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Abstract
In this paper, we propose an optimization method for the construction of two-qubit and
two-qudit quantum gates based on semiconductor position-based charge qubits. To describe the
evolution of various quantum states, we use a Hubbard based model and Lindblad formalism.
The suggested optimization algorithm uses the time evolution of entanglement entropy and
mutual information for the determination of the system parameters to achieve high fidelity gates.

Keywords: charge qubits, CMOS technology, entanglement entropy, tight binding formalism,
qudits, quantum gates

(Some figures may appear in color only in the online journal)

1. Introduction

Semiconductor quantum devices are becoming promising can-
didates for the implementation of quantum computation due
to their potential of large-scale integration. Several quantum
technology architectures have been proposed for semicon-
ductor based qubits, involving the manipulation of spin,
spin-orbit, or charge degrees of freedom [1–4]. Although
single-qubit and two-qubit gates have been reported in the lit-
erature [5–10], the construction of CNOT and SWAP quantum
gates with high fidelity is still a challenging issue.

∗
Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any
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One- and two-qubit gates have been constructed for semi-
conductor spin or hybrid qubits [2, 7, 8, 11, 12], or even
through laser pulse-assisted quantum logic [13]. Single-qubit
gates have been demonstrated for charge qubits [14]. There
are some attempts in the literature presenting two-charge-
qubit gates, for example by the conditional rotation of two
coupled quantum dots [15], or even through the manipula-
tion of a four-level system [5]. Moreover, various approaches
to enhance the fidelity of quantum gates due to decoher-
ence effects, noise, and other uncertainties have been pro-
posed, including feedback control methods [16], quantum
optimal control based pulse generation [17], learning pulse
sampling techniques [18], deep reinforcement learning [19],
and others. However, these studies were mainly to obtain
the desired amplitudes of the various quantum states through
analytical approaches without taking into account the non-
diagonal terms of the density matrix. They also do not extend
to the cases of multiple system parameters and more complex
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geometries different than the conventional two-qubit ones.
Therefore, the construction of two or multiple charge qubit
gates with high fidelity is an open issue. In addition, some
of these studies and proposed algorithms refer to an abstract
Hamiltonian and do not connect the methodology with the
actual technology and specific geometry of the charge-based
qubits.

In this study, we demonstrate an optimization algorithm to
achieve high fidelity two-qubit and two-qudit gates (CNOT,
SWAP) through the example of a quantum core based on
22-nm fully depleted silicon-on-insulator (FD-SOI) devices
[20, 21]. For this purpose, we introduce for the first time the
Von Neummann entanglement entropy (EE) as an optimiza-
tion tool. However, since EE cannot be measured directly, we
also connect the process of finding the desired system para-
meters through the simulatedmeasurement data with the use of
mutual information (MI), and variance (Var) of the various ran-
dom variables and their distributions as would be seen from the
system detectors. Although the optimization process has been
performed for charge qubits/qudits and refers to a particular
structure/technology, the methodology followed in the current
work applies to any kind of qubits/qudits. In addition, one can-
not avoid a discussion on the decoherence of charge qubits
since it has been always seen as their bottleneck. With sev-
eral publications arguing that the charge qubits can stay coher-
ent long enough if their geometry and operation frequencies
are optimized [22–24], we have a dedicated discussion on the
effect of decoherence, taking some realistic dephasing times as
an example. Finally, we should mention that for the purpose
of simulations in this study, a simulation backend for charge
qubits compatible with IBM’s Qiskit has been developed.

The paper is organized as follows. In section 2, we intro-
duce the system under study which consists of a quantum core
based on FD-SOI devices. In section 3, we discuss a Hub-
bard based model to describe the evolution of various quantum
states in the system. We also review single-electron rotation
quantum gates including, in the general case, decoherence, by
the use of Lindblad equation [25, 26]. Finally, in section 5, we
investigate the construction of two-qubit/qudit quantum gates,
CNOT and SWAP, where with the use of EE we implement an
optimization algorithm to find the required system parameters
to achieve high fidelity.

2. Hardware implementation of charge qubits in
FD-SOI technology

The system under study is based on a double V-shape geo-
metry of quantum dot arrays (QDA) built in the 22-nm FD-SOI
node of CMOS technology fromGlobalFoundries as presented
in [20, 21].

In the quantum dot array, which consists of several
quantum dots (QD), particles (electrons) can be confined in the
5 nm thin silicon channel restricted by a potential energy pro-
file manipulated by electrostatic control utilizing valid voltage
pulses at the imposers/gates (see figure 1). The figure shows
the principal structure of a quantum dot array. For simula-
tions, a 3D structure that takes into account the technology

Figure 1. V-shape geometry realized in 22-nm FD-SOI technology
[20]. The system consists of two quantum registers. Each quantum
register includes three QDs and two single-electron detector/injector
devices at the edges. The interaction node is where the electrostatic
interaction between the two quantum registers would be maximum.

layers and is faithful to the devices reported in the literature is
developed [27, 28]. The detailed view of the model, its cross-
section, and the potential energy developed in the structure
as a response to typically applied voltages are illustrated in
figure 2. One can see the formation of 2D quantum wells with
a depth of a few to tens of meV. The potential energy is simu-
lated using the layout of the structure in COMSOLMultiphys-
ics.

Interface single-electron (SET) devices at the edges of the
structure serve as injectors/detectors. An injector is a device
that can inject an electron (or a controllable small number of
electrons) into the quantum core, whilst a detector device can
detect the presence of a particle (or more) during the measure-
ment procedure. The time evolution of the probabilities of vari-
ous quantum states can be controlled by the gates (imposers)
across the quantum register, which consists of a series of QDs
forming a QDA. To construct quantum gates in such a struc-
ture, one needs to precisely control the potential barrier(s)
which separate the adjoined QDs. This changes the tunneling
probabilities of the particles. As a result, one can modulate the
wavefunction which describes the system to facilitate quantum
logic. Notice that the geometry of this system includes the
interaction node, where the Coulomb force between neighbor-
ing particles of different quantum registers can be maximum.

3. Multi-quantum-dot register model in the second
quantisation formalism

In [4], we solved the Schrödinger equation for a system ofmul-
tiple quantum dots of multiple energy levels, and we demon-
strated how one can associate the effective mass and the
wave-function of the particle(s) with the parameters of the
tight-binding model. In the present study, we will use a model
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Figure 2. (a) Finite-element multi-layer model of a 22-nm FD-SOI device used in this study. (b) Cross-section of one of the devices of the
V-shape quantum-dot arrays. (c) Potential energy and formation of 2D quantum wells in the regions between imposers in the V-shape
structure consisting of multiple QDs. The depth of the quantum well is defined by the built-in E-field due to the semiconductor structure and
the electric potential applied at the imposers.

expressed in terms of second quantisation with its parameters
associated with 22-nm FD-SOI devices. Using two V-shape
lines as an example, we can visualize the presented quantum
structures as a pseudo-2D lattice of interacting QDs. In second
quantisation, the state of the system is represented by the occu-
pation number vector

|n⟩= |n1 n2 . . . ,m1m2 . . .⟩ (1)

where the occupation number nj represents the occupation of
the jth dot in the upper line and the occupation number mj

represents the occupation of the jth dot in the lower line. In
the fermionic case, nj= {0, 1} and mj= {0, 1}. Each occupa-
tion number nj is associated with the creation and annihilation
operators ĉ†1,j and ĉ1,j so that n̂1,j = ĉ†1,jĉ1,j is the occupation
number operator for the jth dot in the upper line. Similarly,
the excitation operator ĉ†1,j+1ĉ1,j that removes an electron from
the jth dot in the upper line and places it in the (j+ 1) dot in
the upper line without affecting the lower line can be intro-
duced. The operator ĉ†2,j+1ĉ2,j acts on an electron in the lower
line, without affecting the upper line. Hence, these operators
will be denoted as ĉ†i,j and ĉi,j, where i= 1, 2 and j= {1,…,N}
with N representing the total number of dots in each line. This
labeling approach can be easily extended to an arbitrary num-
ber of V-shape lines M, so we can conventionally assume that
i= {1,…,M}.

Keeping this notation agreement in mind, the Hamiltonian
of the system is written in the following form [3, 29, 30]

H= H0 +Ht+HU (2)

where

H0 =
M∑
i=1

N∑
j=1

ϵi,j ĉ
†
i,j ĉi,j (3)

is the on-site energy of each dot and

Ht =−
M∑
i=1

N−1∑
j=1

(
ti,j j+1 ĉ

†
i,j+1 ĉi,j+ t∗i,j+1 j ĉ

†
i,j ĉi,j+1

)
(4)

accounts for tunneling (hopping) between neighbor dots with
ti,j j+ 1 describing the tunneling probability between the dots
with indices j+ 1 and j in the ith line. We neglect the probab-
ility of a particle hopping to a distant QD since the wavefunc-
tion of a localized state in a QD decays exponentially with
distance. We also implicitly neglect such configurations that
two or more electrons can occupy the same dot (spinless elec-
trons).

Conventionally, single-particle operators in the second
quantisation formalism can be expressed through single-
electron wavefunctions or orbitals ϕ(i)k (r) in position space
through the following integrals [29],

ϵi,j =

ˆ
dr ϕ(i)∗j (r)

[
1

2m∗ P̂
2 +Vp(r)

]
ϕ
(i)
j (r)

ti,j j+1 =

ˆ
dr ϕ(i)∗j+1 (r)

[
1

2m∗ P̂
2 +Vp(r)

]
ϕ
(i)
j (r). (5)

3
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The third term in equation (2) represents the Coulomb inter-
action that is a two-electron operator:

HU =
M∑
j=1

M∑
k=1

N∑
l=1

N∑
m=1

Ujk,lm ĉ
†
j,l ĉ

†
k,m ĉj,l ĉk,m (6)

where the prefactor Ujk,lm is a two-electron Coulomb integ-
ral between different quantum dot wavefunctions ϕ(r),
given by:

Ujk,lm =

¨
drdr ′ ϕ( j)∗l (r)ϕ(k)∗m (r ′)

e2

4 πϵr0 |r− r ′|
×ϕ

( j)
l (r)ϕ(k)m (r ′). (7)

Since we allow again only the nearest-neighbor Coulomb
interaction, the non-zero terms will have indices m= l± 1.
Therefore, for example, the term Ujj,l l+ 1 would correspond to
the interaction integral of the lth dot electron with the one on
the (l+ 1) dot, both residing on the jth line. Equations (5)–
(7) relate the parameters of the tight-binding model to the
microscopic wave-functions. The interested reader can refer to
[4, 31] for a calculation of these parameters, wave-functions,
and a relevant discussion.

In the case where the externally applied fields are constant
in time, the Hamiltonian of the system can be assumed time-
independent. In practice, this can happen when one applies
a constant voltage to the imposers. In this work, we are also
interested in describing the dynamics of the system for a time-
dependent case, where the hopping coefficients ti,j do not
remain constant with time. To perform quantum operations,
one needs to apply a correct sequence of voltage pulses at the
imposers (control gates) at specific time instances, changing
the tunneling probabilities. In such a case, the Hamiltonian of
the system is changing with time. In the system under study,
an applied pulse causes a ‘sudden’ change in the Hamilto-
nian [32]. Also, the applied external fields (voltage pulses) will
be assumed to have small magnitudes. We will also assume
that the driving field is in resonance with the internal occu-
pancy frequency between the eigenstates, thus the Rabi fre-
quency between two quantum dots will be proportional to the
tunneling probability [33].

The time evolution of the system can then be described
from the Lindblad equation [34, 35]

ρ̇=− i
ℏ
[H,ρ] +

N2−1∑
i=1

Γi

(
LiρL

†
i −

1
2

{
L†i Li,ρ

})
(8)

where ρ is the density matrix describing the quantum states
of the system, Li = ui,jAj are the jump operators, with ui,j rep-
resenting a unitary matrix, and Aj is an arbitrary orthonormal
basis. Furthermore, Γi = Γ1i+Γ2i includes the spontaneous
emission rate Γ1i, and the pure dephasing rate Γ2i.

3.1. Single-electron charge qubit representation

We start our analysis by considering the two-level system, con-
sisting of two quantum dots. From (2) the Hamiltonian, in this
case can be expressed as:

|0⟩ |1⟩

H(t) =
⟨0|
⟨1|

(
E(t)+∆(t)/2 th,10(t)

t∗h,10(t) E(t)−∆(t)/2

)
= E(t)I+

∆(t)
2

σ̂z+ τh,10(t)σ̂x+αh,10(t)σ̂y (9)

where the tunneling (hopping) terms th,ij(t) = τh,ij(t)−
iαh,ij(t) with h= 1, 2 being the line index, i, j= 0, 1 with i ̸= j
correspond to the qubit state and τh,ij(t), αh,ij(t) ∈ R the two
elements which parametrize x̂ and ŷ axis rotations.

Tunneling can be modulated by a (time-dependent) manip-
ulation of the separating potential energy barrier between two
adjoined quantum dots (e.g. by applying voltage pulses on
the imposer(s)). ∆(t) = ϵ1(t)− ϵ0(t) is the relative potential
energy difference between the QDs and can be modulated by
the manipulation of their relative potential energy bottoms [4].
E(t) is a global phase and can be removed from the Hamilto-
nian by a relevant phase transform since is not an observable.
Finally, we should mention that the imaginary part of the hop-
ping term, αh,ij(t) is associated with spin-orbit interaction in
the presence of strong magnetic fields. In this work though, we
will ignore the spin degrees of freedom; however, we include
the imaginary term in the above expression for completeness.

3.2. Bloch sphere representation

A single electron in a double quantum dot (DQD) can
represent a position-based charge qubit:

|ψ⟩= c0 |0⟩+ c1 |1⟩ ≡ cos
(
θ
2

)
|0⟩+ eiφ sin

(
θ
2

)
|1⟩ (10)

where |c0|2 + |c1|2 = 1, and the angles φ∈ [0, 2π) and
θ∈ [0,π] define its Bloch sphere representation. The modula-
tion of θ(t) and φ(t) can be achieved by applying appropriate
electrostatic actuation at the gate(s) or the well-bottoms of the
structure.

The height of the middle barrier controls the frequency
of these oscillations, i.e. φ∼ω0t, where ω0 is the occupancy
oscillation frequency [4]:

cos2
(
θ

2

)
=

1
2
+ |c0||c1|cos(ω0t)

sin2
(
θ

2

)
=

1
2
− |c0||c1|cos(ω0t)

φ= arctan

[
2|c0||c1|sin(ω0t)
|c0|2 − |c1|2

]
. (11)

An extension to quantum registers consisting of a higher num-
ber of QDs and qudits is straightforward, as already discussed
in [4].

4
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3.3. One-qubit rotation gates

The one-qubit rotation gates can be implemented by applying
a valid propagator to an initial qubit state:

|ψt=TG⟩= U(TG) |ψ0⟩ (12)

where TG is the characteristic time that is needed for the actu-
alization of an arbitrary gate application and depends on the
system parameters, and

U(t) = e−(i/ℏ)
´
H(τ)dτ (13)

is the propagator of the system. The time evolution expressed
by (13), in the case of a time-dependent non-commuting
Hamiltonian, can be calculated numerically by the use of
Dyson series. By combining (9) and (13)

U(t) = e−(i/ℏ)[Eσz+τσx+ασy] t

= lim
n→∞

(
e−(i/ℏ)Eσzt/ne−(i/ℏ)τσxt/ne−(i/ℏ)ασyt/n

)n
where the Lie product formula is applied. Here

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(14)

are the Pauli matrices which correspond to the rotation
operations:

Rx (θx) =

(
cos θx

2 −isin θx
2

−isin θx
2 cos θx

2

)
,

Ry (θy) =

(
cos θy

2 −sin θy
2

sin θy
2 cos θy

2

)
, Rz(θz) =

(
e−

θz
2 0

0 e
θz
2

)
(15)

where θx, θy, θz are the corresponding rotation angles on the
Cartesian coordinate system.

4. Results

In figure 3, the simulations of single-qubit quantum rotation
gates are visualized.We compare the results obtained from (8),
for the ideal case (Γ= 0) with the ones obtained by the use of
a numerical method which solves straightforwardly the time-
dependent Schrödinger equation [31].

In equilibrium, the system in the eigenfunction representa-
tion is characterized by a fixed angle θ with angleφ precessing
at the frequency of occupancy oscillations δω = (E1 −E0)/ℏ,
where the energy levels E0 and E1 are associated with the cor-
responding eigenstates |ψ0⟩ and |ψ1⟩. Angle θ can be adjus-
ted by dynamically modulating the potential energy barrier
between the neighboring QDs or by adjusting the bottoms
of their potentials [4]. The used parameters are given in the
table 1.

5. Two-qubit and two-qudit gates: using
entanglement entropy as optimization tool through
the example of a CNOT and a SWAP gate for charge
qubits

In this section, we investigate the construction of quantum
gates for a system of two qubits (where the unit of quantum
logic is defined utilizing two QDs) and two qutrits (where the
unit of quantum logic is defined utilizing three QDs) through
the case study of a system of two charge qudits interacting
via Coulomb force. Since the two qudits are assumed to be
interacting and entangled, the evolution of the probability of
quantum states of the system is non-linear. Therefore, after
allowing the system to evolve for a specific time duration, and
a given set of system parameters and geometry of the phys-
ical structure associated with the qudit technology/implement-
ation, the output will depend on the initial conditions. How-
ever, two-qudit gates, with CNOT and SWAP quantum gates as
an example, should be agnostic to the initial conditions. Con-
sequently, one needs to optimize the time of operation of a
two-qudit quantum gate for an arbitrary set of system paramet-
ers. For this purpose, we shall use themeasure of entanglement
entropy, as it is defined between the two interacting qudits, to
optimize the timing of the operation, and an iteration algorithm
for the overall optimization of the various parameters. In par-
ticular, for the charge qudit implementation, these paramet-
ers can be tuned by applying appropriate voltage pulses at the
imposers/gates.

In the case of two interacting qubits via Coulomb force, the
Hamiltonian of the system can be written as:

H=


∆00 th,01,β th,01,α 0
th,10,β ∆01 0 th,01,α
th,10,α 0 ∆10 th,01,β
0 th,10,α th,01,β ∆11

 (16)

where the diagonal terms, in this case, include the local poten-
tial energy and Coulomb interaction. They are statically set by
the system geometry and can be dynamically modulated via
the imposer voltages.

5.1. Definition of entanglement entropy and mutual
information

Let us now consider the case of two qubits interacting via
Coulomb repulsion and denoted as qubit #1 (system-a) and
qubit #2 (system-b). In such a case, the particles’ wavefunc-
tions do not overlap each other since they are restricted in their
respective region of the DQD. The combined wavefunction of
this system can be expressed as:

|Ψ⟩=
∑
na=0,1

∑
nb=0,1

cnanb

∣∣∣n(a)a

〉
⊗
∣∣∣n(b)b

〉
≡
∑
na=0,1

∑
nb=0,1

cnanb

∣∣∣n(a)a n(b)b

〉
(17)

where we assume two quantum states for each particle, |0⟩ and
|1⟩.

5
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Figure 3. Single qubit rotation gates as simulated with a numerical method which solves the time-dependent Schrödinger equation (using
the split operator method) and Lindblad formalism.

Table 1. Parameters used for simulations of the single-qubit rotation
quantum gates.

Elementary charge, e 1.602× 10−19 C

Effective mass, m∗
e 1.08× 9.109× 10−31 kg

Length unit, x0 20 nm
Energy unit, E0 ℏ2/2m∗

e x
2
0 = 1.41× 10−23 J

= 87.6 µeV
Time unit, t0 2πℏ/E0 = 47.3 ps

To investigate the entanglement and dynamics of the sys-
tem of two qubits, we will use the Von Neumann entanglement
entropy (EE) SN [33]. The density operator for non-thermal
states is given by the expression:

ρ̂ab = |Ψ⟩⟨Ψ| . (18)

Then, the Von Neumann entanglement entropy SN is defined
as follows:

SN =−tr(ρ̂a ln ρ̂b) =−tr(ρ̂b ln ρ̂b) (19)

where the operators ρ̂a and ρ̂b are the reduced density
operators, which can be found via the partial trace as

ρ̂a(b) =
〈
0b(a)

∣∣∣ ρ̂ab ∣∣∣0b(a)〉+〈1b(a)∣∣∣ ρ̂ab ∣∣∣1b(a)〉 . (20)

Then the mutual information of the system can be defined
as [36]:

I= Sa+ Sb− Sab. (21)

6
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Figure 4. Block diagram of the optimization algorithm.

5.2. Optimization algorithm

After having the EE defined, we will describe in this section
the optimization algorithm for the construction of two-qudit
quantum gates. Initially, we will present a methodology
that aims to match the amplitudes of the various quantum
states. Later, we will extend this algorithm to include also
non-diagonal terms. A block diagram of this is depicted in
figure 4.

Based on the evolution of the quantum states and EE, we
can calculate the system parameters as follows:

• For a given set of parameters ∆ij for the Hamiltonian (16),
find the times at which an arbitrary threshold value of accur-
acy for the desired output is reached (where the desired out-
put is defined in this case by the truth table of a specific
quantum gate). This is carried out by searching in an inter-
val around the regions where EE prohibits a local extremum.

For the given initial conditions and for the process of optim-
izing the SWAP gate, such an example of the evolution of
various quantum states and EE is visualized in figure 5.

• Repeat this process for all the possible inputs (initial condi-
tions) and desired outputs as determined by the truth table
for a given quantum gate.

• Gather all time instances for each particular input that meet
the criterion of accuracy for an arbitrary threshold value. The
timing which gives the best accuracy simultaneously for all
the inputs is then saved.

• Change ∆ij/tij, following a binary iteration algorithm and
repeat until it converges to the desired accuracy.

5.2.1. Binary iteration algorithm. The binary iteration
algorithm aims to optimize the ∆ij/tij parameters. In the case
of two-qubit quantum gates, there are four such terms and in
the case of two-qutrit quantum gates, there are nine such terms
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Figure 5. Evolution of EE and probabilities of the various quantum states for a two-qubit system. The local extrema of EE are the regions
the optimization algorithm uses for finding the best timing for particular∆ij parameters and the truth table of a quantum gate.

Figure 6. Evolution of entanglement entropy (S), mutual information (I), and variance (Var), of the various quantum states and distributions
of the random variables as simulated measurements at the detectors for the quantum circuit shown in the inlet. The scheme can be used for
the optimization of a two-qubit/qudit gate. For a maximally entangled state at the output, the EE, MI and variance are at maximum.

(the number of terms is equal to the number of diagonal terms
in the Hamiltonian).

To achieve the optimization:

• We split the parameter space for each parameter∆ij/tij into
an arbitrary number of segments. An arbitrary number of
points is selected for each segment.

• Then, for all the possible combinations of these selected
points, we calculate the achieved fidelity of the quantum
gate.

• In every instance, the timing of the quantum gate for the par-
ticular combination of parameters is calculated through the
optimization procedure described above with the help of EE.

• From this process, we find in which of the segments for each
parameter the best fidelity is achieved. Then, we proceed by
splitting again the parameter space and repeating the pro-
cess.

• Finally, after getting the best possible results from this pro-
cess, we tune each parameter separately by keeping the rest
parameters and timing fixed, i.e. by increasing or decreas-
ing it with an arbitrary step resolution and measuring the

8
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Figure 7. (a) Qiskit quantum circuit simulation using the developed charge qubit simulation backend. The circuit consists of two quantum
registers, two classical registers, a Hadamard. and a CNOT gate. (b) The circuit consists of two quantum registers, two classical registers, a
Hadamard. and a SWAP gate. The various states of the density matrix are visualized at the output for a given quantum circuit (inlet).

achieved fidelity. We stop increasing/decreasing each para-
meter when the fidelity no longer improves by the local tun-
ing; then we move to the local tuning of the next parameter.
We repeat until we achieve maximum fidelity.

5.3. Fitting the parameters through measurement data

The methodology presented above uses the EE to optimize
the various parameters. However, EE is not a directly meas-
urable quantity. When one desires to connect the optimiza-
tion algorithm to an actual machine, one could treat it as a
‘black box’, i.e. assuming that there is no accurate information
regarding the internal potential energy profile of the system
and its Hamiltonian. Then, a similar strategy is still possible

to be used. Instead of trying to fit each of the entries of the
truth table for a specific quantum gate, we create a more com-
plex quantum circuit, as depicted in figure 6. We assume an
‘ideal’ Hadamard gate applied to one of the input qubit/qudit,
i.e. the control qubit. The outcome is then used as an input to
the CNOT gate.We can also plot the evolution of EE as defined
for this two-qubit system. The task, in this case, is to find the
optimized parameters for the CNOT gate. Notice that the out-
put of this circuit is expected to be amaximally entangled state.
Mutual information and EE get their maximum at specific time
instances when the entanglement is maximum, as visible from
figure 6.

In the actualmachine, every singlemeasurement would col-
lapse, for each double quantum dot (i.e. qubits q0,q1), to a 0

9
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Figure 8. (a) Real and imaginary parts of the Qiskit quantum circuit simulation using the developed charge-qubit simulation backend
(inlet). The circuit consists of two quantum registers, two classical registers, a Rotation-Z gate, a Rotation-X gate, and a Rotation-y gate. (b)
Real and imaginary parts of the obtained optimized CNOT gate; the inlet depicts the quantum circuit.

or 1 logic state, depending on the position that the particle
would be found. From this simulated sequence of measure-
ments, in the same plot, we also visualize the evolution of MI
and variance of the corresponding distributions of the random
variables as they would be measured at the detectors. We can
see that they follow a similar periodic pattern. We are inter-
ested in checking the quantum gate performance at the global
peak. The result is skewed by a phase shift between differ-
ent peaks. Therefore, one could either apply a correction gate,
i.e. using a Z-rotation gate to compensate for this shift dif-
ference, or compare the obtained non-diagonal terms with the
desired ones and choose the appropriate global peak where
all conditions are met: the states are maximally entangled, the
amplitudes of the quantum states match the ones of the truth
table of the quantum gate and the non-diagonal terms are the
ones expected. From this point of view, this suggested tech-
nique can optimize the quantum gate to fit the amplitudes of

the quantum states through measurement data, but one would
require some help from simulations to also fit the non-diagonal
terms.

This scheme is visualized in figure 7, where subfigure (a)
demonstrates a Qiskit quantum circuit simulation using the
developed charge-qubit simulation backend. The circuit con-
sists of two quantum registers, two classical registers, a
Hadamard, and a CNOTgate, whilst figure 7(b) circuit consists
of two quantum registers, two classical registers, a Hadamard,
and a SWAP gate. The output of the real parts of the various
quantum states of the densitymatrix are shown for the obtained
optimized parameters.

We can further extend the above idea by applying single
rotation gates before applying the two-qubit/qutrit gate to both
input qubits/qudits. Then, we can feed the outcome to the
two-qubit/qutrit gate the parameters which we wish to optim-
ize. This technique is useful since we can avoid optimizing
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Figure 9. (a) Considered geometry of a two-qubit system. (b) Evolution of probabilities of the various quantum states. (c) Achieved fidelity
after the optimization process for the two-qubit CNOT quantum gate for all the input/output values of the corresponding truth table.

the parameters separately for each initial condition. When
one applies all possible rotations as a combination, a single
optimization process is sufficient, i.e. the task is to match all
the terms of the desired density matrix at the output. Then, the
obtained parameters will be global; in other words, the two-
qubit/qutrit quantum gates for those parameters will operate
for any initial condition(s)/input(s). In this scenario, however,
when the output is not a maximally entangled state, one needs
to determine all parameters numerically and via simulations.
The same optimization algorithm can be used, but the tim-
ing should also now be determined purely numerically, i.e. by
sweeping a predefined time interval with an arbitrarily chosen
time step.

This scheme is visualized in figure 8; subfigure (a) dis-
plays the real and imaginary parts of the Qiskit quantum
circuit simulation using the developed charge-qubit sim-
ulation backend (see inlet). The circuit consists of two
quantum registers, two classical registers, a Rotation-Z gate,

a Rotation-X gate, a Rotation-y gate. The real and ima-
ginary parts of the optimized CNOT gate are visualized in
figure 8(b).

5.4. Optimization taking into account decoherence

Figures 9 and 10 show what level of fidelity can be achieved
after completing the proposed optimization process for the
two-qubit CNOT and SWAP quantum gates taking into
account the qubit decoherence. The decoherence is presented
through the parameter Γ in equation (8). The values of the
input and output of the corresponding truth tables are veri-
fied in table 2. The fidelity of the two-qubit gates as a func-
tion of Γ is presented in figure 11. The fidelity is expected to
be worse in the case of decoherence since the evolution of the
various probabilities of the quantum states is skewed. How-
ever, for a particular value of Γ, one can still optimize the para-
meters to improve the performance. In general, the shorter the
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Figure 10. (a) Considered geometry of a two-qubit system. (b) Evolution of probabilities of the various quantum states. (c) Achieved
fidelity after the optimization process for the two-qubit SWAP quantum gate for all the input/output values of the corresponding truth
table.

Table 2. Parameters corresponding to the two-qubit gates.

Parameter CNOT SWAP

∆00 2.4 E0 13.8 E0

∆01 7.6 E0 0
∆10 2.5 E0 0
∆11 2.5 E0 17.2 E0

th,ij,α 0 1.5 E0

th,ij,β 1.5 E0 1.5 E0

tmax 3.13 ns 5.56 ns

timing of the quantum gate the better the fidelity that can be
achieved.

Additionally, the corresponding optimization process for
the two-qudit CNOT and SWAP quantum gates is shown

in figure 12 and the parameters in table 3. The imple-
mentation of the discussed quantum gates has been imple-
mented and integrated in Qiskit, in charge qubit simulation
backend.
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Figure 11. Fidelity vs decoherence for various values of parameter Γ for: (a) CNOT gate. (b) SWAP gate.

Figure 12. Achieved fidelity after the optimization process for the two-qudit CNOT and SWAP quantum gates for all the input/output
values of the corresponding truth table.
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Table 3. Parameters corresponding to the three-dot-qudit gates.

Parameter CNOT SWAP

∆00 14.0 E0 10.73 E0

∆01 4.0 E0 0
∆02 13.1 E0 0.05 E0

∆10 0 0
∆11 9.0 E0 0
∆12 0 0
∆20 5.0 E0 0.03 E0

∆21 13.8 E0 0
∆22 5.0 E0 18.58 E0

th,ij,α 0 1.5 E0

th,ij,β 1.5 E0 1.5 E0

tmax 6.43 ns 16.37 ns

6. Conclusion

In this study, we investigated the single- and multiple-
qubit/qudit quantum gates for semiconductor position-based
charge qubits in FD-SOI CMOS technology. We proposed an
optimization algorithm based on entanglement entropy and
mutual information for the construction of two-qubit/qudit
quantum gates, and we demonstrated simulation results
employing quantum circuits integrated in IBM’s Qiskit envir-
onment. We also suggested a methodology to connect the
optimization of system parameters through simulated meas-
urement data as it would be obtained from the system detect-
ors with the use of mutual information (MI) and variance (Var)
of the various random variables and their distributions. The
optimization process applies to both qubits and qudits and can
be applied to a wide range of structures/technologies.
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