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Abstract
In this research, a new method based on singular spectrum analysis (SSA) and fuzzy entropy is
developed for damage detection on thin wall-like structures, and the normalized fuzzy entropy is
employed as an indicator to identify the severity of the damage. The lead zirconate titanate
(PZT) transducers are used in this research to generate and detect the Lamb waves. During the
detection, the collected signals from the PZT sensors are firstly decomposed and reconstructed
by SSA to extract the feature of the damage, and then the reconstructed signals with the feature
of the damage are processed to obtain the normalized fuzzy entropy. An experimental setup of
an aluminium plate with added magnets is fabricated to validate the proposed method. The
experimental results show that when magnets are attached on the aluminium plate, the
normalized fuzzy entropy is smaller than that when there are no magnets. That is because when
magnets are placed on the plate, the movement and some vibration modes of Lamb waves are
disturbed by the added magnets and this disturbing effect can be enhanced by increasing the
number and locations of the added magnets, and eventually the complexity and nonlinearity of
the waves are weakened. The experimental results of a single damage with different number of
magnets indicate that the normalized fuzzy entropy decreases linearly as the number of the
added magnets increases, which demonstrates that the proposed method can be used to detect
the severity of the damage. Moreover, the experimental results of multi-damage on different
locations indicate that the normalized fuzzy entropy is relevant with both the total number and
locations of the added magnets. The normalized fuzzy entropy decreases linearly as the total
number of the magnets increases, and the entropy of a single damage is smaller than that of the
multi-damage with the same total number of magnets, which demonstrates that the proposed
method also can be used for multi-damage detection on a thin plate. This study provides us a
new approach to identifying a single or multiple damages on thin wall-like structures.
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1. Introduction

Thanks to their good mechanical properties, light weight, and
low cost, thin wall-like structures have been increasingly used
[1], such as high-pressure gas cylinders, oil pipelines, and
aerospace structures. During their service life, the thin wall-
like structures will inevitably suffer various types of struc-
tural damages, such as delamination [2–4], holes [5–7], cracks
[8, 9] and so on, under the effect of the alternating load [10],
chemical corrosion [11, 12], and environmental factors [13].
Eventually, these damages will threaten their performance and
safety [14] if they are not identified in early age. Therefore,
structural health monitoring (SHM) for early damages or dam-
ages with a small size on thin wall-like structures is essential.

Nowadays, due to their ability of relative long-distance
propagation and small-scale defect identification, Lambwaves
have demonstrated great potential and received much atten-
tion in SHM of thin wall-like structures [15]. However, due to
the strong dispersive characteristics of Lamb waves, the waves
usually display strong nonlinearity and disorder themselves as
they travel in a structure [16]. Moreover, the existence of struc-
tural damages, including cracks, delamination and imperfect
contacts, usually has an influence on the local stiffness of the
structure, and eventually it may bring about disorder or nonlin-
earity to the waves and change the complexity of the received
signals [17–20]. Therefore, to detect the structural damages
effectively and accurately, two crucial problems which need
to be overcome are how to separate and enhance the nonlin-
ear and disorder information of the damage from the received
signals, and how to develop an indicator or feature with high
sensitivity and resolution to quantify the nonlinearity and dis-
order related to the structural damage.

In the last decades, with the help of the rapid development
and successful applications of time series analysis methods,
many signal processing technologies, including filtering [21],
correlation analysis [22], fast Fourier transform [23, 24], short-
time Fourier transform [25, 26], empirical mode decomposi-
tion (EMD) [27, 28], ensemble EMD [29], variational mode
decomposition (VMD) [30] and other methods [31–36], are
implemented to enhance or extract the feature of the dam-
age from the complex signals in Lamb wave-based SHMs.
Moreover, some researches recently indicate that the singu-
larities of the signal are related to some features of the struc-
tural damage, and these singularities are usually obtained by
singular spectrum analysis (SSA). Therefore, SSA shows dis-
tinguishable applications in different structures including con-
crete structures [37] and thin plates [38] for feature extrac-
tion. Oliveira et al [39] decomposed the signal firstly by SSA
and then reconstructed the signal. After this processing, the
root mean square deviation (RMSD) and correlation coeffi-
cient deviation metric (CCDM) features of the simulated mass

damage on a thin plate were enhanced. Similarly, Liu and Yan
[38] located the hole damage in an aluminium plate by recon-
structed signals with different components whichwere decom-
posed by SSA. Overall, the excellent performance of SSA at
feature extracting may provide us a new approach to separate
the useful information related the structural damage from the
complex signals.

Meanwhile, entropy, including Shannon entropy [40],
Wiener entropy [41, 42], approximate entropy [43], sample
entropy [44], fusion entropy [45], wavelet entropy [20, 46, 47]
and multi-scale cross entropy [48–50], is effective as a quant-
itative measure of the uncertainty or disorder of a signal, and
the entropy is usually employed as a feature to describe the
nonlinearity of different types of signals. Notably, entropy is
already being introduced to analyse the ultrasonic signals, and
it is used as a new feature to take the place of the conventional
statistical indices, such as the RMSD, the CCDM [39], Pear-
son correlation coefficient [51] and the nth normalized correl-
ation moment [23], for damage estimation. Burud and Kishen
[47] succeeded detecting the damage of concrete under flex-
ure with the help of wavelet entropy. Castro et al [52] took the
spectrum entropy as a damage index to identify the simulated
mass on a composite fibre reinforced polymers plate.

In this paper, to solve the two problems asmentioned above,
a new damage detection method by combining SSA and fuzzy
entropy (fuzzyEn) is proposed to detect different damages on
an aluminium plate. Firstly, SSA is used to extract the nonlin-
ear information related to the damages, then some components
of the extracted signal are selected to reconstruct and calculate
the fuzzy entropy, and at last the fuzzy entropy is employed as
a new indicator to characterize the severity of the damage.

The rest of this paper is organized in the following man-
ner. Section 2 introduces the theoretical background of SSA
and fuzzy entropy and presents the procedure of the proposed
method. Section 3 describes the experimental setup and pro-
cedures to validate the proposed method. Section 4 analyses
the experimental results in detailed. At last, section 5 con-
cludes the paper with recommendation for future work.

2. Theoretical fundamentals

The overall procedure of the SSA and fuzzy entropy-based
method is described in figure 1. After the original signal is
obtained by the active sensing method, it is decomposed by
SSA to extract the features related to the structural damage,
and some components are selected to reconstruct a new signal
which contains the nonlinear information of the damage. Sub-
sequently, the fuzzy entropy is calculated by the reconstructed
signal and it is chosen as an indicator to evaluate the severity
of the damage.
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Figure 1. Flowchart of the SSA and fuzzy entropy-based damage detection method.

2.1. SSA

As a nonparametric estimation method, SSA possesses the
strong capacity of analysing nonlinear signals with narrow-
banded components [53–55]. Therefore, SSA is employed in
this paper to analyse the Lamb wave signals which have strong
nonlinearity due to frequency dispersion. The procedure of
SSA is described in detailed in the following.

2.1.1. Step 1: Embedding. Given a one-dimensional
discrete-time series x(n) with lengthN, and it is embedded into
K = N − M + 1 vectors x(i) = (x(i), . . . ,x(i+M− 1))T (i=
1, . . . ,N−M+ 1) by an embedding dimension M(M< N/2).
The lagged K vectors are merged into the trajectory matrix X
of the series x(n), and the matrix is given as

X= [x(1)x(2) · · ·x(N−M+ 1)]

=


x1 x2 · · · xN−M+1

x2 x3 · · · xN−M+2
...

...
...

xM xM+1 · · · xN

 . (1)

2.1.2. Step 2: Singular value decomposition. Applying the
singular value decomposition of the covariance matrixXTX of
the trajectory matrix results in:

XTX= V
∑

VT (2)

where
∑

= diag{λ1, . . . ,λi . . . ,λK} is the diagonal matrix of
the eigenvalues, which are sorted in descending order; andV=
(V1,V2, . . . ,VM) is the corresponding orthogonal matrix of the
eigenvectors.

Therefore, the trajectory matrix can be theoretically
expressed by the eigenvectors as

X= X1 +X2 + · · ·+Xd (3)

where Xi =
√
λiViU ′

i (i= 1,2, . . . ,d) is called the elementary
matrix of the trajectory matrix, Ui = X ′Vi/

√
λi and d is the

rank of the trajectory matrix X.
The ratio αi = λi/

∑d
i=1λi is the contribution of the ele-

mentarymatrixXi to the trajectorymatrixX, and a larger value
of the coefficient αi means that the corresponding matrix Xi

contains more features or information of the original signal.

2.1.3. Step 3: Reconstruction of the signal related to the
structural damage. To extract the components related to the
structural damage, the first m (m < d) elementary matrices Xi

are selected based on the coefficient αi to assemble a newmat-
rix Y

Y= X1 +X2 + · · ·+Xm. (4)

At last, the signal y(n) can be reconstructed by the matrix Y
using the method of diagonal averaging [56].

2.2. Fuzzy entropy

Since the inception of fuzzy entropy (fuzzyEn) by Chen et al
[57], it has been widely used in nonlinear and nonstationary
signal analysis due to its good statistical stability and ability
of measuring the complexity and nonlinearity of the signal. In
this study, fuzzy entropy is used as an indicator to measure the
nonlinearity related to the structural damage.

After the original signal is extracted and reconstructed by
SSA, the reconstructed signal is further processed to obtain the
fuzzy entropy by six steps as below.

Step 1: Construct p-dimensional vectors Yp
i from the pro-

cessed signal y(n) by an initialization mode dimension p, and
the vector is given by

Yp
i = {y(i),y(i+ 1), . . . ,y(i+ p− 1)}− y0(i)

i= 1, 2 · · ·N− p+ 1 (5)

where p is the mode dimension, and the optimal value of p is
usually obtained by the trial calculation, and y0(i) is defined
by

y0(i) =
1
p

p−1∑
j=0

y(i+ j). (6)

Step 2: Define the distance d pij between two vectors Y
p
i and

Yp
j as the maximum absolute difference of the two correspond-

ing elements, and the distance is given by

d pij = d
[
Yp
i ,Y

p
j

]
= max

k∈(0,m−1)
|[y(i+ k)− y0(i)]− [y( j+ k)− y0( j)]|

i, j= 1,2 · · ·N− pand i ̸= j. (7)
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Figure 2. Experimental setup.

Step 3: Compute the similarity between the two vectorsYp
i

and Yp
j by using a fuzzy membership function and the simil-

arity is expressed as

d pij = µ(d pij,q,r) = e
−
(
d pij/r

)q

(8)

where µ(d pij,q,r) is the fuzzy membership function and it is
usually selected as an exponential function, and q and r are the
boundary gradient and threshold of the fuzzy member func-
tion, respectively. In this paper, q is chosen as 2, and r is set
to be 0.15 of the standard deviation of the original signal [58].

Step 4: Calculate ϕp(q,r) as

ϕp(q,r) =
1

N− p

N−p∑
i=1


1

N− p− 1

N−p∑
j= 1
j ̸= i

d pij

 . (9)

Step 5: Calculating ϕp+1(q,r) by repeating steps (1)–(4)
gives

ϕp + 1(q,r) =
1

N− p

N−p∑
i=1


1

N− p− 1

N−p∑
j= 1
j ̸= i

d p+1
ij

 . (10)

Step 6: The fuzzy entropy is obtained as

FuzzyEn(p, q, r, N) = lnϕp(q,r)− lnϕp+1(q,r). (11)

To reduce the adverse influence of the lead zirconate titanate
(PZT)’s location on the fuzzy entropy, the fuzzy entropy in
equation (12) is normalized by the fuzzy entropy when there
is no damage, and the normalized fuzzy entropy is expressed
as

FuzzyEnnorm(p, q, r, N) =
FuzzyEn (p, q, r, N)

FuzzyEnnodamage(p, q, r, N)
(12)

where FuzzyEnnodamage(p, q, r, N) is the fuzzy entropy of the
structure without a damage.

In this research, and the normalized fuzzy entropy is used
as an indicator to identify the structural damage.

4
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Figure 3. Locations of the PZTs and simulated damage on the
aluminium plate.

Table 1. Locations of eight PZT discs.

PZT Coordinate (mm, mm)

PZT1 (137, 376)
PZT2 (376, 137)
PZT3 (283, −283)
PZT4 (104, −386)
PZT5 (−363, −169)
PZT6 (−399, −35)
PZT7 (−346, 200)
PZT8 (−200, 346)

3. Experimental setup

To verify the method proposed in this research, an experi-
mental setup is designed. As shown in figure 2(a), the exper-
imental setup is mainly composed of an aluminium plate
(Aluminium 6061), a data acquisition system (Ni PXIe 8840
chassis with an Ni PXIe-5423 40 MHz bandwidth arbitrary
waveform generator and an Ni PXIe-5172 eight-channel oscil-
loscope), a high-frequency piezoelectric amplifier with 0–
2.6 MHz bandwidth and a fixed 50 gain (Trek Model 2100H)
and a monitor.

As shown in figure 3, the size of the aluminium plate is
950 mm× 950 mm× 1.5 mm. To excite and receive the ultra-
sonic signals, eight PZT discs (shown in figure 2(b)) with a size
of Φ12 mm × 1 mm are bonded on the plate by epoxy resin,
and the locations of the discs are listed in table 1. PZT type of
transducers are used in this research due to their advantages of

high piezoelectric effects [59], wide bandwidth [60] and ease
of installation [61–63].

To reduce the number of the modes of Lamb waves which
are excited in the plate, a 280 kHz five-cycle sinusoidal pulse
tuned by a Hanning window is selected based on the theory of
tuned Lamb waves [64, 65]. Moreover, to collect more nonlin-
ear information of the reflection waves, including the ones that
only reflect at the damage and the ones that scatter success-
ively at the boundaries of the damage and the aluminium plate,
the recording time should be relative long, and it is set to be
0.0025 s. The excitation pulse in time and frequency domains
is plotted in figure 4.

During the experiment, the tuned pulse is firstly generated
by the NI PXIe-5423 generator, then amplified by the Trek
piezoelectric amplifier and at last sent to one of the eight PZT
actuators to excite Lamb waves. The Lamb waves are detected
by the left seven PZT sensors and collected by the NI PXIe-
5172 oscilloscope.

In the experiments, as shown in figures 2 and 3, to simu-
late different structural damage, different number of magnets
are attached to the aluminium plate on three locations. The
three locations of the simulated damages are listed in table 2.
As shown in table 3, 18 different types of damage, includ-
ing single damage (A1–A4, B1–B4 and C1–C4) and multi-
damage (M1–M3), are tested and detected by the proposed
methods. In the third column of table 3, ‘A’, ‘B’ and ‘C’ are
the locations where the magnets are attached, and the num-
ber of the magnets at the corresponding location is listed in
the fourth column. For example, multi-damage M3 means two
magnets and one magnet are attached on location ‘A’ and ‘B’,
respectively.

In addition, to reduce the adverse effect of electromagnetic
interference and temperature on the experimental data, the
whole test is conducted in laboratory with the same ambient
temperature.

4. Experimental results on the aluminium plate

4.1. Selection of the coefficients

After the ultrasonic signals are obtained, they are processed as
described in section 2. In this paper, the embedding dimension
M in SSA is chosen as 80. During the processing, to obtain the
optimal values of m in SSA, the summation of the coefficient
αi of the first i eigenvalues is plotted in figure 5. Figure 5 shows
that the summation of the first eight eigenvalues is larger than
99%, which demonstrates that first eight eigenvalues contain
the main features of the signal. Therefore, the value of m is
selected as 8 to reconstruct the signal in this study [66].

Moreover, figure 6 plots the curves of the fuzzy entropy of
different damages versus the mode dimension p in equation
(12). Figure 6 indicates that the fuzzy entropy increases firstly
and then decreases as the mode dimension p changes from
1 to 10, and it reaches the maximum value when the mode
dimension p is 2. Therefore, the value of mode dimension p in
equation (12) is chosen as 2.

5
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Figure 4. The 280 kHz five-cycle sinusoidal pulse tuned by a Hanning window.

Table 2. Locations of the simulated damages.

Location of the damage Coordinate (mm, mm)

A (105, 45)
B (46, 0)
C (95, −97)

Table 3. Different types of the simulated damages.

No. Damage type
Location of
the magnets

Number of
the magnets

Total number
of the magnets

1 Without damage M0 / / 0
2 Single damage A1 A 1 1
3 A2 A 2 2
4 A3 A 3 3
5 A4 A 4 4
6 B1 B 1 1
7 B2 B 2 2
8 B3 B 3 3
9 B4 B 4 4
10 C1 C 1 1
11 C2 C 2 2
12 C3 C 3 3
13 C4 C 4 4
14 Multi-damage M1 A 1 2

B 1
15 M2 A 1 3

B 1
C 1

16 M3 A 2 3
B 1

4.2. Influence of SSA on the normalized fuzzy entropy

Figure 7 plots the curves of the normalized fuzzy entropy with
and without SSA. Figure 7 clearly shows that the normalized
fuzzy entropy with SSA has a much larger variation than that
without SSA as the damage changes, which indicates that SSA
is helpful to extract the nonlinear features of different damages
during the detection.

4.3. Influence of the propagating path of ultrasonic waves on
the normalized fuzzy entropy

Figure 8 shows the time-domain signals of different damages,
and PZT 1 and PZT 2 are the actuator and sensor, respectively.
Figure 8 shows that the four signals of different damages are
nearly the same, which indicates that the simulated damages
cannot be identified directly by the time-domain signals.

6
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Figure 5. The summation of the ratio αi of the first i eigenvalue.

Figure 6. Influence of the mode dimension p on the fuzzy entropy of different damages.

Figure 9 plots curves of the normalized fuzzy entropy of
different damages by using different actuator–sensor pairs.
Figure 9 shows that the normalized fuzzy entropy of damage
M0, i.e. without added mass on the plate, is larger than those
of others (damages A1–A3). That is because the presence of
the added mass makes the movement of the points near the
mass more difficult, and some modes of Lamb waves, which
have low relevance in the vibration, is disturbed. Eventually,
more energy goes to the domain modes, and the complexity
and nonlinearity of the waves are weakened by the disturbed
ones [52]. Therefore, the entropy, which reflects the complex-
ity and nonlinearity of the system, decreases. Figure 9 also
shows that the changing trend of the normalized fuzzy entropy
is nearly the same when both the actuator and damage type
are the same, which indicates that the propagating path of the
ultrasonic waves has a very limited influence on the normal-
ized fuzzy entropy.

4.4. Detection of severity of damages on the same location

Figure 10 plots the normalized fuzzy entropy of different
damages (A1–A4, B1–B4 and C1–C4) on the locations A,
B and C, respectively. Figure 10 shows that when the loca-
tion of the damage remains the same, the normalized fuzzy
entropy decreases linearly as the severity of the damage,
i.e. the number of the magnets, increases, which demon-
strates that the proposed normalized fuzzy entropy can be
used to detect the severity of the damage on the same loca-
tion. The explanation of the changing trend may be that when
the number of the magnets increases, the total mass of the
added magnets increases, and the disturbance to the move-
ment and some vibration modes of Lamb waves becomes
greater. Therefore, the nonlinearity of the waves gets weaker,
and the fuzzy entropy decreases as the number of the magnets
increases.

7
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Figure 7. Comparison of the normalized fuzzy entropy with and without SSA.

Figure 8. Time-domain signals with different damages (PZT 1—actuator, PZT 2—sensor).

4.5. Detection of severity of multi-damages on different
locations

Figure 11 plots the normalized fuzzy entropy of both the single
and multi-damages (A1–A3 and M1–M3).

Figure 11 clearly shows that the normalized fuzzy entropy
of the multi-damages (M0–M3) changes as the type of the

damage changes, which indicates that the proposed entropy
also can be employed to identify the multi-damages.

By comparing the normalized fuzzy entropy of both
the single and the multi-damages (A1–A3 and M1–M3) in
figure 11, it also demonstrates that the normalized fuzzy
entropy is relevant with the total number and location of the
added magnets. The entropy decreases as the total number of

8
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Figure 9. The normalized fuzzy entropy of different damages by using different actuator–sensor pairs.

the added magnets increases. Moreover, when the total num-
ber of the added magnets is the same, the normalized fuzzy
entropy of the multi-damage is larger than that of the single
damage.

4.6. Comparison of the simulation results

A finite element simulation is also conducted to compare the
performance of the proposed method. The dimensions of the
plate, PZTs and the added mass are the same as shown in
figure 3 and their locations are given in section 3. The added
mass is set as a rigid body and the weight of each mass is 4.4 g.
In the model, the PZTs and added mass are glued to the alu-
minium plate. The mesh size is set to be 0.5–1.5 mm, and the
3D finite element model is shown in figure 12. The material
parameters are listed in table 4. In the simulation, the excita-
tion pulse is the same as the experiments and its amplitude is
1 V, and the time step is set to be 0.5 µs.

Figure 13 displays the time-domain signals obtained by
simulations, and PZT 1 and PZT 2 are the actuator and sensor,
respectively. Figure 14 plots the normalized fuzzy entropy of
different damages (A1–A3) on the location A by finite ele-
ment analysis. Figure 13 shows that the normalized fuzzy
entropy of the simulation also decreases as the severity of the

damage, i.e. the number of the magnets, increases. Compared
with figure 9(a), figure 13 also demonstrates that the changing
trend of the simulation results is consistent with the experi-
mental one.

4.7. Discussions

In this section, the proposed SSA and fuzzy entropy-based
method is used to detect the added magnets on one or more
locations of the aluminium plate, and the experimental res-
ults are analysed. Since the movement and some vibration
modes of Lamb waves near to the magnets are disturbed by
the added magnets, the complexity and nonlinearity of the
received waves are weakened, and therefore the normalized
fuzzy entropy is smaller than that when there are no magnets
on the plate. Moreover, the more the number of the magnets is,
the greater the influence of the magnets is and the smaller the
entropy is. When the same total number of magnets are placed
on two or more different locations, the disturbing effect on the
waves is stronger than that when they are only placed on one
location. Eventually, the normalized fuzzy entropy of multi-
damage is less than that of a single damage for the same num-
ber of magnets. Moreover, the experimental results are con-
sistent with the simulation results. The experimental results

9



Smart Mater. Struct. 31 (2022) 035015 H Song et al

Figure 10. The normalized fuzzy entropy with a single damage on locations A, B and C (PZT-1 is the actuator).

Figure 11. The normalized entropy of single and multi-damages on different locations (PZT-1 is the actuator).

10
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Figure 12. The 3D finite element model.

Table 4. Material parameters of the aluminium plate and PZTs.

Material Aluminium 6061 PZT-5

Density ρ (kg m−3) 2700 7800
Young’s modulus E (GPa) 68.9 53
Poisson ratio ν 0.33 0.34
Piezoelectric strain coefficients d31/d33/d15 (10

−12 m V−1) / −150/400/640
Relative permittivity εr / 1600

Figure 13. Time-domain signals with different damages (PZT 1—actuator, PZT 2—sensor).
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Figure 14. The normalized entropy of different damages in the
simulations (PZT-1 is the actuator).

validate that the proposed method can be used to detect both
the single and multiple added magnets on a thin plate.

5. Conclusions

In this research, a new method based on SSA and fuzzy
entropy is developed for damage detection of thin wall-like
structures, and the normalized fuzzy entropy is employed as
an indicator to identify the severity of the damage. During
the detection, the collected signals are firstly decomposed and
reconstructed by SSA to extract the feature of the damage, and
then the reconstructed signals with the feature of the dam-
age are processed to obtain the normalized fuzzy entropy.
An experimental setup is fabricated to validate the proposed
method. Since the movement and some vibration modes of
Lamb waves near the location of the added mass is disturbed
by the existence of the added mass, the complexity and non-
linearity of the waves are weakened, and therefore the experi-
mental results show that the normalized fuzzy entropy of dam-
age M0, i.e. without added mass on the plate, is larger than
those of others (damages A1–A3). The experimental results of
a single damage with different number of magnets (damages
A1–A4, B1–B4 andC1–C4) indicate that the normalized fuzzy
entropy decreases linearly as the number of the added mag-
nets increases, which demonstrates that the proposed method
can be used to detect the severity of the damage. The explan-
ation of this changing trend may be that when the number
of the magnets increases, the total mass of the added mag-
nets increases, and the disturbance to the movement and some
vibration modes of Lamb waves becomes greater. Moreover,
the experimental results of multi-damages on different loca-
tions (damages M1–M3) indicate that the normalized fuzzy
entropy is relevant with both the total number and locations of
the added magnets. The normalized fuzzy entropy decreases
linearly as the total number of the magnets increases, and the

entropy of a single damage is smaller than that of the multi-
damage with the same total number of magnets, which demon-
strates that the proposed method also can be used for multi-
damage detection on a thin plate.

This study provides us a new approach to identifying the
single and multiple damages on thin wall-like structures. As
an outlook, the discrimination ability of this method can be
improved by introducing some machine learning classifier
algorithms. Future work involves damage detection of more
different types of damage, such as fatigue crack, delamination
and corrosion, and it also involves damage location identific-
ation based on SSA and fuzzy entropy. Also, the influence of
the damage on the complexity of waves needs more in-depth
investigations.
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