6N

N 2

l(N − l)
−

N−1∑
k=1

k∑
l=1

l

N
N

u l + v

l

−

N−1∑
k=1

k∑
l=1

l

N

2N 2

l(N − l)

k∑
m=l+1

(u m + v). (B.14)

This leads to [
∂

∂β
t A
1

]
β=0

= −u
N 2

36

(
N 2

− 3N + 2
)

(B.15)

for the linear correction of the conditional mean exit times of the frequency-dependent Moran
process.

Appendix C. Finite triple sums

Here, we calculate the triple sum from appendix B, that require some additional steps. Our goal
is to solve

σ =

N−1∑
k=1

k∑
l=1

1

l(N − l)

k∑
m=1+l

1π(m). (C.1)

For the sum over payoff differences, we have
k∑

m=1+l

1π(m) =

k∑
m=1+l

(u m + v) = fk − fl, (C.2)

where we introduced the function

fm = m(m + 1)
u

2
+ mv, (C.3)
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which is valid for any integer m. Using partial fraction expansion, N
l(N−l) =

1
l + 1

N−l , we obtain

σ =

N−1∑
k=1

k∑
l=1

fk

l(N − l)
−

N−1∑
k=1

k∑
l=1

fl

l(N − l)

=
1

N

N−1∑
k=1

k∑
l=1

fk

l︸ ︷︷ ︸
K1

+
1

N

N−1∑
k=1

k∑
l=1

fk

N − l︸ ︷︷ ︸
K2

−
1

N

N−1∑
k=1

k∑
l=1

fl

l︸ ︷︷ ︸
K3

−
1

N

N−1∑
k=1

k∑
l=1

fl

N − l︸ ︷︷ ︸
K4

. (C.4)

We solve each part separately, starting with the last one. For K4, we obtain with equation (A.1)
from appendix A

K4 =

N−1∑
k=1

k∑
l=1

fl

N − l
=

N−1∑
k=1

fk =
N − 1

6
N ((N + 1)u + 3v). (C.5)

The second last term, K3, is a sum over a linear function and can be treated with any table of
elementary sums, e.g. [48],

K3 =

N−1∑
k=1

k∑
l=1

fl

l
=

N−1∑
k=1

k∑
l=1

(
(l + 1)

u

2
+ v

)
=

N − 1

12
N ((N + 4)u + 6v). (C.6)

The remaining two terms require more effort. Both terms, K1 and K2, have the same structure
regarding functions of k and l. Using equation (A.3), we have

K2 =

N−1∑
k=1

k∑
l=1

fk

N − l
=

N−1∑
l=1

1

N − l

N−1∑
k=l

fk (C.7)

and

K1 =

N−1∑
k=1

k∑
l=1

fk

l
=

N−1∑
l=1

1

l

N−1∑
k=l

fk. (C.8)

Hence, we first have to compute the sum
∑N−1

k=l fk , which reduces to the solution of elementary
sums,

N−1∑
k=l

fk =

N−1∑
k=l

k
(
(k + 1)

u

2
+ v

)
=

u

2

N−1∑
k=l

k2 +
(u

2
+ v

) N−1∑
k=l

k

=
N − l

6

(
N 2 + Nl + l2

− 1)u + 3(N + l − 1)v
)

=
N − l

6

(
N 2 + Nl + l2

− 1
)

u +
N − l

2
(N + l − 1) v. (C.9)

Thus, solving equations (C.7) and (C.8) simplifies in solving the elementary sums
∑N−1

l=1 ls with
s = 0, 1, 2, compare [48]. With this, we have

K2 =
N − 1

6

N−1∑
l=1

((N + 1)u + 3v) +
Nu + 3v

6

N−1∑
l=1

l +
u

6

N−1∑
l=1

l2

=
N − 1

36

(
(11N 2

− N − 6)u + 9(3N − 2)v
)
. (C.10)
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For K1, we obtain

K1 =
1

6

N−1∑
l=1

N (N − 1)(N + 1)u + 3N (N − 1)v

l
−

1

6

N−1∑
l=1

(
(l2

− 1)u − 3(l − 1)v
)

=
N (N − 1)

6
((N + 1)u + 3v) HN−1 −

N − 1

36
(N − 2)((2N + 3)u + 9v).

Summing up the terms, σ = (K1 + K2 − K3 − K4)/N , finally yields the result

σ =
N − 1

6
(((N + 1)u + 3v)HN−1 − 3(u + v)) . (C.11)

Again, Hn =
∑n

l=1 1/ l are the harmonic numbers. In equation (B.9), the reasoning is very
similar, but only terms of the structure of K2 and K4 appear.
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