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Abstract. We study the effects of relaxational dynamics on congestion pressure
in scale-free (SF) networks by analyzing the properties of the corresponding
gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the
Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from
surface-growth physics as single-step load-balancing dynamics, we show that the
congestion pressure considerably drops on SF networks when compared with
the same dynamics on random graphs. This is due to a structural transition
of the corresponding gradient network clusters, which self-organize so as to
reduce the congestion pressure. This reduction is enhanced when lowering the
value of the connectivity exponent λ towards 2.
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Transport networks, such as computer networks (Internet), airways, energy transportation
networks, etc are amongst the most vital components of modern day infrastructures. These large-
scale networks have not been globally designed, instead they are the result of local processes.
It has been observed that many networks have a scale-free (SF) connectivity structure [1, 2].
SF networks are characterized by a power-law degree distribution P(k) ∼ k−λ, (k > kmin), where
λ is the connectivity exponent and kmin is the lower degree that a node can have. There have
been a number of mechanisms proposed in the form of stochastic network growth models that
produce SF structures [1, 2] including weighted versions of these processes [3] (for discussions
on the utility of SF models see [4]). However, these models do not explicitly connect the flow
dynamics and transport performance (such as throughput, queuing characteristics, etc) with
network topology. This is difficult to do in general, since the timescales of the flow on the
network and that of the network’s structural evolution itself can be rather different.

In this paper, we show that the emergence of SF structures is favored against non-SF
structures, such as random graphs, if the transport dynamics has a relaxation component (called
load-balancing in communications). We will see that even one step of such a gradient flow [5]
will considerably reduce the congestion pressure in SF networks, whereas it has virtually
no effect in random graphs. In addition, within the class of uncorrelated SF networks, the
congestion reduction is enhanced for low (close to 2) λ values. Although we use the jargon
from the fields of communication networks and queuing theory, we expect that our results hold
for large-scale networks in general, where the flow dynamics is induced at least in part by the
existence of gradients, a rather ubiquitous mechanism. In the following, by ‘packet’ we mean
any discrete entity transported between two nodes of a network of N nodes. We assume that the
network is driven in ‘the volume’, by packets entering at random (following a Poisson process)
at a rate γ (the expected number of arrivals per unit time) at any of the nodes [6]–[9]. This
is realistic since the users’ actions in general are uncorrelated. Using the language of queuing
theory, if a node in the time interval (t, t + τ) sends packets into the network, but it receives no
packets from any of its neighbors, we say that it acts as a ‘client’, while if it receives a packet
or several more from its neighbors, we say that it acts as a ‘server’7. Here, τ > 0 is the average
processing time of a single packet by a node. Measuring the average fraction J = 〈Nc/N 〉 of
the number of clients Nc (over a period of time in the steady state), gives us a simple global
measure for the congestion pressure present in the network [5]. Note that this is equivalent
to J = 1 − 〈Nservers/N 〉 [5, 10]. From this definition, higher J means more congestion (fewer
servers handling the total network flow). The average 〈·〉 is over network structure but it can
also be over the randomness in the input when comparing classes of networks. The client nodes
are the ones that introduce new packets into the network, but they do not contribute to routing.
Certainly, all networks will become congested at large enough driving rates γ > γc [6]–[9],
[11, 12]. J indicates which network will become congested earlier, larger J meaning smaller γc.
J is a global indicator that, however, does not take into account the distribution of the packets
over the server nodes. That can be done via betweenness-based quantities as in [13]. Load-
balancing is a specific case of the more general process of gradient-induced flows [5], where the
flows are produced by the local gradients of a non-degenerate scalar field h = {hi}

N
i=1 distributed

over the N nodes of a substrate graph G (transport network). The scalar field could represent,
for example, the number of packets at the routers [14, 15], or the virtual time horizon of the

7 Packet flow is a continuous-time discrete event process. However, in the non-infinitesimal time τ > 0 of
processing a single packet, several packets may enter a node’s queue from its neighbors or from being generated at
that node.
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Figure 1. Congestion pressure in the static model JS and after relaxation JR

as function of N for SF networks with different values of λ, 2.5 (◦), 3 (�),
3.5 (ut), with filled symbols for S and empty symbols for R. In the inset,
we plot JS, (◦), and JR, (ut), as function of N for ER networks (here p = 0.1,
however, other values led to similar results). The results were averaged over 103

network realizations.

processors in parallel discrete event simulations [16]. The gradient direction of a node i is a
directed edge pointing towards neighbor j (on G), of i which has the lowest value of the scalar
in its neighborhood. If i has the lowest value of h in its network neighborhood, the gradient
link is a self-loop. The gradient network ∇hG is defined simply as the collection of all gradient
edges on the substrate graph G [5, 10]. It represents the subgraph of instantaneous maximum
flow if the flow is induced by these gradients. In the gradient network, each node has a unique
outgoing link and ` incoming links. When a node has ` = 0 (no inflow in that instant), it acts
as a client, otherwise it is a server. Then certainly, J is the average fraction of nodes, with
` = 0, i.e. it is the fraction of the ‘leaves’ of ∇hG. Note that J is a queuing characteristic, rather
than an actual throughput measure. It was shown [5, 10] that distributing random scalars {h}

independently onto the nodes of a network G, to which we refer as the static (S) model in
the remainder, Erdős–Rényi (ER) graphs [17] (with given link probability p)8 become more
congested with increasing network size N , i.e. JS → 1 while on SF networks JS converges to a
finite sub-unitary value, see the plots for JS in figure 1. Gulbahce [18] introduced a Monte-Carlo
update scheme adjusting the potential of each node by small random (Gaussian distributed)
amounts and accepting only those changes that lower the congestion pressure. By construction,
this procedure decreases the jamming in both ER and SF networks, with significant decrease
observed for SF networks with 〈k〉 > 2. As we will see below, a simple relaxational dynamics,
in which the packet flow is driven by local gradients (i.e. load-balancing, a natural process) will
also reduce drastically the jamming, especially in the case of SF networks. This observation,
together with [18], strengthens the belief that SF networks are better suited to reduce congestion
under gradient-driven flows.

8 We present our simulations on ER for p = 0.1, but we check that the result is valid for other values as well.
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Usually, packets have destinations, and thus they cannot be governed exclusively by
gradient flows, however, relaxational dynamics can be employed for finite periods of time.
Once the (gradient) flow commences through the network, the scalar field becomes correlated
and the queuing characteristics change. In the following, we systematically study the effects of
a single relaxational step and show that, even in this case, the effects on congestion pressure
can be drastic as the network becomes more heterogeneous. First, we note that the one-step
relaxation dynamics defined by the gradient flow is nothing but the deposition model with
surface relaxation (Family model) [19] from surface-growth physics extended to networks [20].

To generate SF networks, we used the configurational model [21] with kmin = 2 (mostly
for mathematical convenience, but see the discussion at the end about other networks)9. At
t = 0, a random scalar field h is constructed by assigning to each node of the substrate network
a random scalar independently and uniformly distributed between 0 and 1. At this stage the
initial static gradient network [5] is formed and its jamming coefficient JS determined. Then the
scalars h ≡ h(t) are evolved obeying the rules of the Family model [19]: at every time step a
node i of the substrate is chosen at random with probability 1/N and it becomes a candidate
for growth. If hi < h j , for every j (gradient criterion) which is a nearest neighbor of the node
i , hi → hi + 1. Otherwise, if hi is not a minimum, the node j with minimum h is incremented
by one. When the process reaches the steady state [20] of the evolution with this relaxation (R),
we construct the gradient network and measure the pressure congestion JR after the relaxational
dynamic is performed. In accordance with previous observations [20, 22], the steady state is
reached extremely quickly: the saturation time actually does not scale with the system size N
but it approaches an N -independent constant [23, 24].

In figure 1, we plot JS and JR as function of N for ER graphs and for SF networks (for
the latter, we compare cases with different λ values). As one can observe (inset), for ER
networks, the model with relaxation has no effect on lowering the congestion, i.e. JS ' JR.
For SF networks, however, there is a drastic difference between the static and dynamic cases,
with JS being considerably larger than JR for large enough N . Note that JS increases with
decreasing λ, which can be understood through the fact that for lower λ values the ∇hG of
the SF graph is increasingly star-like, creating more congestion (see below). Since in real-
world networks, however, one expects to find a load-balancing component of the transmission
dynamics (see [14]), our model with relaxation is a better representation than the static one.
And indeed, from figure 1 it becomes apparent that JR has the opposite behavior as function
of λ for large enough networks: lowering λ lowers the congestion pressure JR. Next we show
how the drop in the congestion pressure due to relaxation dynamics can be understood in terms
of a structural change of the clusters of the corresponding gradient network. Here, the clusters
are defined as the disconnected components (trees) of the gradient graph. The decrease of JR

(which is the fraction of leaves of the gradient network) means a decrease of the perimeter of
the clusters of ∇hG.

In figure 2, we show JS and JR as function of λ for a fixed network size N . From this we
can see that for a given value of N , JS is larger than JR. This is compatible with a transition
on the structure of the trees of the gradient network from a star-like structure in the S state to
a more elongated structure in the R (see figures 3(a)–(d)). This transition is responsible for the
drop in the congestion pressure after the relaxation step is applied. From figure 3 we can see
that for the ER networks the R model does not significantly affect the structure of the clusters

9 For kmin > 1 there is a high probability that the network is fully connected, which is required in our model, see
also [20].
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Figure 2. Plot of the congestion pressure JR, ◦ and JS, ut, for SF networks
as function of λ (N = 4000). The results were averaged over 103 network
configurations.

Figure 3. Largest clusters of the gradient networks of ER and SF with λ = 2.5
and N = 1024. In the top plots, we show the structure for the ER and on the
bottom for SF. The left plots ((a) and (c)) correspond to the S and the right ones
((b) and (d)) to the R models.
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of the gradient network (going from figure 3(a) to (b)), meanwhile, for SF networks (going
from figure 3(c) to (d)) we observe a major structural transition before and after the relaxation
dynamics is applied, from a star-like cluster to an elongated one.

For a quantitative insight into the S model consider that the scalars are identically (and
independently) distributed according to some distribution η(h). For the calculations below, we
assume that the SF network has low clustering, i.e. that the probability of two neighbors of a
node to be also neighbors is small. Assume that the central node i has its scalar value equal to
hi . Then, the probability that the neighbor j of i points its gradient link (given hi ) into i equals:

p j→i

∣∣∣
hi

=

[∫ 1

hi

dh′η(h′)

]m j

≡ [φ(hi)]m j , (1)

where φ(x) =
∫ 1

x dhη(h) and m j is the degree of node j . This is because the scalars at all the
m j−1 neighbors of j (that do not include i) must be larger than hi , and in addition we also have
to have h j > hi . Hence, the probability that node j does not point its gradient link into i is
(1 − p j→i |hi ). In order for node i to be a leaf on the gradient tree, one must have that none of its
neighbors point their gradient directions into it. This is given by:

∏ki
j=1(1 − p j→i |hi ), where for

simplicity we label the neighbors of i by j = 1, 2, . . . , ki . Thus, the probability that i is a leaf is
expressed by: πi =

∫ 1
0 dhiη(hi)

∏ki
j=1(1 − p j→i |hi ). Using (1) and the change of variable from h

to φ, dφ = −dh η(h), the integral becomes:

πi = πi(m1, m2, . . . , mki ) =

∫ 1

0
dφ

ki∏
j=1

(1 − φm j ) . (2)

This expression shows that among all nodes i with the same degree k, those that have
neighbors with high degree are more likely to become leaves in ∇hG. It also shows that hubs
will have very low probability of becoming leaves since in that case many (k) sub-unitary
values are multiplied in equation (2). Therefore, leaves come from the set of nodes with low,
or moderate degrees, connected to hubs, supporting figure 3(c). When there is relaxation, the
leaves send their load towards higher degree nodes (on average), correlating the scalars with
the degree. This increases the chance of larger degree nodes becoming leaves and breaking
the star-like structures. As a consequence, the gradient network makes a transition to more
elongated clusters, reducing its perimeter, and thus the congestion pressure. To support our
claims numerically, we computed the average in-degree 〈`(k)〉 of ∇hG as function of k in both
the S and the R models. In the S model the gradient clusters are star-like, and thus they are
very heterogeneous, which appears as a strong dependence of 〈`(k)〉 on k, see the circles
in figure 4(a). After relaxation, however, this heterogeneity almost disappears (squares and
triangles in figure 4(a)), and in the steady state, 〈`(k)〉 ≈ 1 (only a weak k-dependence remains),
which means that ∇hG is made of elongated, homogeneous trees.

Another way to understand the correlations between the scalar field and the local topology
(degree) in the steady state of the dynamic model is by evaluating h(k) − 〈h〉 as function of the
degree k, which is shown in figure 4(b) for different values of λ. It can be seen that as the degree
increases the height increases as well. This means that in the steady state, higher degree nodes
have higher scalar values, thus they are more likely to become leaves in the gradient network, a
conclusion also supported by the Monte-Carlo studies of Gulbahce [18].
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Figure 4. (a) Linear–log plot of 〈`(k)〉 as function of k with λ = 2.5 and
N = 1024 for S (◦), and R (ut), for t = 0.1 and R (4) in the steady state. As
the system evolves, 〈`(k)〉 loses its dependence on k. Simulations were averaged
over 104 configurations. We show the plot in the linear–log scale in order to be
able to visualize them in the same figure. (b) Linear–linear plot of h(k)–〈h〉 as
function of k for N = 1024 and different values of λ, λ = 2.5 (◦), λ = 3.0 (ut)
and λ = 3.5 (4). The dashed line is used as a guide to show that for low k values,
h(k) is below 〈h〉. The simulations were done over 105 configurations.
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Figure 5. (a) F(N ) as function of N , for SF networks with λ = 2.5 (◦), 3.0 (4),
3.5 (∗) and for ER networks with p = 0.1 (+). The dashed lines correspond
to the logarithmic fit of F(N ) as function of N in the asymptotic regime (see
also inset). (b) Asymptotic improvement factor as function of the connectivity
exponent. Simulations were averaged over 103 network configurations.

Defining the relative improvement factor as F(N ) = JS/JR, which measures how effective
the relaxation dynamics is in reducing the congestion10, we find that for SF networks, as λ

decreases, F(N ) increases, see figure 5(a), where we plot F(N ) as a function of N for different
values of λ. In addition, from figure 5(a), we observe that F(N ) has a logarithmic convergence

10 Notice that F > 1 means that the congestion is reduced.
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to its asymptotic value, i.e. F(N ) ' F(∞) − K/lnN (with K as a constant), see also the inset
of figure 5(a). Figure 5(b) shows the infinite-system size relative improvement factor as function
of λ, showing the increasing power of the relaxation mechanism for lower λ values. The effects
shown here seem to hold for other SF networks that we tested as well, including real-world
networks such as the DIMES Internet mapping project generated at the autonomous system (AS)
level network (www.netdimes.org) [25]. The DIMES network is a correlated SF graph, and
there the relaxation dynamics improves the congestion pressure drastically: from a JS = 0.61
the congestion pressure drops to JR = 0.18! This suggests that topology correlations play an
important role which will be the subject of future studies. We observed similar behavior of the
improvement factor for other real-world SF network topologies, as well.

In summary, we have shown that by introducing a simple and natural ‘surface’ relaxation
mechanism, congestion in SF networks can considerably be reduced. Interestingly, the same
mechanism has hardly any effect on congestion in the case of ER random graphs. Within the
class of SF networks, the relaxational mechanism is more effective for lower λ values (however,
still with λ > 2). These findings can be interpreted by tracking the morphological changes in the
clusters of the corresponding gradient networks. Our results seem to hold for other SF networks
as well, including real-world networks.
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