ACCEPTED MANUSCRIPT

Variable stiffness methods for robots: A review

, , , , and

Accepted Manuscript online 26 October 2023 © 2023 IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-665X/ad0753

10.1088/1361-665X/ad0753

Abstract

Traditional robots with constant stiffness demonstrate reliable output power and positioning precision, which may conversely reduce their flexibility and adaptability or even incur greater damage for accidental collisions with the environment or humans. Here, we review state-of-the-art robots with a variable stiffness mechanism, which is a key design concept that is widely used to improve robot reliability and impart new functionalities. To determine the similarities and differences between variable stiffness methods, we discuss the existing principles for variable stiffness of both rigid and soft robots, such as coupled and uncouple structures, thermal stimuli and magneto-rheological approaches. We hope this paper can help readers better understand these methods with regard to interesting applications. In addition, we also outline challenges and perspectives, where a simpler structure, larger band and faster response of stiffness modulation are required for robots in the future.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.