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Abstract. We derive fidelity benchmarks for the quantum storage and
teleportation of squeezed states of continuous variable systems, for input
ensembles where the degree of squeezing s is fixed, no information about
its orientation in phase space is given, and the distribution of phase-space
displacements is a Gaussian. In the limit where the latter becomes flat, we
prove analytically that the maximal classical achievable fidelity (which is 1/2
without squeezing, for s = 1) is given by

√
s/(1 + s), vanishing when the degree

of squeezing diverges. For mixed states, as well as for general distributions of
displacements, we reduce the determination of the benchmarks to the solution
of a finite-dimensional semidefinite program, which yields accurate, certifiable
bounds thanks to a rigorous analysis of the truncation error. This approach may
be easily adapted to more general ensembles of input states.
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1. Introduction

The storage and entanglement-assisted teleportation of quantum states are two of the central
primitives of quantum information science. They have by now been accomplished with
increasing precision in various experimental settings, with outstanding examples in the
‘continuous variable’ regime, adopting light modes or collective spins of atomic ensembles
to, respectively, carry and store quantum information [1]–[5], or relying on motional atomic
degrees of freedom [6, 7]. The need to certify success in such experiments, and to justify the
use of the term quantum in setups such as ‘quantum memories’ and ‘quantum teleportations’,
requires theoretical benchmarks which bound the performance of purely classical schemes
[8]–[12]. Here, ‘classical’ refers to protocols where the quantum system is measured and later
reprepared from information obtained in the measurement, which is in turn stored or transmitted
by classical means. The fact that there are limitations to such ‘measure-and-prepare’ schemes
immediately follows from the no-cloning principle. A precise notion of these limitations,
however, depends on the figure of merit (usually the fidelity) as well as on the prior distribution,
i.e. on the ensemble of quantum states to be stored or transmitted.

If, for a d-dimensional Hilbert space, the input ensemble is comprised of all the pure states
distributed according to the Haar measure, the average fidelity achievable by a classical scheme
is 2/(d + 1), dropping to zero with increasing dimension d [13, 14]. Clearly, for continuous
variable systems (where d = ∞) not all pure states are experimentally accessible (as they
constitute a set with infinitely many real parameters and, in principle, unbounded energy).
The typical continuous variable implementations via electro-magnetic field modes or collective
fluctuations in atomic ensembles favor Gaussian states of which coherent states are the simplest
representatives. It was proven in [9] that the optimal fidelity for classical schemes is 1/2 if the
input ensemble is made up of coherent states taken from a flat distribution in phase space. This
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shows that such restrictions on the ‘alphabet’ of input states allows for classical schemes to
achieve finite average fidelities, even though the dimension of the Hilbert space is infinite.

The present work deals with input ensembles including Gaussian squeezed states, for which
one expects, in general, the constraint on classical schemes to become more and more severe
as the degree of squeezing is increased. This study finds its motivation in recent and ongoing
experimental attempts to teleport and store squeezed quantum states [15]–[18]: we will provide
a means for certifying success in experiments.

Although the tools we shall develop are suitable for more general applications,
encompassing non-Gaussian states or even finite-dimensional systems, the focus of the present
paper will be Gaussian input ensembles with a fixed degree of squeezing s, (s being the factor
by which the variance of one of the two canonical quadratures is reduced with respect to the
vacuum level). This complements the results of [11], where s is assumed to be unknown, and
generalizes the results of [9] on coherent states (special case s = 1 in our notation). In brief, we
have been able to obtain the following results:

(i) For an ensemble of squeezed coherent states where, apart from the degree of squeezing,
no a priori information is given about orientation and displacement, the maximal classical
achievable fidelity is

√
s/(1 + s). The optimal measure-and-prepare scheme achieving this

bound is realized by heterodyne detection followed by preparation of a coherent state.

(ii) For an ensemble of squeezed states as in (i), but where each state is subject to additive
Gaussian noise, analytical bounds are derived for the fidelity as well as for the maximal
overlap achievable by classical schemes.

(iii) For ensembles with a random orientation (phase covariance) but arbitrary distribution of
displacements the maximal overlap is shown to be computable by means of a semidefinite
program (SDP). Together with a rigorous bound on the truncation error in Fock space this
yields reliable benchmarks.

(iv) The SDP is applied to various cases of pure state ensembles (with and without Gaussian
displacement distribution) and mixed state ensembles for parameter regimes relevant to
present and future experiments.

Further technical details can be found in the appendices, where we present a
characterization of (non-positive partial transpose (NPT) entanglement breaking) covariant
channels and a discussion of the Choi-matrix formalism in infinite dimensions.

2. Notation and conventions

In this section, we briefly recapitulate some basic notation and useful concepts. For a more
detailed exposition the reader is referred to [19]–[21].

Throughout the paper, we will deal with bosonic systems of n modes, each of which is
assigned to an infinite-dimensional Hilbert space H= L2(R). B(H) and C1(H) will denote
the set of bounded operators and the set of trace-class operators, respectively. Let us arrange
the 2n canonical operators in a vector R = (X1, P1, . . . , Xn, Pn)

T such that [R j , Rk] = iσ jk1,
σ = i ⊕n

j=1 σy being the anti-symmetric symplectic form (whereas σy is the two-dimensional
y-Pauli matrix). Notice that we set h̄ = 1.

New Journal of Physics 10 (2008) 113014 (http://www.njp.org/)

http://www.njp.org/


4

As is customary, the Weyl displacement operator Wξ will be defined as Wξ = eiξ ·σ R,
for ξ ∈ R2n so that Wξ Wη = WηWξe−iξ ·ση. The ‘characteristic function’ χA(ξ) of an operator
A ∈ C1(H⊗n) is defined as

χA(ξ) = Tr
[
Wξ A

]
. (1)

In turn, the operator A is determined by its characteristic function according to the Fourier–Weyl
relation

A =

(
1

2π

)n ∫
R2n

χA(ξ)W †
ξ d2nξ, (2)

which leads to the useful Parseval relation for A1, A2 ∈ C1(H⊗n):

Tr[A†
1 A2] =

(
1

2π

)n ∫
R2n

χA1(ξ)χA2(ξ)d2nξ . (3)

For a density operator ρ, we define a ‘covariance matrix’ (CM) γρ with entries

(γρ) jk = Tr
[
{R j , Rk}ρ

]
− 2Tr

[
R jρ

]
Tr [Rkρ]

and a vector of first moments dρ with entries (dρ) j = Tr[R jρ]. A state ρ is said to be Gaussian
if its characteristic function χρ is a Gaussian, reading

χρ(ξ) = eiξ ·σdρ−(σξ)·γρ(σξ)/4.

The vacuum |0〉〈0| is a Gaussian state with γ|0〉〈0| = 1 and d|0〉〈0| = 0.

3. Setup and figures of merit

Our goal is to quantify the limitations for measure-and-prepare schemes T , i.e. elements of the
set E 3 T of entanglement-breaking channels [22, 23], when acting on an ensemble {ρω} of
input states characterized by a set of parameters ω. Consider for instance an ensemble of pure
squeezed Gaussian states with CM

γ =

(
cos θ sin θ

− sin θ cos θ

) (
s 0
0 1/s

) (
cos θ − sin θ

sin θ cos θ

)
, (4)

and displacement ξ and thus ω = (s, ξ, θ). In order to fix a useful figure of merit we have to
choose a functional F(T (ρω), ρω) which (i) measures, in some sense to be specified, the ability
of T to ‘preserve’ the state ρω when applied to it and (ii) can be determined in experiments.
Based on this choice, we can then either quantify the worst case performance or the average
case performance of a channel T , where the latter depends on an a priori distribution q(ω) over
the parameter space. The corresponding benchmarks are then obtained by taking the supremum
over all T ∈ E leading to the definitions:

F0(T ) := inf
ρω

F(T (ρω), ρω), F0 := sup
T ∈E

F0(T ), (5)

F̄(T ) :=
∫

dω q(ω)F(T (ρω), ρω), F̄ := sup
T ∈E

F̄(T ). (6)

We will restrict our attention to ensembles {ρω} with a fixed degree of squeezing s, so that the
benchmarks will be functions of s and we will occasionally write F̄(s), F0(s) to emphasize this
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dependence. Notice that s is a pure number (in practice, s is measured as the variance of one of
the field quadratures in units of vacuum noise).

As usual, for the ideal scenario of pure states ρω, we use the fidelity F(T (ρω), ρω) =

Tr [T (ρω)ρω]. Clearly, in practice it is more realistic to assume that the initial pure states
ρω undergo a noisy channel N and become mixed before entering a quantum memory or
a teleportation scheme. A possible option for F would then be the ‘Uhlmann fidelity’ [24]

between two mixed states, given by f (ρ1, ρ2) = Tr
[√

ρ
1/2
1 ρ2ρ

1/2
1

]2
. Major drawbacks of this

choice are that its nonlinearity leads to a very involved theoretical optimization and that such a
quantity is exceedingly difficult to measure in experiments (without invoking a plethora of extra
assumptions). We will present later on an analytical result adopting Uhlmann fidelity, but we
will mainly follow a different route and use instead the overlap

F(T (ρω), ρω) = Tr
[
T (N (ρω))ρω

]
. (7)

This quantity is easier to determine in experiments (ρω may be interpreted as an observable)
and by definition F0 and F̄ are proper benchmarks in the sense that beating their values means
outperforming any classical scheme. Strictly speaking, of course, this overlap measures how
close the output of T is to the initial noiseless state rather than to the input.

The derivation of the benchmarks simplifies considerably if the probability measure q
is invariant with respect to a symmetry group G, i.e. if q(ω) = q(g(ω)) for all g ∈ G and
ρg(ω) = UgρωU †

g for some unitary representation Ug of G. A standard argument [13, 25] then
implies that, w.l.o.g. the channels T in the optimization of F0 and F̄ can be taken covariant with
respect to G, in the sense that, for all density operators ρ and all g ∈ G, one has

UgT (ρ)U †
g = T (UgρU †

g ). (8)

For a compact symmetry group (with Haar measure dg) the argument is straight forward since
we can replace every single T by a covariant counterpart

T̃ (ρ) :=
∫

dg U †
g T (UgρU †

g )Ug, (9)

which performs at least as well as T if the chosen functional F is concave, as is the case for
all the instances we discussed above. Moreover, if T is an element of a convex set closed under
the group action, like the set of entanglement breaking channels, then so is T̃ . If the orbit of
G covers the entire parameter space then F(T̃ (ρω), ρω) becomes state independent and we find
F0 = F̄ , i.e. the average case and the worst case performance become the same.

The argument becomes more subtle if G is not compact, as in the case where no a priori
information is given about the displacement ξ . In this case F0 is still well defined but already F̄
has to be discussed more carefully, since it formally requires an average over a ‘flat’ distribution
in phase space. Nevertheless, an analogous argument goes through and we can w.l.o.g. take T
to be phase-space covariant, i.e. for all ξ and density operators ρ

Wξ T (ρ)W †
ξ = T (WξρW †

ξ ). (10)

Clearly, due to non-compactness one cannot make the averaging procedure explicit, but has
rather to invoke an invariant mean whose existence is guaranteed by the axiom of choice. For a
more formal discussion of these matters see [26, 27].
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4. Analytical benchmarks for squeezed states under uniform rotations and
displacements

4.1. Classical benchmark based on the input–output overlap

Let us now focus on the specific case of an initial single-mode squeezed state ρs with CM

γρs =

(
s 0
0 1/s

)
,

which is uniformly displaced and rotated in phase space, and undergoes an additional noisy
Gaussian channel N adding classical noise with variance η. The input ensemble is given by
N (ρω) with ρω = WξUθρsU

†
θ W †

ξ , where Uθ = exp[iθ n̂] denotes a phase-space rotation (whereas
Wξ is a displacement operator, defined in section 2, with ξ ∈ R2), and the channel N acts on
CMs as γ 7→ γ + η1 while leaving first moments invariant [21]. No a priori information is
given about θ ∈ [0, 2π ], whereas the degree of squeezing s and the noise η are fixed and known
a priori. Note that η is the additive noise in units of vacuum energy h̄ω0 (ω0 being the frequency
of the mode at hand).

As pointed out earlier, we will use the overlap with ρω as figure of merit:

F0(s, η) = sup
T ∈E

inf
ξ,θ

Tr [T (N (ρω))ρω],

where, due to the symmetry (which is preserved by N ), one has F0 = F̄ .
In order to determine the best possible overlap achievable by a measure-and-prepare

scheme on such an ensemble, we will first prove an upper bound by enlarging the set of
allowed channels to the set T ⊇ E of NPT-entanglement breaking channels, defined as the
channels which remain valid quantum operations when concatenated with time-reversal (if
applied locally, these channels turn the input state into a positive partial transport (PPT), but not
necessarily separable, state). More precisely, if ϑ denotes time-reversal, a channel T is ‘NPT-
entanglement breaking’ if and only if its composition with time-reversal T ◦ ϑ is completely
positive. This class of channels includes, for instance, all measure-and-prepare schemes which
are assisted by PPT-bound entanglement shared between sender and receiver.

In a second step, we will show that the obtained bound is tight even within the set E , as
it turns out to be achievable by heterodyne measurement followed by preparation of a coherent
state.

Theorem 1 (Benchmark—mixed states). Let T be either the set of all measure-and-prepare
schemes or the set of NPT-entanglement breaking channels. Within these sets the maximal
achievable overlap for the teleportation or storage of mixed squeezed coherent states with
squeezing s and additive noise η is given by

F̄(s, η) = sup
T ∈T

inf
ξ,θ

Tr [T (N (ρω))ρω] =

[(
1 +

η

2
+

1

s

) (
1 +

η

2
+ s

)]−1/2

. (11)

Proof. We first prove the upper bound. As already indicated above we can restrict ourselves to
the set T̃ of phase-space covariant channels satisfying

T̃ (Wξ AW †
ξ ) = Wξ T̃ (A)W †

ξ , (12)
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for all Weyl operators Wξ , ξ ∈ R2 and all A ∈ C1 (L2(R)). This leads to F0 = F̄ and lifts the
need for the minimization over displacements [26, 27]. That is, we are left to determine

sup
T̃ ∈T̃

inf
θ∈[0,2π ]

Tr[UθρsU
†
θ T̃ (N (UθρsU

†
θ ))], (13)

(in other words, the infimum is only taken over all noisy squeezed coherent states centered at
the origin, i.e. with vanishing first moments).

Furthermore, NPT-entanglement breaking phase-space covariant channels have a particular
simple form in the Heisenberg picture, where we will denote the map under consideration
by T̃ ∗. By lemma 4 (see appendix A) they act on Weyl operators as

T̃ ∗(Wξ ) = t (ξ)Wξ , (14)

where

t (ξ) = Tr
[
τW√

2ξ

]
, (15)

for some density matrix τ . Conversely, every such τ yields an admissible phase-space covariant
channel T̃ . This allows us to recast the optimization over channels into one over density
operators, as follows.

Exploiting the Parseval relation (3) back and forth, we get for any density matrix ρ whose
characteristic function is a Gaussian with CM γ and vanishing first moments:

Tr[T̃ (N (ρω))ρω] =
1

2π

∫
d2 ξ Tr

[
τW√

2ξ

]
e−(1/2)ξ ·(γ + η

21)ξ

=
1

2π

∫
d2ξTr

[
ρ ′W√

2ξ

]
Tr

[
τW√

2ξ

]
=

1

2
Tr

[
ρ ′τ

]
, (16)

where ρ ′ is now a centered Gaussian state with CM γ + η

2 1 and τ is defined by equation (15)
(and we took advantage of the fact that the characteristic function of centered Gaussian states is
real and has a purely quadratic dependence on ξ ).

To compute equation (13) it is now convenient to reintroduce an average over rotations
(instead of an infimum, which gives the same value due to the optimization over T ), and write
equation (13) as:

sup
τ

Tr
[

1

4π

(∫ 2π

0
Uθρ

′

sU
†
θ dθ

)
τ

]
=

∣∣∣∣∣∣∣∣ 1

4π

∫ 2π

0
Uθρ

′

sU
†
θ dθ

∣∣∣∣∣∣∣∣
∞

, (17)

where ρ ′

s is the centered Gaussian state with CM γρs + η

2 1. Note that in the last step we used the
fact that the noisy channelN is invariant under phase-space rotations. The operator norm above
(largest eigenvalue) can be promptly determined since averaging over rotations just sets all off-
diagonal elements in the Fock basis to zero, so that one simply has to resort to the expression of
the state %′

s in the Fock basis, to obtain:

F̄(s, η)6

∣∣∣∣∣∣∣∣ 1

4π

∫ 2π

0
dφ Uφρ

′U †
φ

∣∣∣∣∣∣∣∣
∞

= max
n

1

2
〈n|ρ ′

|n〉 =
1

2
〈0|ρ ′

|0〉 =

[(
1 +

η

2
+

1

s

)(
1 +

η

2
+ s

)]−1/2

,

where the rhs is attained within the set of NPT-entanglement breaking channels.
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To show that this upper bound is actually tight for measure-and-prepare schemes as well,
we will now explicitly point out that a specific, simple measure-and-prepare scheme attains the
bound6. Consider a heterodyne measurement, i.e. a positive operator valued measure (POVM)
{Wξ |0〉〈0|W †

ξ /2π}, where the outcome ξ is followed by the preparation of a coherent state
Wξ |0〉, so that the whole map H reads

H(ρ) =
1

2π

∫
d2ξ 〈0| W †

ξ ρWξ |0〉 Wξ |0〉 〈0| W †
ξ . (18)

This process acts on CMs as γ 7→ γ + 2 · 1 (while leaving first moments unaffected), so that
one can easily determine the input–output overlap for any state in our ensemble using again
Parseval’s relation (3) and solving the resulting Gaussian integrals [28]

Tr [ρω H(N (ρω))] = 2
[
Det

(
γρs + (γρs + (2 + η) · 1)

) ]−1/2

=

[(
1 +

η

2
+

1

s

) (
1 +

η

2
+ s

)]−1/2

,

which is independent of ξ and θ and achieves the above bound, thus completing the proof. ut

Clearly, for η = 0 one recovers the following fidelity benchmark for pure states:

Corollary 1 (Benchmark—pure states). Let T be either the set of all measure-and-prepare
schemes or the larger set of NPT-entanglement breaking channels. Within these sets, the
maximal achievable fidelity for the teleportation or storage of squeezed coherent states with
squeezing s and subject to uniformly distributed rotations and displacements in phase space is
given by

F̄(s) = F0(s) = sup
T ∈T

inf
ξ,θ

Tr [ρωT (ρω)] =

√
s

1 + s
. (19)

Notice that the overlap achieved by the ideal quantum channel (identity) in the general
noisy case is [(η

2 + 1
s )(

η

2 + s)]−1/2. Clearly, the optimal classical performance degrades with
increasing noise (this is obviously the case for quantum strategies as well). The obtained
classical benchmark on the overlap as a function of the squeezing s is plotted in figure 1 for
pure and mixed states (i.e. respectively, for η = 0 and η > 0).

Quite remarkably, the optimal strategy (heterodyning followed by generation of coherent
states) does not depend on the degree of squeezing (nor on the additive noise η), and is in fact
the very same strategy which is optimal for a flat distribution of coherent states [8] (for coherent
states, such optimality extends to rotationally invariant, Gaussian distributions of displacements
as well [9]).

These analytical findings, though obtained for the ideal case of ‘flat’ displacement
distributions, fully highlight the importance of randomizing the input phase in practical
instances. In fact, for pure states and a flat distribution of displacements but fixed phase,
the benchmark can be promptly inferred from the coherent states’ case, and is just
1/2>

√
s/(1 + s), regardless of the degree of squeezing s assumed. Randomizing the input

phase appears to be very helpful to provably reach the quantum regime in experiments (and,

6 An alternative way of noting that this bound remains the same when restricting to measure-and-prepare schemes
is to realize that (i) τ = |0〉〈0| (a Gaussian!) yields the maximum in equation (17) and (ii) for two-mode Gaussian
states (bearing in mind the Choi-matrix of T ) the PPT-criterion is necessary and sufficient for separability.
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F

η = 0
η = 0.5
η = 1.0

Figure 1. Fidelity benchmarks F̄(s, η) for measure-and-prepare schemes on
ensembles with squeezing s, flatly distributed displacements and random phase-
space orientations, as a function of the squeezing s (before additive noise is
applied). The continuous (red) curve refers to pure states (η = 0), whereas the
dashed (blue) and dotted (green) curves refer to mixed states, for η = 0.5 and
η = 1, respectively. Notice that, as one should expect, the pure state case is an
upper bound for mixed states for the figure of merit F̄ . As stated in theorem 2,
the pure states case is also an upper bound for the Uhlmann fidelity benchmark
of such mixed states.

not surprisingly, the advantage granted by random rotations becomes more and more relevant
with increasing squeezing): for pure states and degrees of squeezing within experimental reach
(s . 10), the difference is around 0.2 and might easily turn out to be crucial for experimental
success. As we will see later on (see section 5.3), and again not surprisingly, the same holds true
for the randomization of displacements.

4.2. Classical benchmark based on the Uhlmann fidelity

For the same ensemble of mixed state as in the preceding section, we shall present a further
analytical benchmark in the form of an upper bound, this time adopting the Uhlmann fidelity
f (T (ρ), ρ) as figure of merit:

Theorem 2 (Benchmark—mixed state fidelity). Let T be either the set of all measure-and-
prepare schemes or the set of NPT-entanglement breaking channels. Within these sets the
maximal achievable worst case (or average) Uhlmann fidelity for the teleportation or storage
of mixed squeezed coherent states with squeezing s and arbitrary additive noise channel N is
bounded as follows:

sup
T ∈E

inf
ξ,θ

f (T (N (ρω)) ,N (ρω))6

√
s

1 + s
∀ η ∈ R . (20)
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Proof. Concavity of the fidelity allows us again to restrict to phase-space covariant channels.
All these channels commute with channels of the form N ∗(Wξ ) = Wξ exp[− ‖ξ ‖

2 η/4] (N ∗

standing for channel N in Heisenberg picture). The result follows then from the contractivity
of cp-maps with respect to the fidelity, together with the pure state result of corollary 1
(equation (19)). ut

5. Quantum benchmarks derived by semidefinite-programming

5.1. Problem settings

So far, we treated input ensembles of squeezed states which are displaced in phase space
according to a ‘flat’ distribution. Needless to say, this is an idealization as one cannot implement
an arbitrarily large displacement in practice.

To be more realistic we have to treat an input ensemble of squeezed states whose first
moments are essentially contained in a finite region of phase space, e.g. due to a sufficiently
rapidly decaying probability distribution as in [8, 9].

This section will deal with this scenario by resorting to numerical means, as a purely
analytical treatment appears to be far too involved for finite, non-flat distributions of
displacements (where the restrictions to phase-space covariant channels is no longer optimal).
We will show that the problem of computing benchmarks of the desired kind can be cast into
a SDP. As such, it comes with a guarantee of computing the correct value, as SDPs come in
pairs of a primal and a dual problem which yield converging upper and lower bounds to the
sought solution [29]. As the original SDP is in an infinite-dimensional space, truncation will be
necessary and will induce errors. However, we will provide a rigorous bound to the truncation
errors so that the finally derived benchmarks are reliable and rigorous, constituting upper bounds
to the actual optimal classical figures of merit.

The figure of merit we use is again the average overlap

F̄ = sup
T ∈E

∫
dω q(ω)Tr

[
T

(
N (ρω)

)
ρω

]
,

where N is a noisy channel that describes the noise suffered by ρω before entering the storage
or teleportation device, which for our purposes should be

(i) a channel which allows for the computation of the matrix elements in the Fock basis
〈k|N (ρω)|l〉, e.g. a Gaussian channel [21]

(ii) rotationally covariant, i.e. N (UθρU †
θ ) = UθN (ρ)U †

θ for all ρ, θ .

Fortunately, channels representing attenuation, amplification and thermal noise are all of this
type, the attenuation channel being probably the most relevant here, as it models losses of
photons/excitations which are the dominant decoherence process in the practical realizations we
have in mind, involving traveling waves of light. Thus we will adopt it in the following, denoting
it by Nλ. The dimensionless parameter λ ∈ [0, 1] represents the transmitivity (in intensity) such
that the channel acts on, respectively, covariant matrix γρ and vector of first moments dρ as:
γρ 7→ λγρ + (1 − λ)1 and dρ 7→

√
λdρ . Another crucial assumption for our method is that the

input distribution q is uniform in the angle θ . Moreover, we will consider ensembles with
constant degree of squeezing s (although this is not necessary for the method). Hence q can be
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considered as a probability distribution which depends only on the displacement ξ and therefore

F̄ = sup
T ∈E

∫
θ∈[0,2π ]

∫
ξ∈R2

q(ξ)Tr [T (Nλ(Uθρs,ξU †
θ ))(Uθρs,ξU †

θ )]
dθ

2π
dξ, (21)

where ρs,ξ is a pure squeezed states with degree of squeezing s and displacement ξ . Note that
F̄ in this way becomes a functional of λ, s and of the distribution q.

5.2. Reduction to a finite dimensional SDP

In this subsection, we will see how we can reduce the quantum benchmark F̄ in equation (21)
to a finite dimensional SDP. We first show that equation (21) can be reduced to an infinite
dimensional SDP problem. To this end, we use a simple correspondence between the set of all
entanglement breaking channels and the set of bipartite separable positive operators [30] which
is nothing but the Choi–Jamiolkowski isomorphism [31], albeit for an infinite-dimensional
system (see appendix B for a proof):

Theorem 3 (Choi–Jamiolkowski). Suppose B(H) is the space of all bounded operators and
C1(H) is the space of all trace class operators on a separable Hilbert space H. Then, for all
entanglement breaking channels 9 on H, there exists a unique separable positive bounded
operator �(9) on H⊗H such that TrB(�(9)) = 1A and

Tr(B9(A)) = Tr(�(9)A ⊗ B), (22)

for all A ∈ C1(H) and B ∈B(H). Conversely, for a separable positive bounded operator � on
H⊗H satisfying TrB(�) = 1A, there exists a unique channel 9(�) such that it is entanglement
breaking and satisfies equation (22).

By means of the above theorem, we immediately derive an upper bound to the quantity F̄
of equation (21) in an infinite-dimensional SDP form by enlarging the set of positive separable
operators (denoted by Sep) to the set of positive operators with PPT �0 > 0:

F̄ = sup
�∈B(H⊗H)

{
Tr(�η)

∣∣∣� ∈ Sep, TrB � = 1A

}
6 sup

�∈B(H⊗H)

{
Tr(�η)

∣∣∣�> 0, �0 > 0, TrB � = 1A

}
. (23)

In the above equations η is a state on H⊗H defined by

η
def
=

∫
θ∈[0,2π ]

∫
ξ∈R2

q(ξ) UθNλ(ρs,ξ )U
†
θ ⊗

(
Uθρs,ξU †

θ

) dθ

2π
dξ, (24)

where we exploited the rotational covariance of Nλ.
Here, we should remark that, if λ = 1 and q(ξ) =

α

π
exp[−α ‖ξ ‖

2] for α > 0, the inequality
in equation (23) is actually an equality. This is because, under such assumptions, we can choose
an optimal � to be Gaussian [9] and the PPT condition �0 > 0 is necessary and sufficient
for a two-mode Gaussian state � to be separable [32, 33]. The parameter (1/2α) represents
the variance of the distribution of states in phase space and can be expressed as an energy, in
practical instances, by reintroducing the factor h̄ω0, where ω0 stands for the frequency of the
considered mode.

In the remaining part of this subsection, we will transform the above infinite-dimensional
SDP into a finite-dimensional SDP. We will need the following statement:
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Lemma 1 (operator norm bound). If a positive separable operator � ∈B(H⊗H) satisfies
TrB � = 1A, then, � also satisfies ‖�‖∞6 1, where ‖·‖∞ is the operator norm.

Proof. From the proof of theorem 3, � can be written as �(9) =
∫
X M(dx) ⊗ σ(x) by using a

POVM {M(dx)} and a set of states {σ(x)}. Then, for any normalized state |8〉 on H⊗H, we
can bound 〈8|�|8〉 as follows:

〈8| � |8〉 =

∫
X

Tr(M(dx) ⊗ σ(x) |8〉 〈8|)

6

∫
X

Tr(M(dx)ρA) = 1,

where ρA is defined as TrB(|8〉〈8|) and we used that σ(x)6 1 together with M(X ) = 1.
Therefore, we have ‖�‖∞= sup8〈8|�|8〉6 1. ut

Notice that, even if ‖�‖∞6 1 was shown for the corresponding operator of an entanglement
breaking channel, this fact may not be true for other channels (in general we can only show that

the geometric measure [34] G(�(T ))
def
= supσ∈Sep Tr (�(T )σ )6 1).

Before we derive a finite SDP problem from equation (23), we observe the following
crucial fact: by means of the action of the group integral over {Uθ ⊗ Uθ}θ∈[0,2π ], η is block
diagonalized as

η =

∞∑
c=0

Qc

[∫
ξ∈R2

q(ξ) Nλ(ρs,ξ ) ⊗ ρs,ξ dξ

]
Qc, (25)

where Qc
def
=

∑
k+l=c |k〉 〈k| ⊗ |l〉 〈l| is a finite-dimensional projector. Thus, defining Pc

def
=∑c

i=0 Qi , we obtain η − PcηPc =
∑

∞

i=c+1 QiηQi > 0 for all c. We arrive at the finite SDP upper
bound now as follows: suppose a separable positive � satisfies TrB � = 1A. Then,

Tr(�η) = Tr(�PcηPc) + Tr(�(η − PcηPc))

6 Tr(�PcηPc) + ‖�‖∞ Tr (η − PcηPc)

6 Tr(�PcηPc) + Tr(η − PcηPc)

= Tr(�PcηPc) − Tr(PcηPc) + 1, (26)

where we used the positivity of η − PcηPc and lemma 1.
Finally, by means of equation (26), we can derive an upper bound to the first line

of equation (23). Denoting with Rc =
(∑c

i=0 |i〉 〈i |
)
⊗

(∑c
i=0 |i〉 〈i |

)
the projection onto the

subspace with a photon number smaller than c in each mode, with support suppRc, we obtain

F̄ 6 sup
�∈B(H)

{
Tr(�PcηPc)

∣∣∣� ∈ Sep, TrB � = 1A

}
+ 1 − Tr(PcηPc)

= sup
�∈B(H)

{
Tr(Rc�Rc PcηPc)

∣∣∣� ∈ Sep, TrB � = 1A

}
+ 1 − Tr(PcηPc)

6 sup
�∈B(suppRc)

{
Tr(�PcηPc)

∣∣∣� ∈ Sep, TrB �6 1A

}
+ 1 − Tr(PcηPc)

6 sup
�∈B(suppRc)

{
Tr(�PcηPc)

∣∣∣�> 0, �0 > 0, TrB �6 1A

}
+ 1 − Tr(PcηPc). (27)
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The above upper bound now only involves a finite-dimensional SDP, as the original infinite-
dimensional � has been replaced by the finite-dimensional Rc�Rc, with the same type of
constraints (note that Rc was introduced to preserve the separability of the operator). Similarly,
the term Tr(PcηPc) is just a trace of a finite-dimensional matrix, so that we can numerically
compute every term of the last formula of equation (27) for as large a truncation parameter
c as our computer allows. Thus, equation (27) enables us to efficiently calculate an upper
bound for the quantum benchmark F̄ for any probability density q(ξ), that is, ultimately, for
any rotationally-invariant input ensemble. Moreover, since in the limit of large c we obtain the
second formula of equation (23), we can expect that this upper bound reaches the exact value for
this bound for sufficiently large c. Finally, we rephrase equation (27) in the form of a theorem:

Theorem 4 (Benchmark—SDP). With the above definitions, for any probability density q(ξ)

on R2 and rotationally covariant noise channel N , we have

F̄ 6 sup
�∈B(suppRc)

{
Tr(�PcηPc)

∣∣∣�> 0, �0 > 0, TrB �6 1A

}
+ 1 − Tr(PcηPc). (28)

5.3. Results of numerical calculations

In this subsection, we present results of numerical calculations which were produced using
inequality (28). In order to reduce the memory requirements, we further exploit the block
diagonal structure of η in equation (25) and impose

∑2c
j=0 Q j�Q j = � for the implementation.

The evaluation of the bound then splits into two terms:

F̄finite
def
= sup

�∈B(suppRc)

{
Tr(�PcηPc)

∣∣∣�> 0, �0 > 0, TrB �6 1A

}
,

εerror
def
= 1 − Tr(PcηPc).

Denoting the rhs of (28) by F̄ infinite we have

F̄ infinite = F̄finite + εerror. (29)

Our computation proceeds along the following steps:

(i) Compute matrix elements of 〈k1|Nλ(ρs,ξ )|l1〉 and 〈k2|ρs,ξ |l2〉 for all k1, k2, l1, l2 satisfying
k1 + k2 6 c and l1 + l2 6 c; c is a fixed maximum photon number practically bounded by
the computer memory. For the calculation, we used an analytical formula for matrix
elements of single-mode Gaussian states as a finite sum over Hermite polynomials (see
equation (4.10) of [35]).

(ii) Evaluate the following integral over ξ∫
ξ∈R2

q(ξ) 〈k1|Nλ(ρs,ξ ) |l1〉 〈k2| ρs,ξ |l2〉 dξ,

by quasi-Monte Carlo with the Halton sequence [36].

(iii) From equation (25), we derive PcηPc.

(iv) Finally, we solve the SDP leading to F̄ infinite.
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Figure 2. A plot comparing the known optimal classical bound F̄ =
2α+1

2(α+1)
, to

the upper bound F̄ infinite derived by our numerical calculation truncated at c = 35
Fock states (with corrected truncation error), and the result of the finite SDP
F̄finite (without corrected truncation error) for an ensemble of coherent states, no
noise (λ = 1), and a distribution of displacements q(ξ) =

α

π
exp[−α ‖ξ ‖

2].

Here, all the above numerical calculations were implemented in Matlab, and the SDP is solved
using the Matlab toolbox SeDuMi version 1.1 [37]. In the above numerical calculation, we do
not use any approximation except for the quasi-Monte Carlo integral.

As a first application, in order to provide the reader with a convincing test for our numerical
calculations, we show that our method reproduces the result of the optimal quantum benchmark
for displaced coherent states derived in [9]. Suppose λ = s = 1 and the input ensemble is
distributed according to q(ξ) =

α

π
exp[−α ‖ξ ‖

2]. That is we deal with an ensemble of coherent
states whose centres are distributed according to a Gaussian distribution with variance 1/(2α).
Hence, using the invariance of the ensemble under rotations we obtain

η =

∫
ξ∈R2

α

π
exp[−α ‖ξ ‖

2] ρ1,ξ ⊗ ρ1,ξ dξ. (30)

The quantum benchmark F̄ in this case was shown [9] to be (note that our definition of the
parameter α is different by the factor 2 from the definition in [9])

F̄ =
2α + 1

2(α + 1)
. (31)

So we can compare our upper bound F̄ infinite derived by SDP with the optimal bound, which is
shown in figure 2 for the maximum photon number c = 35. As expected the numerics satisfies
F̄ infinite > F̄ > F̄finite but we observe in figure 2 that as long as α > 0.2, the values of both
F̄ infinite and F̄finite are essentially indistinguishable from the optimal bound F̄ , whereas for
α 6 0.2 we find noticeable differences. In other words, in equation (29) the term εerror, which
originates from the truncation of the dimension, becomes dominant in this region. As a result,
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Figure 3. Results of numerical calculations of the quantum benchmark F̄ infinite

for an ensemble of noisy squeezed states displaced according to a Gaussian
probability distribution q(ξ) =

α

π
exp[−α ‖ξ ‖

2], as a function of α. The Fock
space was truncated at c = 30 states, the squeezing parameter is s = 8 and loss
factors are (1 − λ) = 0.4, 0.2, 0 for, respectively, triangles (red), squares (green)
and circles (blue).

the minimum value of F̄ infinite is around α = 0.15, i.e. F̄ infinite is not monotonically decreasing
with respect to α.

From this result, we may expect that our upper bounds are also almost optimal in other
situations (different q, s,N ) as long as εerror is small with respect to F̄finite.

Next, we consider the case of an ensemble of noisy squeezed states with a fixed squeezing
parameter s and again a Gaussian prior distribution for ξ . We show the results of our calculation
in figure 3. Here, we chose c = 30, s = 8, and plot for λ = 0.6, 0.8, 1. In this figure, we can
observe that, as expected, F̄ infinite decreases with decreasing λ. Due to the increasing contribution
of εerror for decreasing α, the best (lowest) values of our benchmarks are achieved, under realistic
losses, for α ' 0.15. This value, though maybe non-optimal, is suitable for comparisons with
realistic experimental situations. A simple, preliminary analysis of possible experimental noise
conditions indicates that the values of the benchmark for such parameters could be beaten by
forthcoming experiments aimed at the teleportation or storage of squeezed states. Let us mention
that single states have already been teleported or stored, both with light modes [15, 16] and
with atomic memories [17, 18]. The experimental demonstration of the transmission of a full
ensembles of squeezed states is yet to come, but techniques are ripe for it to be realized in both
settings: our method is ready for the analysis of such developments by direct comparison.

Finally, we consider the simple case of an ensemble of randomly rotated squeezed vacuum
states without displacement in phase space. That is, we choose q(ξ) = δ(‖ξ‖

2), shown in
figure 4. Here, we chose c = 30 and plot for 26 s 6 10. Note that for s = 1 there is only one
state in the ensemble, the vacuum state, so that F̄ = 1 in this case. Figure 4 clearly shows that,
if the displacements in phase space are not randomized, the classical benchmarks we derived
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Figure 4. The results for the quantum benchmark F̄ infinite for an ensemble of
uniformly rotated squeezed vacuum states with no displacements applied, i.e.
for q(ξ) = δ(‖ξ‖

2). The Fock space was truncated at c = 30 states and the states
were assumed to be noiseless (λ = 1).

increase significantly and beating them in current experiments would be a daunting challenge:
distributing the displacements of the input ensemble is thus definitely, at present, a technical
necessity in order to achieve a certifiable quantum performance7.

6. Summary and conclusions

In this work, we have derived upper bounds on the performance of classical ‘measure and
prepare’ protocols for the quantum storage and teleportation of ensembles of squeezed states
of continuous variable systems. These bounds may be employed as benchmarks to discern
truly quantum mechanical performances in experiments aimed at the realization of such
processes. Motivated by currently available experimental capabilities and concrete setups, we
have considered ensembles comprised of states with fixed squeezing, but allowed for the
possibility of random rotations and translations of those states in phase space.

Fully analytical benchmarks have been obtained for pure squeezed states as well as mixed
states obtained from the application of additive thermal noise, for the case of completely
unknown rotations and translations in phase space. In these ideal cases, the benchmarks
decrease monotonically with increasing degree of squeezing s, vanishing for s → ∞: in this
sense, increasing the squeezing reveals the infinite-dimensional character of the Hilbert space.
Furthermore, we have presented a numerical technique that first reduces the problem to a finite-
dimensional setting with rigorous error bounds, and then allows for the numerical solution of

7 We mention that an analytical upper bound to a fidelity benchmark for an ensemble of squeezed states with
distributed displacements but fixed phase of squeezing, i.e. with no random rotations, has been derived in [38].
These bounds in a sense complement our numerical findings for non-displaced states.
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the remaining finite-dimensional problem using semidefinite programming. The so obtained
bounds are rigorous and this approach may be applied to more general settings, even beyond the
Gaussian regime, for variable squeezing and arbitrarily distributed displacements, with the only
proviso that the distribution over rotations should be still rotationally symmetric in phase space,
to maintain covariance under rotations (which was essential in deriving rigorous bounds for the
truncated problem). Let us also emphasize that our numerical strategy can be reliably applied
to finite sets of states as well (rather than to continuous distributions), which are what, strictly
speaking, is sampled in actual experiments.

Our numerical results strongly indicate that allowing for randomized displacements is
crucial to outperform optimal classical strategies with current quantum technologies and that,
on the other hand, if such a randomization is allowed, realistic setups might be able to enter the
quantum regime with squeezed states. Likewise, randomized phases, other than providing much
more ‘appealing’ evidence for the teleportation or storage of the states (since, in such a case,
states with a varying structure of second moments would be transmitted), seem to be needed for
the benchmarks to be beaten.

Overall, the results presented here will provide a useful resource for assessing the quantum
mechanical character of experiments aimed at demonstrating quantum storage and transmission
of squeezed states. In a future work, these methods will be applied to concrete experiments.
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Appendix A. Phase-space covariant channels

In this appendix, we collect useful results about ‘phase-space covariant’ channels, i.e. channels
covariant under the action of the Weyl–Heisenberg group of displacement operators {Wξ , ξ ∈

R2n
}. For a phase-space covariant channel one has

T (W †
ξ ÔWξ ) = W †

ξ T (Ô)Wξ , ∀ Ô ∈B(L2(R)⊗n) and ∀ ξ ∈ R2n.

[B(L2(R)⊗n) being the set of bounded linear operators on n copies of the bosonic Hilbert
space.] These results were already used (though not explicitly detailed) in [25, 26]. Let us
mention that Markovian master equations giving rise to phase-space covariant channels were
characterized in [39], whereas the classical capacity and output entropies of phase-space
covariant channels were addressed in [40]. The latter also contains an alternative proof of
lemma 4.

Central to the present analysis is the characterization of the class of ‘linear bosonic
channels’ in terms of their action on Weyl operators, given in [41], which we report here without
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proof in the form of the following lemma. Recall that T ∗ stands for the operation T in the
Heisenberg picture.

Lemma 2 (Linear bosonic channels). A map T ∗(Wξ ) := f (ξ)WXξ is a quantum channel iff
f is the quantum characteristic function with respect to a modified symplectic form σ̃ :=
σ − X T σ X . That is, f : R2n

→ C has to be continuous, f (0) = 1 and every matrix with entries

Mkl = f (ξ (k)
− ξ (l)) exp

[
i

2
ξ (k)

· σ̃ ξ (l)

]
(A.1)

has to be positive semidefinite for all ξ (k), ξ (l)
∈ R2n.

Note that condition (A.1) for σ̃ = σ (σ̃ = 0) is equivalent to f being a quantum (classical)
characteristic function.

The following characterization of phase-space covariance ensues:

Lemma 3 (phase-space covariant channels). Every phase-space covariant channel is
uniquely characterized by a classical characteristic function f and acts in the Heisenberg
picture as

T ∗(Wξ ) = f (ξ)Wξ . (A.2)

Proof. Consider the action of T ∗ on a Weyl operator Wξ . Exploiting the Weyl relations, phase-
space covariance (with respect to any Wη) leads to

WηT ∗(Wξ ) = eiξ ·ση T ∗(Wξ )Wη. (A.3)

It is straightforward to check that this entails[
T ∗(Wξ )W †

ξ , Wη

]
= 0 , ∀ ξ, η ∈ R2n. (A.4)

The irreducibility of the Weyl system then implies T ∗(Wξ )W †
ξ ∝ 1. Denoting the proportionality

constant by f (ξ), we have a map of the form in lemma 2 with X = 1. Hence, f has to be a
classical characteristic function. ut

Let us denote by ϑ the time reversal (or matrix transposition) operator. Every entanglement
breaking channel, i.e. ‘measure-and-prepare scheme’ (see [23]), is such that T ◦ ϑ is completely
positive (that is, the Choi matrix—or the Jamiolkowski state—has positive partial transpose).
Moreover, time reversal acts very simply in phase space by flipping the sign of one of the two
canonical quadratures (see, e.g. [32]): ϑ(Wξ ) = WZξ , where Z = ⊕

n
j=1σz (σz being the Pauli z

matrix). We will now apply this additional constraint to phase-space covariant channels, in order
to achieve a stronger characterization:

Lemma 4 (NPT-entanglement breaking channels). A phase-space covariant channel T is
such that T ◦ ϑ is completely positive iff it has the form

T ∗(Wξ ) = f
(
ξ/

√
2
)

Wξ , (A.5)

where f is any quantum characteristic function, i.e. there is a density operator τ ∈ C1(L2(R)⊗n)

such that f (ξ) = Tr[τWξ ].
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Proof. Using lemma 3 we obtain

ϑ ◦ T ∗(Wξ ) = f (ξ)ϑ(Wξ ) = f (ξ)WZξ , (A.6)

where Z reverses the momenta so that Z T σ Z = −σ . Following lemma 2 this map is completely
positive if and only if positivity of equation (A.1) holds for σ̃ = 2σ . The result follows then by
substituting ξ → ξ/

√
2. ut

Appendix B. Proof of theorem 3

Proof. Suppose 9 is a entanglement breaking channel and can be written [22, 23] as 9(ρ) =∫
X Tr(M(dx)ρ)σ (x) for all ρ ∈ C1(H), where σ(x) ∈ C1(H) are states and M is a POVM, i.e.

M(X)> 0 for all Borel subsets X of a complete separable metric space X for which M(X ) = 1.
Then, �(9) =

∫
X M(dx) ⊗ σ(x) satisfies TrB(�(9)) = 1A and equation (22). Moreover,

suppose there exists a �′(9) satisfying TrB(�′(9)) = 1A and equation (22). Then, since
Tr(�′(9)|i〉〈 j | ⊗ |k〉〈l|) = Tr(|k〉〈l|9(|i〉〈 j |)) = Tr(�(9)|i〉〈 j | ⊗ |k〉〈l|) for a orthonormal
basis {|i〉}i of H, we immediately have �′

= �.
Conversely, suppose there exists a separable positive bounded operator � on H⊗

H satisfying TrB(�) = 1A and can be written as � =
∫

|8〉〈8| ⊗ |ϕ〉〈ϕ| µ(d8 dϕ) with
measure µ. We define a channel 9 as ρ →

∫
Tr(M(dϕ)ρ)|ϕ〉〈ϕ|, where M(dϕ)

def
=∫

8
8〉〈8|µ(d8 dϕ)|. Then, since TrB(�) = 1A, M is a POVM; that is, 9 is an entanglement

breaking channel. Evidently, 9 satisfies equation (22). Moreover, suppose an entanglement
breaking channel 9 ′ also satisfies equation (22). Then, since Tr(B9 ′(A)) = Tr(�(9)A ⊗ B) =

Tr(B9(A)) for all B ∈B(H), 9 ′(A) = 9(A) for all A ∈ C1(H). ut
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