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Abstract
We provide a brief survey of the most recent results obtained by performing spatially selective
hydrogen irradiation of dilute nitride semiconductors. The striking effects of the formation of
stable N–H complexes in these compounds—coupled to the ultrasharp diffusion profile of H
therein—can be exploited to tailor the structural (lattice constant) and optoelectronic (energy
gap, refractive index, electron effective mass) properties of the material in the growth plane, with
a spatial resolution of a few nm. This can be applied to the fabrication of site-controlled quantum
dots (QDs) and wires, but also to the realization of the optical elements required for the on-chip
manipulation and routing of qubits in fully integrated photonic circuits. The fabricated QDs—
which have shown the ability to emit single photons—can also be deterministically coupled with
photonic crystal microcavities, proving their inherent suitability to act as integrated light sources
in complex nanophotonic devices.

Keywords: dilute nitrides, hydrogen in semiconductors, site-controlled quantum dots,
nanophotonics

(Some figures may appear in colour only in the online journal)

1. Introduction - Hydrogen in dilute nitrides

Dilute nitride semiconductors, such as Ga(AsN), Ga(PN), and
(InGa)(AsN), are III–V compounds containing small, yet
macroscopic (�5%) percentages of nitrogen atoms within
their lattice [1]. Although N has the same valence as the
group-V atom it replaces, its incorporation in the host matrix
results in a plethora of unexpected effects on the optoelec-
tronic properties of this class of materials. While the huge,
downward bowing of the energy gap [2] is probably the most
technologically relevant effect of N incorporation in these
compounds—in Ga(AsN) and in (InGa)(AsN) the ensuing
redshift of the emitted photons allows approaching the 1.3 μm
and 1.55 μm telecommunication windows, respectively—the

strong perturbation exerted by the small, electronegative N
atoms on the host lattice affects virtually every aspect of the
electronic, optical, and structural properties of dilute nitrides,
be it the electron effective mass [3, 4] and gyromagnetic
factor [5], the lattice constant [6], the refractive index [7], or
the electrical resistivity [8]. These striking effects mostly stem
from the perturbation [9, 10] exerted on the band structure of
the host by the strongly localized states associated with the
excess charge surrounding N atoms, pairs and clusters
[11–13].

What is perhaps even more striking, however, is the
possibility to fully reverse these effects by hydrogen irra-
diation [14–21]: the exposure of the material’s surface to a
low-energy (∼100 eV) flux of H ions results, indeed, in the
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formation of N–nH (n�2) complexes [22], which ‘renor-
malize’ the charge distribution around N atoms and neutralize
all N-induced effects. As displayed in figure 1 [23, 24], this
entails the possibility to finely tune the most relevant prop-
erties of these alloys—such as the energy gap (see figure 1(a))
and the electron effective mass (see figure 1(b))—between the
value they have in the untreated sample and that typical of the
N- free material. It is interesting to note that the N–2H
complexes responsible for the passivation of the effects of N
on the electronic properties [25] are remarkably stable; in
Ga(AsN), thermal annealing experiments [6, 22, 26, 27] yield
an activation energy of 1.89 eV [27], which results in the need
to keep the sample at a temperature >300 °C for �4 h in order
to fully recover all the properties of the pristine alloy. This
stability bodes well for the use of H-irradiated dilute nitrides
in electrically driven devices, typically operating at tem-
peratures below 50 °C–80 °C. Also of note, for photonic
devices, is the possibility to locally break the N–H bonds by
light irradiation. While this possibility certainly exists
[28, 29]—and has been recently proposed, in connection with
near-field illumination, as a mean to fabricate site-controlled
nanostructures [30]—the power densities required to

efficiently photodissociate the N–H complexes
(∼1MW cm−2) are several orders of magnitude higher than
those required to properly excite single nanostructures in a
photonic device (10–100W cm−2, see, e.g., [31]).

Most notably, however, the H-induced fine-tuning of the
material’s properties can be performed with very high spatial
resolution, paving the way to the realization of site-controlled
nanostructures and fully integrated optoelectronic devices by
spatially selective hydrogenation. This enticing prospect is
made possible by the peculiar ‘box-like’ shape of the H dif-
fusion profile in dilute nitrides, an example of which is dis-
played in figure 1(c). As shown in the figure (which actually
refers to the diffusion of deuterium, D, commonly employed
in secondary-ion mass-spectrometry measurements in order to
improve the signal-to-background ratio), such profile is
characterized by a very sharp diffusion front (∼5 nm/decade
at a hydrogenation temperature TH=200 °C; ∼10–15 nm/
decade at TH=300 °C). As detailed in [24], this behavior—
related to the formation of stable N–nH complexes [22],
which in turn act as H traps—can be accurately modeled
through an appropriate system of diffusion-reaction equations
(in [24], the black line displayed in figure 1(c) was obtained
by fitting the solution of such equations to the experimental
data). In practical terms, however, such box-like diffusion
profile entails that if a template for H incorporation is defined
on the sample surface prior to H irradiation—for example by
deposition of H-opaque masks [32]—the final H concentra-
tion map in the sample will accurately follow that template,
thus resulting in a controlled spatial modulation of the
material’s properties. In the following two sections, we will
present a brief overview of the main results obtained with this
approach.

2. Strain and refractive-index engineering

While the effects of the interplay between the incorporation of
N and H on the optical and electronic properties of dilute
nitrides have rightfully garnered the most attention, the pre-
sence of these impurities in the host matrix also has important
consequences on the structural properties of these materials.
Indeed, the sizeable, N-induced reduction of the lattice con-
stant of dilute nitrides—which mostly goes as predicted by
the virtual crystal approximation [33]—is deeply affected by
the formation of stable N–nH complexes in the material. In
particular, while the N–2H complex responsible for the
electronic passivation of N [25, 26] is associated with a full
recovery of the lattice parameter of pristine GaAs, the for-
mation of a N–3H complex—with the third H atom more
loosely bound to N (an activation energy of 1.77 eV was
estimated by thermal annealing [27])—is known to be
responsible for an additional lattice expansion [6], resulting in
a switch from tensile to compressive strain in hydrogenated
Ga(AsN)/GaAs epilayers. As a consequence, the possibility
to perform spatially selective hydrogenation can be exploited
to carefully engineer the strain profile of the material (see
figures 2(a), (b)), and, thus, the strain-dependent mixing
between heavy-hole and light-hole valence-band states. In

Figure 1. (a) Photoluminescence (PL) spectra at low temperature of
untreated (red) and H-irradiated (blue) GaAs1−xNx samples
(x=0.11%, H1=3.5×1018 cm−2, H2=4.5×1018 cm−2, and
H3=5.0×1018 cm−2). The topmost dotted-line spectrum is
recorded on a GaAs reference. FE and (e, C) indicate the free exciton
and the free-electron to neutral-carbon recombination bands,
respectively. NC indicates a quasi-continuum of states due to
excitons recombining on various nitrogen complexes. (b) Percentage
variation, Δme/me, of the electron effective mass me in GaAs1−xNx

as a function of x, as measured by magneto-PL [3]. The pink dots
refer to untreated samples; the untreated x=0.11% sample is
highlighted in dark red, while the blue dots refer to the same sample
hydrogenated with different H doses H1, H2, and H3 (see above).
The open circle indicates the GaAs reference sample. The black
squares are the calculated values of Δme/me [23]. (c) Secondary-ion
mass-spectrometry (SIMS) depth profile near the diffusion front of
deuterium in a GaAs1−xNx sample with x=0.7%, which underwent
D irradiation at a temperature TH=200 °C. The solid line is the
convolution of the diffusion profile—calculated as described in [24]
—with the SIMS response function. Parts (a) and (b) were reprinted
with permission from [23]. Copyright 2008 by the American
Physical Society [23]; Part (c) is reprinted with permission from
[24]. Copyright 2009 by the American Physical Society [24].
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turn, this allows for a fine-tuning of the optical properties of
the material: by defining arrays of Ga(AsN)/Ga(AsN):H
wires oriented at different angles [34], in particular, it was
possible to achieve a high degree of linear polarization for the
light emitted by the sample (see figure 2(c)). Furthermore,
polarization-resolved micro-photoluminescence (PL) mea-
surements revealed a non-trivial dependence on the wire
orientation for both the polarization degree—going through a
pronounced minimum for wires oriented along the [100] axis
—and the polarization angle—precisely perpendicular to the
wire when the latter is oriented along high-symmetry crystal
directions, significantly tilted otherwise (see [34] for more
details)—in excellent agreement with the predictions of a

theoretical model based on Finite-Elements calculations. The
possibility to adjust the polarization properties of dilute-
nitride micro/nanostructures via H-assisted strain engineering
might prove very useful when trying to optimize the perfor-
mance of photonic devices based, e.g., on the polarization-
dependent [35] coupling strength between dilute nitride-based
light emitters and a photonic crystal (PhC) microcavity.

Within the context of nanophotonic applications, the
possibility to tune the refractive index, n, of Ga(AsN) by
hydrogen irradiation is obviously of particular importance. As
already noted in the paragraphs above, indeed, the effects of
hydrogenation on the band structure of dilute nitrides
obviously have all-encompassing repercussions on the optical
properties of these materials. While the reversal of the con-
duction-band redshift is clearly the most relevant effect of H
irradiation in the region of the absorption edge—which is
most easily characterized by absorption and/or photo-
luminescence excitation measurements [36, 37]—the forma-
tion of N–H complexes also affects deeply the behavior of
dilute nitride semiconductors in the sub-gap region. As
summarized in figures 3(a), (b), the effects of hydrogenation
in this frequency range can be better appreciated by per-
forming reflectivity measurements, which can then be fitted
(as detailed in [7, 16]) to yield the refractive index of the
material. As displayed in figure 3(b) (which refers to a
100 nm thick GaAs1−xNx/GaAs epilayer with x=2.2%), in

Figure 2. (a) Sketch of the process of spatially selective
hydrogenation. Following the deposition of a H-opaque Ti mask, the
sample is hydrogenated at a temperature TH=300 °C. The resulting
GaAs1−xNx wire is embedded in a (GaAs-like) GaAs1−xNx:H barrier
(the wire is oriented along the [100] axis in the sketch). The effective
N concentration (xeff, corresponding to the concentration of
unpassivated N atoms), displayed as a gray scale, results from finite-
element calculations based on the model of H diffusion introduced in
[24], and corresponds to a hydrogenation time of 10 000 s. (b)
Spatial distribution (in the plane perpendicular to the wire) of the εzz
component of the strain tensor in proximity of a GaAs1−xNx wire
(x=0.8%). (c) Polar plots of the micro-PL intensity (T=10 K) of
single GaAs1−xNx/GaAs1−xNx:H wires of different orientations,
acquired as a function of the angle θ between the polarization vector
and the [100] crystallographic axis. The experimental data points are
plotted as circles, while fitting curves based on Malus’s law are
displayed as solid lines. The values of the degree (ρexp) and angle
(αexp) of linear polarization obtained from the fits are also reported
for each wire orientation. The polar plots are superimposed to false-
color micro-PL images (acquired at a temperature T=80 K; the
contribution of the substrate and of the hydrogenated barriers is
filtered out with an 850 nm longpass filter) of the light emitted by
wire arrays oriented at 45° (black), 0° (blue), and −45° (red) with
respect to the [100] axis of the underlying crystal. Reprinted with
permission from [34]. Copyright 2014 by the American Physical
Society [34].

Figure 3. (a) Comparison of the room-temperature reflectance
spectra of a GaAs reference (black dots) and of a GaAs1−xNx sample
(x=2.2%, thickness 100 nm) before (red squares) and after (blue
triangles) H irradiation. (b) GaAs1−xNx refractive index spectra
before and after H irradiation, as obtained from the best fit to the
reflectance spectra in the subgap region for the same sample shown
in part (a) (the fitting procedure is detailed in [16]). The refractive
index of GaAs is also shown as a reference. (c) Finite-elements
calculation of the time-average of the Poynting vector, 〈S〉,
computed (at a wavelength λ=1.3 μm) for the fundamental mode
of a 500 nm wide, 180 nm thick GaAs1−xNx waveguide (x=2.2%),
surrounded by air (top and bottom) and GaAs1−xNx:H (left and
right). Parts (a) and (b) were reprinted with permission from [16]
John Wiley & Sons. Copyright © 2012 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim.
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the 1.2–1.6 μm spectral region the values of n measured in
hydrogenated Ga(AsN) are systematically lower than those
estimated for the untreated sample; actually, the effects of H
on the refractive index seem to present an ‘overshooting’
phenomenon similar to that observed for the lattice constant,
in the sense that in the H-irradiated material n does not match
that of pure GaAs but dips further below through the entire
wavelength range displayed in figure 3(b). As a result,
untreated and hydrogenated Ga(AsN) are characterized by a
nearly constant, ∼2% refractive-index mismatch over a fairly
broad wavelength interval, comprising both the 1.3 μm and
the 1.55 μm telecommunications windows. As shown in
figure 3(c), such mismatch is sufficient to tightly confine light
within a sub μm-sized region: the finite-elements calculation
displayed in the figure (performed at a wavelength
λ=1.3 μm) is based on a 500 nm-wide Ga(AsN) waveguide
embedded in a Ga(AsN):H barrier (N concentration
x=2.2%), which could be easily fabricated by employing
the same masked-hydrogenation procedure used to realize the
wires investigated in [34] (see also figure 2).

3. Quantum dot (QD) fabrication and integration with
optical microcavities

As detailed in the previous section, the ability to engineer the
refractive index of dilute nitrides with high spatial resolution
might open the way to the realization of novel optical ele-
ments, useful for the manipulation and routing of light in
nanophotonic circuits operating at the sub-wavelength level.
Equally important, within this context, would be the possi-
bility to integrate one or more light emitters at prescribed
points of such photonic circuits. Ideally, the spatial and
spectral position of these emitters should be controllable with
a precision of a few nm; moreover, they should be able to
generate non-classical light states ‘on demand’, i.e., exactly
one photon [38] or one entangled photon pair [39] should be
produced for each excitation pulse. In recent years, semi-
conductor QDs have emerged as particularly promising can-
didates for the realization of non-classical light emitters
[40, 41], owing to their inherent integrability with optoelec-
tronic devices as well as to continuous improvements in terms
of their single-photon purity/indistinguishability and degree
of entanglement [42–44]. The ability to control the position
and emission energy of QDs has also made great strides in the
past decade, due to the joint efforts of several research teams
[31, 45–56]. Recently, the ability to modulate the band gap of
dilute nitrides by spatially selective hydrogenation [32, 34],
which we discussed in section 1, could be scaled down to the
nm level thanks to the deposition of H-opaque masks having
diameters �100 nm (as defined by electron beam litho-
graphy) [57–59]. As summarized in figure 4, this allowed for
the development of an alternative approach to the fabrication
of site-controlled QDs [57, 58], whose position and emission
wavelength can both be controlled with a precision of
∼20 nm. As shown in figure 4(c), these QDs also display the
potential for triggered single-photon emission [58], thus
making them ideal candidates for the deterministic integration

with nanophotonic devices, e.g., PhC microcavities. As
sketched in figure 5(a), indeed, the H-opaque masks
employed for the realization of Ga(AsN)/Ga(AsN):H QDs
can be precisely aligned to a suitable set of reference markers,
which can then be employed to center the position of an
arbitrary photonic device with respect to the fabricated QD—
or QDs. As summarized in figure 5, in [59] this procedure was
applied to the realization of integrated QD-PhC cavity sys-
tems. The energy of the fundamental cavity mode (CM) of a
series of L3 photonic defects (wherein the microcavity is
obtained by removing three holes from an otherwise perfectly
periodic photonic lattice [60]) was lithographically tuned into
resonance with the QD emission by adjusting the lattice
parameter of the PhC, a (see figure 5(b)). After achieving a
coarse spectral matching between the CM and the QD exciton
(X) for a=255 nm, the system was progressively tuned into
resonance by varying the sample temperature T, as displayed
in figure 5(c). This is made possible by the much stronger T
dependence of the energy of the X transition—which follows
the band gap reduction of Ga(AsN) with T [61]—with respect
to the CM, which linearly redshifts (at a rate of ∼20 μeV K−1,
consistent with [62, 63]) due to the variation of the refractive
index of GaAs with T. An interesting outcome of the pro-
gressive reduction of the QD-CM energy detuning with T is

Figure 4. (a) Schematic lateral view of a sample embedding a
GaAs1−xNx/GaAs1−xNx:H quantum dot (QD) fabricated by spatially
selective hydrogenation. The spatial distribution of the concentration
of non-passivated (i.e., not involved in the formation of the N–nH
complexes responsible for N passivation) N atoms, displayed as a
grayscale map, was obtained from Finite-Elements calculations of
the H diffusion process in a masked sample (mask size 80 nm,
hydrogenation temperature TH=190 °C, hydrogenation time
tH=500 s), on the grounds of the model introduced in [24]. (b)
MicroPL spectrum of a single GaAs1−xNx/GaAs1−xNx:H QD. (c)
Normalized second-order correlation function, g(2)(τ), for the
excitonic emission of the QD whose micro-PL spectrum is displayed
in (b). The amplitude of the central peak is well below the threshold
value of 0.5, which points out to the emission of single photons by
the QD. (d) Micro-PL image of a QD array, acquired by using a long
wavelength pass filter to reject the GaAs emission. Reprinted with
permission from [58]. Copyright 2014 American Chemical
Society [58].

4

Semicond. Sci. Technol. 33 (2018) 053001 M Felici et al



reported in figure 5(d), which displays the temperature
dependence of the micro-PL intensity of the QD and CM
peak. As T is increased from 10 to 50 K, the PL signal shows
the intensity drop-off usually expected in semiconducting
samples, chiefly due to the thermal activation of non-radiative
recombination channels [64]. For T>50 K, however, a large
increase in the PL intensity can be observed as the X line is
moved into resonance with the CM. This is consistent with
the ∼10-fold enhancement of the radiative recombination rate
(the Purcell effect [65]) that was measured for this system (to
be reported elsewhere [66]).

4. Outlook and conclusions

In summary, the possibility to modulate the optoelectronic
properties of dilute nitride semiconductors by spatially
selective hydrogenation might provide an ideal platform for
the fabrication of fully integrated photonic circuits, embed-
ding all the elements required for the generation, manipula-
tion, and detection of non-classical light states within
complex quantum computing schemes. In particular, the
ability to control the refractive index of the material with sub-
wavelength resolution (see section 2) will allow us to define

Figure 5. (a) Sketch of the steps leading to the deterministic integration of a single Ga(AsN)/Ga(AsN):H QD with a photonic crystal (PhC)
cavity. First of all, an array of H-opaque masks is aligned to a set of metallic (chromium-gold) markers. Both the masks and the markers are
defined by electron beam lithography. Second, H irradiation results in the formation of a site-controlled Ga(AsN)/Ga(AsN):H QD
underneath each mask. Finally, a PhC cavity is fabricated around each QD. The reference system defined by the metallic markers ensures a
near perfect (∼20 nm accuracy) alignment between the QD and the center of the PhC cavity. (b) Lithographic tuning of the cavity mode
(CM) energy of a PhC L3 defect cavity by varying the value of the pitch, a, of the photonic lattice. The r/a ratio (where r is the radius of each
PhC hole) is kept constant (r/a=0.29). As expected, the dependence of the CM energy on a is ∼ linear, with E

a

d
d

CM ∼3.5 meV nm−1. (c)

Micro-photoluminescence (PL) spectra of an integrated QD-PhC cavity device, showing the temperature-dependent CM-QD detuning. The
exciton transition of the QD is labeled as X. (d) Temperature dependence of the integrated PL intensity of the CM (black dots) and of the X
peak (red dots). The intensity increase observed for temperatures above ∼50 K is a result of an increased QD-PhC cavity coupling (i.e., of the
Purcell effect), due to the QD coming into resonance with the CM. Parts (b), (c), and (d) were reprinted from [59]. Copyright 2017 with
permission from Elsevier.
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all the optical elements—such as waveguides, beam splitters
and phase shifters [67]—required for the manipulation of
photonic qubits. The site-controlled QDs fabricated by tai-
loring the energy gap of dilute nitrides in their growth plane,
on the other hand, are very promising candidates for the on-
chip generation of non-classical (e.g., single and entangled)
photons (as discussed in section 3). The latter claim is further
strengthened by recent progresses made in the realization
[68, 69] and H irradiation [70, 71] of site-controlled (InGa)
(AsN) nanostructures emitting in the 1.3 μm tele-
communication window, which, as shown in figure 3, is well
within the operating range of Ga(AsN)-based optical ele-
ments. The final piece of the puzzle, i.e., the on-chip detection
of photonic qubits, will most likely rely on superconducting-
nanowire single-photon detectors [72]. These detectors,
which are characterized by high efficiencies, low dark-count
rates, and ultra-fast response times, have been recently
demonstrated to be fully compatible with GaAs-based pho-
tonic devices [73, 74] and are thus ideally suited for the
integration with nanophotonic circuits relying on the concepts
discussed in this work.
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