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Abstract. Flies gain information about self-motion during free flight by
processing images of the environment moving across their retina. The visual
course control center in the brain of the blowfly contains, among others, a
population of ten neurons, the so-called vertical system (VS) cells that are mainly
sensitive to downward motion. VS cells are assumed to encode information about
rotational optic flow induced by self-motion (Krapp and Hengstenberg 1996
Nature 384 463–6). Recent evidence supports a connectivity scheme between
the VS cells where neurons with neighboring receptive fields are connected to
each other by electrical synapses at the axonal terminals, whereas the boundary
neurons in the network are reciprocally coupled via inhibitory synapses (Haag
and Borst 2004Nat. Neurosci.7 628–34; Farrowet al 2005 J. Neurosci.25
3985–93; Cuntzet al 2007 Proc. Natl Acad. Sci. USA). Here, we investigate
the functional properties of the VS network and its connectivity scheme by
reducing a biophysically realistic network to a simplified model, where each
cell is represented by a dendritic and axonal compartment only. Eigenanalysis
of this model reveals that the whole population of VS cells projects the synaptic
input provided from local motion detectors on to its behaviorally relevant comp-
onents. The two major eigenvectors consist of a horizontal and a slanted
line representing the distribution of vertical motion components across the
fly’s azimuth. They are, thus, ideally suited for reliably encoding translational
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and rotational whole-field optic flow induced by respective flight maneuvers.
The dimensionality reduction compensates for the contrast and texture
dependence of the local motion detectors of the correlation-type, which becomes
particularly pronounced when confronted with natural images and their highly
inhomogeneous contrast distribution.
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1. Introduction

1.1. General

Animals moving freely in three dimensions (3D) induce by their self-motion a permanent shift
of the images on their retina. The resulting distribution of vectors across the retina is called
optic flow. Flies heavily rely on optic flow to maintain a stable course through the surrounding
environment [1, 2].

In the blowfly Calliphora vicina, optic flow information is encoded by a set of about 60
large-field motion-sensitive neurons. These so-called tangential cells are located in the lobula
plate of each brain hemisphere. With their large dendrites they integrate output signals provided
by retinotopically arranged local motion detectors [3, 4] and are connected to descending
neurons controlling motor neurons for locomotion or head movements [5]. Each of the tan-
gential cells can be uniquely identified because of its anatomical invariance and characteristic
response properties to visual stimuli [6]–[8]. Among the tangential cells, a subgroup of three
neurons, the so-called horizontal system (HS) cells [7], most strongly reacts to horizontal
motion, whereas the 10 vertical system (VS) cells [7] preferentially respond to vertical
downward motion. HS and VS cells encode information about visual motion stimuli mainly
by graded shifts of their membrane potential [9] and are thought to constitute the principal
output elements of the lobula plate. They respond to motion in their preferred direction with
a positive membrane potential deflection (depolarization), whereas a motion in the opposite
(null) direction induces a negative potential shift (hyperpolarization).
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Figure 1. (a) Schematic sketch of the putative VS network: each VS cell is
connected to its neighbors via electrical synapses. VS1 and VS10 are assumed
to mutually inhibit each other. (b) Compartmental models of the 10 VS cells
as obtained from 2-photon image stacks. Cells are arranged according to their
position in the lobula plate. Reprinted with permission from [10].

1.2. The VS network

The dendrites of the VS cells are sequentially positioned within the lobula plate (and accordingly
numbered) [7], where VS1 has the most lateral and VS10 the most medial dendrite. Figure1(b)
shows compartmental models of the 10 VS cells as reconstructed from two-photon image
stacks [10] and arranged according to their location in the lobula plate.

The connectivity of the VS cells has been elucidated by intracellular dual-recordings [11].
The results of these experiments are consistent with a connectivity as depicted in figure1(a)
[10]–[12]: each VS cell is electrically coupled to its neighbors. VS1 and VS10 are mutually
coupled via inhibitory chemical synapses. The location of electrical synapses has been revealed
by measuring the Ca2+ concentration in neighboring VS cells when injecting currents into only
one of them [10]. Previous experiments have shown that the Ca2+ concentration of VS cells
depends linearly on the membrane potential [13]. The Ca2+ signal was strongest at the axonal
terminal of the cell without current injection suggesting that the synapse connecting both cells
is located in this region [10].

Corresponding to the retinotopic organization of the lobula plate, the receptive fields of the
VS cells of one brain hemisphere are also sequentially arranged, thus nearly covering one half
of the visual surround of the fly. VS1 has a frontal, whereas VS10 exhibits a caudal receptive
field [14]. Figure 2 shows that the azimuth of the peak sensitivity to vertical downward and
upward motion shifts from a frontal to a caudal position for VS1–VS9 [15]. VS10 has been
omitted from experimental analysis because of the location of its receptive field, which made it
impossible to stimulate.
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Figure 2. Sensitivity, displayed in false color code, of VS cells to vertical motion
as a function of the stimulus azimuth. (a) Responses of VS cells (VS1–VS9)
to downward motion, (b) responses of VS cells to upward motion. The peak
response shifts with increasing azimuth from VS1 to VS9. All responses have
been normalized with respect to the peak response to down- or upward motion,
respectively. Reprinted with permission from [15].

It has been found that the electrical coupling of the VS cells significantly broadens their
tuning for downward motion along the horizontal axis of the visual field [11]. Photo-ablations of
single VS cells narrowed the tuning width of nearby cells [12], demonstrating that these neurons
indeed receive information from their neighbors via electrical synapses.

A closer inspection of the receptive fields reveals that outside of the part of the visual field
where a VS cell responds most strongly, it exhibits different local preferred directions [14, 16].
The global arrangement of local preferred directions resembles a rotational flow (see figure3).
This finding led to the hypothesis that VS cells encode information about rotational movements
as induced by self-motion [16, 17]. In particular, it was proposed that the axis of rotation should
be encoded by the VS cell responding most strongly, i.e. by the cell whose response field
matches the rotational flow field best [16]. However, this hypothesis does not take into account
the response behavior of the local motion detectors, especially when confronted with images
representing natural scenes [10] characterized by an inhomogeneous contrast distribution.

2. Results

2.1. Input hypothesis

The response properties of the VS cells to moving gratings can be best described by assuming
that they receive input from motion detectors of the correlation-type [18, 19]. For VS cells, the
preferred direction of these so-called Reichardt detectors [20]–[25], schematically depicted in
figure4, is downward, the null direction is upward. This assumption neglects inputs from non-
vertically tuned local motion detectors or from further tangential cells presumably responsible
for the non-vertical direction preferences in the receptive fields of VS cells (see figure3). In
particular, it could be demonstrated that VS7/8 receives input from the HSN cell which is
sensitive for horizontal motion in the dorsal part of the visual field [11]. However, it has been
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Figure 3. Response maps of a VS5 (a) and VS8 (b) cell. The orientation of
the arrows indicates the preferred direction of the corresponding cell at this
position; the arrow length corresponds to the response strength. The receptive
fields exhibit a broad tuning for downward motion. Both neurons show a main
sensitivity to downward motion at an azimuth of 90◦ and 135◦, respectively.
Adapted with permission from [14].

HP HPLP LP

M M

Figure 4. The Reichardt detector estimates motion by correlating the signals
of adjacent image locations. It consists of two subunits. The luminance signal
at each location is fed through a low-pass filter and afterwards multiplied with
the high-pass filtered input from the neighboring location. The output signals
of both subunits are finally subtracted. For motion in 2D a pair of Reichardt
detectors is assumed at each image location, one oriented horizontally and one
oriented vertically. The responses of both detectors are then interpreted as thex-
andy-component of the local motion vector, respectively.

shown that homogeneous large-field downward motion can also effectively excite VS cells.
Moreover, the V1 cell that integrates input from VS1 to VS3 does not respond significantly
stronger to rotation than to translation [26]. Thus, omitting inputs from further tangential cells or
local motion receptors providing information about horizontal motion seems to be a justifiable
simplification. According to our assumptions, a rotational self-motion in the horizontal plane
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Figure 5. Contrast distribution of an artificial and a natural image (see figure6(a)
and (b)): the pixel intensities of the artificial image are normally distributed with
mean and standard deviation of 1. Both images were blurred by a 3×3 box filter.
For comparison, we calculated the msld between image pixels as a function of
relative separation between these pixels. The natural image exhibits an msld that
monotonically increases with increasing pixel separation. In contrast, the msld
of the artificial image is constant for a spatial separation larger than 8 pixels. For
smaller separations the msld of the artificial image decreases since it was blurred
making neighboring pixels more similar.

induces no potential shift in the VS cell whose azimuth of maximum sensitivity to downward
motion matches the azimuth of the center of rotation. In the remaining VS cells increasing
negative or positive potential shifts are induced in dependence of the distance of their azimuth
of maximum downward motion sensitivity from the axis of rotation. In contrast, a translational
upward or downward motion would yield constant positive or negative potential shifts in all VS
cells. However, due to its intrinsic response properties, the Reichardt detector strongly deviates
from an ideal speedometer where the response depends linearly on velocity. First of all, the
response strength of theses detectors decreases for velocities higher than a certain optimum
velocity [27]. Second, Reichardt detectors are strongly dependent on the local luminance and
contrast of the moving image [10, 28].

To study the influence of these characteristics of Reichardt detectors on the processing of
moving natural images, we defined a measure quantifying the contrast distribution of images,
the mean squared luminance difference (msld) between image pixels as a function of relative
separation between these pixels. Typically, neighboring pixel values within natural images are
highly correlated in luminance intensity [29]. Accordingly, the msld of an exemplary natural
image is low for small spatial separations (see figure5). However, it increases with increasing
distance between pixels. Thus, the natural image is characterized by an inhomogeneous
contrast distribution for larger spatial separations. Conversely, an artificial image with normally
distributed luminance intensities shows a rather constant msld (see figure5), i.e. the contrast is
homogeneously distributed.

To investigate the impact of the contrast distribution on the response properties of the
motion detectors, we used the artificial and the natural image as visual stimuli for a 2D array
of Reichardt detectors (for more details see appendixA). Each image was rotated clockwise
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Figure 6. The responses of motion detectors of the Reichardt-type depend on
the texture and contrast distribution of an image. We rotated an artificial (a)
and a natural image (b) clockwise by 360◦ around its center (indicated by the
red arrows) at a speed of 0.3◦ ms−1, respectively. (c),(d) The central part of
each image was divided into 10 adjacent slices. For each slice the integrated
vertical response components of a Reichardt detector array were calculated every
3 ms. The normalized distributions of the integrated responses for each slice
are displayed in grey scale code along they-axis. Note that the mean variance
of the integrated slice responses is significantly smaller for the artificial image
compared to the natural image. Besides the mean values, two snapshots of the
responses at two different rotation angles (1◦ and 171◦) are also shown.

by 360◦ around its center with a velocity of 0.3◦ ms−1 (see figure6(a) and (b)). Within ten
adjacent slices, we integrated for each rotation angle the vertical response components of the
corresponding local motion detectors. The slices might be interpreted as the receptive fields of
isolated VS cells, which are not electrically coupled to their neighbors and, therefore, receive
input exclusively from local Reichardt detectors impinging on to their dendrite. Overlapping
receptive fields of adjacent VS cells were accounted for by smoothing output signals of the 2D
array of Reichardt detectors (see appendixA). We calculated for each slice a histogram over
the integrated local motion detector signals. The resulting distributions were normalized to their
corresponding peak value and are plotted along they-axis in figures6(c) and (d).

The mean responses over 360◦ to the rotating image increase with the distance of the
corresponding slice to the rotation center, i.e. they become stronger with increasing velocity.
However, within the peripheral slices the mean response slightly decreases in both the cases
indicating that, in these parts, the velocity is higher than the optimum velocity of the Reichardt
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detectors. The responses to the natural image exhibit a significantly higher mean standard
deviation (σ = 2.06) compared to the artificial image (σ = 1.17).

Snapshots at different times during rotation exemplify the texture and contrast dependence
of the detector signals, especially in case of the natural image (see figure6(d)). In each case the
responses do not increase linearly as a function of velocity. Instead, they vary strongly around
the mean response. Consequently, optic flow parameters such as the azimuth of the axis of
rotation do not clearly correlate with single slice responses at each point in time. Moreover, with
a membrane time constant ofτ = 1.4 ms [8], isolated VS cells would not be able to integrate
signals over a longer time interval to approximate a more stable mean response pattern. Instead,
some further processing or synaptic coupling of the VS cells seems to be necessary to robustly
encode optic flow information.

2.2. Realistic model

Our work is based on a biophysically realistic model presented by [10]. In this model, the
individual neurons were represented as detailed compartmental models reconstructed from
image stacks obtained by two-photon microscopy. Electrical synapses were implemented as
resistances located at the axonal terminals. To account for the reciprocal inhibition between
VS1 and VS10, a negative conductance was used.

In our approach, we modeled the mutual inhibition between VS1 and VS10 by two
inhibitory synapses: the first one inhibits VS10 in dependence of the presynaptic membrane
potential at the axonal terminal of VS1 and the second one inhibits VS1 in dependence of
the membrane potential of VS10. The steady-state conductance of each inhibitory synapse
is described by a sigmoid function of the presynaptic potential with variable slope, center
and maximum conductance (see appendixC.2). The resulting synaptic current is given by
equation (C.4). Since VS cells are thought to encode information by membrane potential shifts,
any active membrane mechanisms were neglected. Moreover, the membrane potential of the
VS cells depends nearly linearly on currents up to 2 nA inducing a membrane potential shift of
about 8 mV for an input resistance of about 4 M� [8]. For larger currents an increasing outward
rectification occurs.

For simplicity, we summed up the synaptic inputs provided to one cell as elicited by
large-field motion to one current injected at the dendritic root. VS cells respond to a global
visual stimulation with potential shifts up to 10 mV [30]. In order to yield potential shifts
of realistic strength, input patterns driven by Reichardt detectors in response to a large-
field motion had to be scaled such that the inputs to the VS cells approximately range
from −2.5 to 2.5 nA.

In order to adapt the biophysically realistic model, certain parameters such as membrane
capacitance, axial resistance and the strength of the axonal gap junctions had to be determined.
Therefore, these parameters had to be adjusted such that simulations carried out with
NEURON [31]–[33] would produce results roughly equal to double-cell recordings published
in [8] and [11]. We adjusted these parameters iteratively using genetic algorithms. The time-
consuming task of evaluating a large number of parameter combinations in each iteration step
was executed in parallel by scheduling the single simulation runs on an InfiniBand/Opteron
computer cluster with 128 processors (http://infiniband.in.tum.de).
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Figure 7. Simple compartment models derived from a biophysically realistic
model. (a) 20 compartment model: each neuron consists of two compartments,
namely a dendritic and an axonal compartment, connected by a resistance
with conductancegaxon. Both have a passive membrane conductancegdend and
gterm, respectively. The lower (axonal) compartments of neighboring cells are
connected via electrical synapses with conductancegel. The mutual inhibition
between VS1 and VS10 is modeled by a negative conductance with absolute
valueginh (see below). (b) 10 compartment model: each neuron consists of one
compartment only. Neighboring cells are electrically coupled. Each cell has a
passive membrane conductancegpas.

2.3. Reduction to a simplified linear model

Within this study, we viewed the VS network as a system mapping a dendritic synaptic input on
to membrane potentials at the axonal terminals where these neurons target postsynaptic cells.
To start off with a most simple model, we linearized the realistic VS model by eliminating
the inhibitory synapses and reduced it to an equivalent circuit. This allowed us to calculate
the steady-state potentials at the axonal terminals when injecting current into the dendritic root
where synaptic inputs are summed.

To construct such an electric circuit we derived a 20 by 20 matrixM from simulations,
which we will refer to as resistance matrix (see also appendixC.1). We arranged the matrixM
in the following way: columns/rows 1, . . . , 10 correspond to the dendritic root compartments of
VS1–VS10, while columns/rows 11, . . . , 20 correspond to the axonal terminal compartments of
VS1–VS10. The entry(i, j ) of the symmetric matrixM corresponds to the steady-state potential
of compartmenti resulting from injecting current of 1 nA into compartmentj . The inverse,G,
of the resistance matrix can be interpreted as the conductance matrix corresponding to a circuit
as depicted in figure7(a) not considering the mutual inhibition. Within this circuit, individual
VS cells are represented by two dimensionless compartments each: one corresponding to
the dendritic root and the other to the axonal terminal of the respective neuron. The axonal
compartments are coupled by electrical synapses. The conductance values used for the various
resistances,gdend, gaxon, gterm andgel, are derived fromG (for the definition of the conductances
see figure7). For simplicity, we calculated for each of these conductances the mean value. The
parameters for the 20 compartment model are summarized in tableC.1.
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2.4. Eigenanalysis

2.4.1. Discrete cable.The steady-state potentialsV = [V1, . . . , V20]T given a current input
J = [ J1, . . . , J20]T can be expressed by the following matrix equation:

V = M J, (1)

where the resistance matrixM is the inverse of the conductance matrixG corresponding to
the 20 compartment model without inhibition. When only interested in the axonal membrane
potential output given a dendritic current input, equation (1) can be reduced to

V = M10 J, (2)

whereJ is now a 10D vector. The 10 by 10 conductance matrixG10 = M10
−1 corresponds to an

equivalent electric circuit as depicted in figure7(b) (without inhibition) and can be derived from
G according to equation (C.1). Each neuron consists of one compartment with leak conductance
g(10)

pas . Neighboring cells are connected via electrical synapses. The resulting 10 compartment

model represents a discretized electrical cable with axial conductanceg(10)
el and membrane

conductanceg(10)
pas . The conductance matrixG10 reads as

G10 = −D g(10)
el + I g(10)

pas , (3)

with

D =


−1 1 0 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 1 −1

 .

The conductancesg(10)
pas andg(10)

el are related to the 20 compartment model by equations (C.2)
and (C.3).

The matrixG10 has discrete cosine functions as eigenvectors. Thekth element of thei th
eigenvector is given by

Si,k = cos(π (k − 0.5) (i − 1)/10), k = 0, . . . , 9, (4)

where the eigenvectorsSi , with i = 1, . . . , 10, are increasingly ordered according to their
frequency. The eigenvectorSi has frequency(i − 1)/2.

The form of the eigenvectors comes from the cable structure of the 10 compartment model
when neglecting the mutual inhibition.G10 represents a conductance matrix for a discretized
cable with sealed ends, i.e.∂V/∂x = 0 at both ends (von Neumann boundary condition). Note
thatD has the same eigenvectors asG10. The matrix−D[µS] represents a conductance matrix
for a discretized cable without leak conductance. In this case, the current flow within the cable
can be described by the 1D diffusion equation, i.e.(∂2/∂x2)V(x) + J(x) = 0 for steady-state.
The eigenfunctions of(∂2/∂x2) with a von Neumann boundary condition on the interval [0,1]
are cos(πkx). SinceD can also be interpreted as a discrete first-order approximation of the
continuous second derivative operator (given a von Neumann boundary condition) [34], D and
G10 exhibit discrete cosinusoidal eigenvectors.

Expressing equation (2) in terms of the eigenvalues and -vectors ofG10 yields

V =

10∑
i =1

λ−1
i ci Si , (5)
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Figure 8. The input to the VS network is mainly projected on to the first
two eigenvectors. The eigenvaluesλ−1

i of the resistance matrixM10 (see
equation (5)) without inhibition (dashed line) are compared to the eigenvalues
of the conductance matrix when representing the mutual inhibition by a negative
conductance (see below). Due to the mutual inhibition,λ−1

i is increased by about
25% for the parameters given in tableC.1.

where theλi denote the eigenvalues ofG10. The eigenvalues ofM10 areλ−1
i and its eigenvectors

are identical to those ofG10. Suppose that the matrixS contains the eigenvectors as column
vectors. Then the coefficientsc = [c1, . . . , c10]T are given by

c = S−1 J, (6)

and denote the coordinates ofJ with respect to discrete cosine functions, i.e. multiplication by
S−1 yields a discrete cosine transformation ofJ. In the resulting outputV each coefficientci is
weighted by the reciprocal of the corresponding eigenvalueλi . Thus, the eigenvalues determine
which frequencies are emphasized or suppressed. Their analytical form is

λk+1 = g(10)
el (2− 2 cos(π k/10)) + g(10)

pas , k = 0, . . . , 9, (7)

i.e. the eigenvalues increase with frequency. Since in equation (5) each eigenvector is multiplied
by the inverse ofλi , M10 exhibits typical spatial low-pass filter characteristics. Figure8 shows
the eigenvalues,λ−1

i , of the resistance matrixM10 for the values ofg(10)
el andg(10)

pas as derived
from the realistic model. A dendritic input is mainly projected on to the first two eigenvectors.

2.4.2. Linear representation of the mutual end-to-end inhibition.So far, we deliberately
neglected the reciprocal inhibition between VS1 and VS10 in the VS network. The mutual
end-to-end inhibition between VS1 and VS10 is characterized by two effects: firstly, the
stronger depolarized cell inhibits the other boundary cell (inhibition). Secondly, the stronger
hyperpolarized cell induces a depolarization in the other cell due to suppression of transmitter
release (disinhibition). Together, inhibition and disinhibition strengthen potential differences
between the most medial and lateral VS cells (for a more detailed discussion see appendixC.3).
As a linear approximation, this combined effect can be captured by a negative resistance. Such
a resistance induces in the inhibited cell a current of inversed sign compared to the sign of the
potential of the inhibiting cell.
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Figure 9. The VS network emphasizes the linear component of a dendritic input
induced by a rotational self-motion. For illustration, we fed one of the snapshots
in figure 6(a) into the realistic model and the linear 10 compartment model
with inhibition. To record this snapshot, we exposed an array of Reichardt-
detectors to the natural image shown in figure6(d) rotating around its center
and calculated the integrated vertical response components within 10 adjacent
slices. The snapshot corresponds to the integrated slice responses at an rotation
angle of 171◦. For the realistic model the disinhibitory effect is smaller due to
saturation of the disinhibition.

In its linearized form the mutual inhibition can be incorporated into the 20 compartment
model by coupling the dendritic compartments of VS1 and VS10 via a negative conductance
with absolute valueginh. The corresponding conductance matrix for the 10 compartment model,
G̃10, can be derived from the 20 compartment model according to equation (C.1). As illustrated
by figure9 the realistic model and the 10 compartment model (with linear mutual inhibition)
show similar axonal steady-state potentials in response to a given dendritic input.

Representing the mutual inhibition by a negative conductance allows to analyze its
influence on the VS network in terms of the eigenvalues and -vectors of the underlying
conductance matrix. Figure10 shows the eigenvectors of the resulting 10 compartment model
weighted by the corresponding eigenvalues. In comparison to the model without inhibition, the
eigenvectors are nearly unchanged, except for the second eigenvector which is nearly linearized
(see figure9).

Regarding the eigenvalues, onlyλ2 is significantly changed. Increasing values ofginh

lower λ2. The mutual inhibition attenuates the influence ofg(10)
el on the second eigenvalue in

equation (7). Therefore it strengthens the contribution of the second eigenvector ofM̃10 to the
steady-state potential output. MultiplyingS2 with a larger factor in equation (5) emphasizes
potential differences between the boundary VS cells. Hence, the stronger influence of the second
eigenvector corresponds to the behavior observed for the mutual inhibition. Since the second
eigenvector is linearized and the first one is constant, a dendritic input to the VS network is
mainly projected on to the weighted sum of a constant and a linear vector.
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VS network. Note that the second eigenvector is nearly linearized due to the
mutual inhibition. The model is derived from the 20 compartment model with
the parameters given in tableC.1.

2.5. Behavioral relevance

During free flight, flies can be directed off-course by external forces as, e.g. gusts of wind.
The resulting optic flow can be described as a superposition of translatory and rotatory motion
components. Our analysis of the VS network suggests that it is suited for encoding translatory
up- and downward motion as well as rotation. Ideally, a vertical translation (lift) would induce
a constant potential shift in all VS cells. This excitation pattern corresponds to the first
eigenvector of the network. Due to the inhomogeneous contrast and texture distribution in
natural scenes [35], real excitation patterns must be assumed to strongly deviate from the ideal
case. However, due to the spatial low-pass filtering properties of the VS network, such an input
pattern would be mainly projected on to its constant component, yielding a constant potential
shift in all cells.

A rotational self-motion in the horizontal plane, as e.g. a pitch rotation, yields ideally
an excitation pattern with increasing positive and negative potential shifts separated by the
VS cell whose azimuth of maximum sensitivity to downward motion is located closest to
the axis of rotation. Deviations from such a response vector, arising from the contrast and
texture dependence of the motion detectors, are filtered out by the VS network and potential
differences between the boundary cells are pronounced. In this case, the dendritic input vector
is projected on to the constant and the second linearized eigenvector. A weighted sum of these
two eigenvectors results in a linear vector corresponding to an input component caused by
self-rotation.

Based on model simulations, the hypothesis was put forward previously [10] that the
electrical coupling of the VS cells enables the network to robustly represent the center of
rotation in the axonal membrane potential distribution of the whole network. As demonstrated
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in the present study, an input pattern induced by a rotation is projected on to a linear vector with
monotonically increasing elements. The VS cell with no (or the smallest) potential shift encodes
the azimuth of the axis of rotation.

3. Conclusions

In order to study the connectivity of the VS network, we reduced a biophysically realistic
model to a simplified linear model, which we subjected to an eigenanalysis. Any input to
the VS network is projected on to discrete cosinusoidal functions of increasing frequency.
The coefficients with respect to those discrete base functions are weighted by the inversed
eigenvalues of the conductance matrix of the simplified model. Given the actual eigenvalue
distribution, the VS network can be seen to reduce high dimensional inputs providing
information about self-motion to its translational and rotational components. This effect is
emphasized by the mutual end-to-end inhibition between VS1 and VS10.

From an information theoretical point of view, the electrical coupling of VS cells seems
puzzling at first sight: the coupling makes the activity of any VS cell statistically dependent
on its neighboring neuron, thus reducing the maximum entropy achievable in non-coupled
neurons (for review see [36]). Moreover, the noise correlation between neighboring neurons
will increase, as has in fact been demonstrated by dual recordings from visually unstimulated
VS cells [11]. Such an increased noise correlation has been demonstrated to deteriorate the
accuracy by which a rotation axis in the horizontal is encoded by a VS cell population [37].
On the other hand, it is intuitive to see that more positions can be encoded with overlapping
receptive fields than with non-overlapping, which raises the question of the optimal coupling
strength in such a network. As has been thoroughly analyzed by [38], the amount of overlap
resulting in maximum information of the output population vector depends on the noise, the
particular shape of the receptive field as well as the readout procedure chosen. To what extent the
coupling strength as found in the VS network agrees with such a theoretical optimum remains
to be determined.

Another interesting aspect is the similarity of the VS network to the analog circuits
resulting from regularization methods proposed as a solution to early vision problems such
as optic flow [39]. Here, an answer might be found to the question of why nature has chosen to
implement the broad receptive fields by electrical coupling of neighboring VS cells instead of
giving them broad dendrites in the first place. Aside from the simplicity by which such receptive
fields can arise through development, another advantage might reside in the specific dynamics
by which a certain output activity profile is attained in such a recurrent network compared to a
straight feed-forward construction.

Acknowledgment

We are grateful to T Klug and C Trinitis for providing us access to a computer cluster.

Appendix A. Motion detection during image rotation

The pixel values of the natural image (figure6(b)) vary between 0 and 1. As an artificial
image (figure6(a)) we created a 270× 270 random image where each pixel value is normally
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distributed with mean 0 and standard deviation of 1. Both images were blurred by a 3× 3 box
filter and rotated clockwise at 0.3◦ ms−1 around their center. Only a central part of 190× 190
pixels was considered. During the rotation, the pixel values within this area were fed into a
189× 189 array of motion detectors of the Reichardt-type (see figure4) with downward motion
as preferred direction. Each detector gets its input from two vertically neighboring pixels.
During rotation the values corresponding to a certain pixel were first filtered by a low-pass filter
(with a 20 ms time-constant) and multiplied with the high-pass filtered values of the downward
neighboring pixel (with a time-constant of 200 ms). A second multiplication was performed in a
mirror-symmetrical way, where the lower pixel values were low-pass filtered and the upper ones
high-pass filtered. The output signals of both multiplications were subtracted yielding the output
of the Reichardt detector. To account for overlapping receptive fields of adjacent VS cells, we
smoothed the 2D array of output signals by a 2× 2 box filter. We divided the Reichardt detector
array into 10 adjacent slices. Within each of these the responses of all motion detectors were
integrated. For each slice we calculated a histogram over the responses at each rotation angle.
Each histogram comprises 42 bins ranging from−10 to 10. Its values were normalized to a
maximum value of 1 and represented along they-axis in figures6(c) and (d).

Appendix B. Simulation

The detailed compartment models of the VS cells used for the biophysically realistic model
were reconstructed from image stacks from two-photon microscopy. The realistic model was
implemented using the simulation software NEURON [31, 32]. The electrical and chemical
synapses are implemented as NMODL-mechanism [40] (NMODL is a model description
language that allows to define neural mechanisms as e.g. synapses or active membrane
conductances for NEURON). The membrane and the axial resistance are assumed to be
homogeneous for each VS cell but are allowed to vary between different cells. The membrane
capacitance was implicitly expressed by the membrane constantτ with τ = rm cm = 1.4 ms [8].

The axial and membrane resistances of each VS cell, as well as the parameters for the
electrical and chemical synapses were fitted with a genetic algorithm such that steady-state
potentials at the dendritic root resulting from current injections into a certain VS cell match the
experimental data recorded by [11]. As a second constraint for the parameter fit the VS cells
had to approximate an input resistance of about 4 M� [8]. For the parameters as found by the
genetic algorithm, the input resistances of the VS cells varied around a mean value of 3.91 M�

with a standard deviation of 0.36 M�. For illustration figureB.1 compares the experimental
steady-state potentials for a−10 nA injection into VS1 with the corresponding prediction by
the realistic model.

Appendix C. Modeling of the VS network

C.1. Reduction of the realistic model to a simplified linear model

According to our terminology a resistance matrix refers to the inverse of a conductance
matrix. Given a linear electric circuit the corresponding conductance matrix can de derived
by formulating for each compartment Kirchhoff’s current law. Restricting to steady-state, i.e.
neglecting capacitive currents, and expressing the resulting system of equations in matrix
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notation yields

J = G V,

whereJ = [ J1, . . . , Jn]T denotes the currents injected into each node given the voltage vector
V. The non-zero entries ofG indicate the structure of the underlying equivalent circuit: if an
entry(G)i, j is non-zero, compartmenti is connected to compartmentj . InvertingG and setting
M = G−1 allows to calculate the steady-state potential for a given current input to each node by

V = M J.

As described above, to reduce the biophysically realistic model to a linear model, we extracted
by simulations a 20 by 20 resistance matrixM after eliminating the chemical synapses. The
conductance matrixG, i.e. the inverse ofM , corresponds to the 20 compartment model, where
each cell consists of a dendritic and an axonal compartment (see figure7(a)). As described
above, we averaged the values of the different conductances of the 20 compartment model
and approximated the mutual inhibition by a resistance with negative conductance such that
the whole model becomes linear and can be represented by a linear matrix equation. The
conductance matrix of this model is denoted byG̃.

If one is only interested in the axonal steady-state potentials induced by a current injection
into the dendritic roots,M̃ = G̃−1 can be reduced tõM10 denoting the bottom left 10 by 10
matrix of M̃ . To relateG̃10 to the conductance matrix

G̃ =

[
A1,1 A1,2

A2,1 A2,2

]
,

we formulated the following system of linear equations,[
A1,1 A1,2

A2,1 A2,2

] [
X1,1 X1,2

X2,1 X2,2

]
=

[
I 0
0 I

]
.

New Journal of Physics 10 (2008) 015013 (http://www.njp.org/)

http://www.njp.org/


17

Solving this system forX2,1 and settingM̃10 = X2,1 yields

G̃10 = A1,2 − A1,1A−1
2,1A2,2. (C.1)

According to equation (C.1), the conductancesg(10)
el andg(10)

pas can be expressed in terms of the
various conductances of the 20 compartment model as

g(10)
pas =

gdendgaxon+ gterm(gdend+ gaxon)

gaxon
, (C.2)

g(10)
el =

(gdend+ gaxon)gel

gaxon
. (C.3)

These expressions also hold for the 20 and 10 compartment model without inhibition since they
are independent of the strength of the mutual inhibition parameterginh.

C.2. Inhibitory synapses

The mutual inhibition between VS1 and VS10 is modeled by two inhibitory synapses. The
steady-state conductance of each synapse in dependence of the presynaptic potentialVpre is
described by

gsyn(Vpre) = ḡsyn/(1 + exp(σ (µ − Vpre))). (C.4)

Vpostandḡsyn denote the postsynaptic potential and the maximum conductance, respectively. For
the biophysically realistic model, we found best matches between the model and experiments,
settingḡsyn = 1.5, µ = 4.5 andσ = 0.6.

The synaptic current flowing into the inhibited cell is given by

Isyn = gsyn(Vpre) (Vpost− Esyn), (C.5)

with Esyn as reversal potential of the synapse [41]. In our simulations, we found best results for
Vm − Esyn = −15 mV.

In order to incorporate the inhibition into the 20 compartment model, we added two
chemical synapses inhibiting the dendritic compartment of VS1 or VS10 in dependence of
the presynaptic potential at the dendritic compartment at VS10 or VS1, respectively. The
synapses are modeled in the same way and with the same parameters as for the realistic model.
Simulations show that the resulting 20 compartment model and the realistic model exhibit a
similar response behavior to various dendritic inputs (data not shown).

C.3. Linear representation of the mutual inhibition

The mutual end-to-end inhibition between VS1 and VS10 is characterized by inhibition of the
less depolarized cell and by disinhibition of the more depolarized cell. Both features can be
illustrated in a phase plane analysis. Therefore, we considered two mutually inhibiting cells
whose synaptic conductance is described by a sigmoid function as given in equation (C.4),
respectively. For the parameters of the synaptic conductance we used the same parameters as
found for the realistic model. These two cells may be considered as VS1 and VS10 cell. Since
the electrical coupling between the two cells is very small due to eight intermediate neurons, it
was neglected.
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Figure C.1. Phase plane for the two network model. (a) Stable regime: the
V1 and V2 nullclines intersect at one stable critical point, the resting potential.
(b) Instable regime: besides the resting potential theV1 andV2 nullcline intersect
at two further stable points. The resting potential is instable.

The potential time course of cell 1 and cell 2 is fully described by two nonlinear differential
equations,

CmV̇1 = gsyn(V2)(Esyn− V1) + gm(Em − V1) + J1, (C.6)

CmV̇2 = gsyn(V1)(Esyn− V2) + gm(Em − V2) + J2, (C.7)

whereCm denotes the membrane capacitance. In order to study, how the system evolves in time,
we considered its two nullclines in the(V1, V2) plane. The nullclines associated withV1 andV2,
defined byV̇1(V2) = 0 andV̇2(V1) = 0, read as

nullV1(V2) =
gsyn(V2) + gmEm + J1

gsyn(V2) + gm
, (C.8)

nullV2(V1) =
gsyn(V1) + gmEm + J2

gsyn(V1) + gm
. (C.9)

FigureC.1(a) shows the two nullclines at resting potential, i.e.J1 = J2 = 0. Their intersection
defines the critical point where(V̇1, V̇2) = 0. This point is stable, i.e. after a perturbance the
network will return to the same resting potential.

Any non-zero currentJ1 shifts theV1 nullcline horizontally, current injection intoV2 shifts
the V2 nullcline vertically, thus defining a new critical point. Consequently, positive current
injections induce negative potential shifts in the inhibited cell (inhibition). On the other hand,
since the synaptic conductance is slightly above zero at resting potential, negative current
injection into one cell yields a positive potential shift in the second one due to the suppression of
transmitter release (disinhibition). As a combined effect of inhibition and disinhibition potential
differences between both cells are increased. This characteristic feature of the mutual inhibition
is captured by a negative conductance. However, since a depolarization induced by disinhibition
saturates relatively soon, the negative conductance overemphasizes this effect for a strong
hyperpolarization.

The strength of the disinhibition mainly depends on the synaptic conductance and its
derivative at resting potential. However, by increasing this value, the network becomes instable.
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Table C.1. Values for the conductances of the 20 compartment model.

gdend[µS] gterm[µS] gaxon[µS] gel[µS] ginh[µS]

0.18 0.03 0.11 1.0 0.06

In this case, the nullclines intersect at two additional points, whereas the critical point at(0, 0)

becomes instable (see figureC.1(b)). Therefore, the network will respond to a small current
injection with a jump to one of the additional critical points. Thus, the strength of mutual
inhibition, represented by the parameterginh, is constrained by the stability of the network.

Modeling the mutual inhibition by a negative conductance the conductance matrixG for
the 20 compartment model without inhibition becomes

G̃ = G + B. (C.10)

The 20 by 20 matrixB has zero entries except

(B)11,11 = (B)20,20 = −ginh, (B)1,10 = (B)10,1 = ginh.

The linear representation of the mutual inhibition for the 10 compartment model can derived
from G̃ according to equation (C.1). Incorporating the mutual inhibition into the conductance
matrixG10 yields

G̃10 = G10 + C, (C.11)

where the 10 by 10 matrixC has zero entries except

(C)1,1 = (C)10,10 = −
(gdend+ gaxon) ginh

gaxon
, (C)1,10 = (C)10,1 =

(gdend+ gaxon) ginh

gaxon
.

C.4. Parameters for the 20 compartment model

The simplified 20 compartment model is based on the connectivity as given by the inverse,G, of
the resistance matrixM derived from simulations. The mean values of the various conductances
(see figure7(a)) are shown in tableC.1.

The conductance matrix and the values for the conductances of the 10 compartment model
can be derived from the 20 compartment model according to equation (C.1).

References

[1] Srinivasan M V and Zhang S 2004 Visual motor computations in insectsAnnu. Rev. Neurosci.27679–96
[2] Frye M A and Dickinson M H 2001 Fly flight: a model for the neural control of complex behaviorNeuron

32385–8
[3] Borst A and Egelhaaf M 1992In vivo imaging of calcium accumulation in fly interneurons as elicited by

visual motion stimulationProc. Natl Acad. Sci. USA894139–43
[4] Single S and Borst A 1998 Dendritic integration and its role in computing image velocityScience281

1848–50
[5] Strausfeld N J and Bassemir U K 1985 Lobula plate and ocellar interneurons converge onto a cluster of

descending neurons leading to neck and leg motor neuropil inCalliphora erythrocephala Cell Tissue Res.
240617–40

New Journal of Physics 10 (2008) 015013 (http://www.njp.org/)

http://dx.doi.org/10.1146/annurev.neuro.27.070203.144343
http://dx.doi.org/10.1016/S0896-6273(01)00490-1
http://dx.doi.org/10.1073/pnas.89.9.4139
http://dx.doi.org/10.1126/science.281.5384.1848
http://dx.doi.org/10.1126/science.281.5384.1848
http://dx.doi.org/10.1007/BF00216351
http://www.njp.org/


20

[6] Pierantoni R 1976 A look into the cock-pit of the fly. The architecture of the lobular plateCell Tissue Res.
171101–22

[7] Hengstenberg R, Hausen K and Hengstenberg B 1982 The number and struture of giant vertical cells (versus)
in the lobula plate of the blowflyCalliphora erytrocephala J. Comput. Physiol.149163–77

[8] Borst A and Haag J 1996 The intrinsic electrophysiological characteristics of fly lobula plate tangential cells:
I. Passive membrane propertiesJ. Comput. Neurosci.3 313–36

[9] Haag J, Theunissen F and Borst A 1997 The intrinsic electrophysiological characteristics of fly lobula plate
tangential cells: II. Active membrane propertiesJ. Comput. Neurosci.4 349–69

[10] Cuntz H, Haag J, Forstner F, Segev I and Borst A 2007 Robust coding of flow-field parameters by axo-axonal
gap junctions between fly visual interneuronsProc. Natl Acad. Sci. USA10410229–33

[11] Haag J and Borst A 2004 Neural mechanism underlying complex receptive field properties of motion-sensitive
interneuronsNat. Neurosci.7 628–34

[12] Farrow K, Borst A and Haag J 2005 Sharing receptive fields with your neighbors: tuning the vertical system
cells to wide field motionJ. Neurosci.253985–93

[13] Egelhaaf M and Borst A 1995 Calcium accumulation in visual interneurons of the fly: stimulus dependence
and relationship to membrane potentialJ. Neurophysiol.732540–52

[14] Krapp H G, Hengstenberg B and Hengstenberg R 1998 Dendritic structure and receptive-field organization
of optic flow processing interneurons in the flyJ. Neurophysiol.791902–17

[15] Haag J, Wertz A and Borst A 2007 Integration of lobula plate output signals by DNOVS1, an identified
premotor descending neuronJ. Neurosci.271992–2000

[16] Krapp H G and Hengstenberg R 1996 Estimation of self-motion by optic flow processing in single visual
interneuronsNature384463–6

[17] Franz M O, Chahl J S and Krapp H G 2004 Insect-inspired estimation of egomotionNeural Comput.16
2245–60

[18] Borst A 2004 Modelling fly motion visionComputational Neuroscience: A Comprehensive Approach
(London: Champman and Hall)

[19] Borst A, Reisenman C and Haag J 2003 Adaptation of response transients in fly motion vision. II: Model
studiesVision Res.431309–22

[20] Reichardt W 1961Autocorrelation a Principle for the Evaluation of Sensory Information by the Central
Nervous System(London: MIT Press) pp 303–17

[21] Borst A and Egelhaff M 1990 Direction selectivity of blowfly motion-sensitive neurons is computed in a
two-stage processProc. Natl Acad. Sci. USA879363–7

[22] Poggio T and Reichardt W 1973 Considerations on models of movement detectionKybernetik85439–47
[23] Reichardt W 1987 Evaluation of optical motion information by movement detectorsJ. Comput. Physiol.

A 161674–89
[24] Borst A 2000 Models of motion detectionNat. Neurosci.3 (Suppl.) 1168
[25] Borst A 2007 Correlation versus gradient type motion detectors: the pros and consPhilos. Trans. R. Soc.

Lond.B 362369–74
[26] Karmeier K, Krapp H G and Egelhaaf M 2003 Robustness of the tuning of fly visual interneurons to rotatory

optic flowJ. Neurophysiol.901626–34
[27] Borst A, Egelhaaf M and Haag J 1995 Mechanisms of dendritic integration underlying gain control in fly

motion-sensitive interneuronsJ. Comput. Neurosci.2 5–18
[28] Haag J, Denk W and Borst A 2004 Fly motion vision is based on Reichardt detectors regardless of the signal-

to-noise ratioProc. Natl Acad. Sci. USA10116333–8
[29] Simoncelli E P and Olshausen B A 2001 Natural image statistics and neural representationAnnu. Rev.

Neurosci.241193–216
[30] Haag J, Vermeulen A and Borst A 1999 The intrinsic electrophysiological characteristics of fly lobula plate

tangential cells: III. Visual response propertiesJ. Comput. Neurosci.7 213–34
[31] Hines M L and Carnevale N T 1997 The NEURON simulation environmentNeural Comput.9 1179–209

New Journal of Physics 10 (2008) 015013 (http://www.njp.org/)

http://dx.doi.org/10.1007/BF00219703
http://dx.doi.org/10.1007/BF00619211
http://dx.doi.org/10.1007/BF00161091
http://dx.doi.org/10.1023/A:1008804117334
http://dx.doi.org/10.1073/pnas.0703697104
http://dx.doi.org/10.1038/nn1245
http://dx.doi.org/10.1523/JNEUROSCI.0168-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.4393-06.2007
http://dx.doi.org/10.1038/384463a0
http://dx.doi.org/10.1162/0899766041941899
http://dx.doi.org/10.1162/0899766041941899
http://dx.doi.org/10.1016/S0042-6989(03)00092-0
http://dx.doi.org/10.1073/pnas.87.23.9363
http://dx.doi.org/10.1038/81435
http://dx.doi.org/10.1098/rstb.2006.1964
http://dx.doi.org/10.1152/jn.00234.2003
http://dx.doi.org/10.1007/BF00962705
http://dx.doi.org/10.1073/pnas.0407368101
http://dx.doi.org/10.1146/annurev.neuro.24.1.1193
http://dx.doi.org/10.1023/A:1008950515719
http://dx.doi.org/10.1162/neco.1997.9.6.1179
http://www.njp.org/


21

[32] Carnevale T and Hines M 2006The Neuron Book(Cambridge: Cambridge University Press)
[33] Hines M L and Carnevale N T 2001 NEURON: a tool for neuroscientistsNeuroscientist7 123–35
[34] Perlmutter B A and Zador A 1999 Sparse matrix methods for modeling single neuronsBiophysics of

Computation(Oxford: Oxford University Press)
[35] Olshausen B A and Field D J 1996 Emergence of simple-cell receptive field properties by learning a sparse

code for natural imagesNature381607–9
[36] Dayan P and Abbott L F 2001Theoretical Neuroscience: Computational and Mathematical Modeling of

Neural Systems(Cambridge, MA: MIT Press)
[37] Karmeier K, Krapp H G and Egelhaaf M 2005 Population coding of self-motion: applying Bayesian analysis

to a population of visual interneurons in the flyJ. Neurophysiol.942182–94
[38] Seung H S and Sompolinsky H 1993 Simple models for reading neuronal population codesProc. Natl Acad.

Sci. USA9010749–53
[39] Poggio T, Torre V and Koch C 1985 Computational vision and regularization theoryNature317314–9
[40] Hines M L and Carnevale N T 2000 Expanding NEURON’s repertoire of mechanisms with NMODLNeural

Comput.12995–1007
[41] Destexhe A, Mainen Z F and Sejnowski T J 1998 Kinetic models of synaptic transmissionMethods in

Neuronal Modelling: From Ions to Networks(Cambridge, MA: MIT Press)

New Journal of Physics 10 (2008) 015013 (http://www.njp.org/)

http://dx.doi.org/10.1038/381607a0
http://dx.doi.org/10.1152/jn.00278.2005
http://dx.doi.org/10.1073/pnas.90.22.10749
http://dx.doi.org/10.1038/317314a0
http://dx.doi.org/10.1162/089976600300015475
http://www.njp.org/

	1. Introduction
	1.1. General
	1.2. The VS network

	2. Results
	2.1. Input hypothesis
	2.2. Realistic model
	2.3. Reduction to a simplified linear model
	2.4. Eigenanalysis
	2.5. Behavioral relevance

	3. Conclusions
	Acknowledgment
	Appendix A.  Motion detection during image rotation  
	Appendix B.  Simulation 
	Appendix C.  Modeling of the VS network 
	C.1.  Reduction of the realistic model to a simplified linear model  
	C.2.  Inhibitory synapses  
	C.3.  Linear representation of the mutual inhibition 
	C.4.  Parameters for the 20 compartment model 

	References

