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Abstract
Micro/nanomechanical resonators have been extensively studied both for device applications,
such as high-performance sensors and high-frequency devices, and for fundamental science,
such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor
heterostructures include improved mechanical properties through strain engineering, highly
controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and
hybridization with quantum low-dimensional structures. This article reviews our recent
activities, as well as those of other groups, on the physics and applications of mechanical
resonators fabricated using GaAs-based heterostructures.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Mechanical resonators are three-dimensional structures that
implement the dynamics of harmonic oscillators. They have
traditionally been used in many apparatuses, such as pendu-
lum clocks and musical instruments. Recent advances in
microfabrication technology have made it possible to fabri-
cate ultra-small mechanical resonators. This has led to the
development of a new category of devices called micro or
nanomechanical resonators [1–4], which are now used in
practical, commercially available devices such as cantilevers
for scanning probe microscopes and microwave filters as well
as the oscillators for mobile phone applications [5, 6].

Owing to these technological developments, a new field
of science has emerged to explore the fundamental physics of
minute mechanical resonators. Micro/nanomechanical reso-
nators are advantageous in these studies for their high-

frequency operation and sharp resonance characteristics. The
resonance frequency of their fundamental mode

w pº( )f 20 0 reaches the gigahertz range [7–13], and the
quality factor (Q) exceeds one million [14–17] although these
two performances have not yet been simultaneously demon-
strated. Because of these excellent resonance characteristics,
mechanical resonators in the quantum regime have become a
highly focused target of research in fundamental physics
[18–22]. When the thermal energy becomes smaller than the
energy quantum of a harmonic oscillator, the quantum ground
state of a mechanical resonator is achieved. The condition at
the base temperature of a dilution refrigerator (∼50 mK) is
f0>1 GHz, which can be satisfied using submicron-long
beam resonators.

Micro/nanomechanical resonators exhibit significant
nonlinear dynamics [3, 23, 24]. A doubly clamped beam
resonator naturally shows the mechanical nonlinearity
induced by oscillation-induced beam tension. For a single-
mode system, the nonlinearity leads to bi-stable oscillation,
which is applicable to mechanical memory [25–32] and
bifurcation detectors [33]. The nonlinearity in a multi-mode
system causes their intermodal coupling [34–41]. The
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difference or sum of two mode frequencies applied as the
periodic parametric modulation results in frequency conver-
sion [42], two-mode squeezing [43], and phonon lasing
operation [44].

High-Q mechanical resonators are practically important
in applications to physical sensors [45, 46]. Owing to their
extreme sensitivity to external forces, they have been used not
only in practical devices, such as high-performance biomo-
lecular [47] and magnetic sensors [48] but also in the study of
fundamental science. For the latter, they serve as ‘probes’ of
microscopic phenomena emerging in nanoscale structures,
such as quantum low-dimensional structures and spintronic
systems. As a technique that complements the conventional
electric and optical characterization, the mechanical probe can
be used to investigate different profiles of microscopic phe-
nomena. Examples using semiconductor quantum structures
will be briefly introduced in section 5.

For fabricating mechanical resonators, compound semi-
conductors have several advantages over other material sys-
tems. One is that high-quality and single-crystalline
multilayer heterostructures can be formed by using state-of-
the-art crystal growth techniques like molecular beam epitaxy
(MBE) and metal organic vapor phase epitaxy (MOVPE).
The film uniformity is on the order of monolayer thickness,
and high-performance mechanical structures can be easily
fabricated using standard micro/nanofabrication techniques.
In addition, the film strain control by using strained layer
heterostructures enables the fabrication of novel nanos-
tructures [49–51] and can drastically improve the resonance
characteristics as well [52, 53].

Another advantage is integration with optical and elec-
tronic devices. Compound semiconductors are commonly
used to fabricate optical devices, such as semiconductor lasers
and detectors, and electronic ones, such as high-mobility
transistors and resonant tunneling diodes. Their hybrid devi-
ces allow novel application such as mechanically controlled
semiconductor lasers [54] and on-chip amplified force sen-
sors [55, 56].

A third is piezoelectricity, which can be utilized for high-
performance stress/strain-voltage transduction. As shown in
section 2.3, ideal electrical control of parametric resonators
has been demonstrated using piezoelectric strain-voltage
transduction [27, 57–60]. The piezoelectricity can also be
utilized for transduction between optical signal and mechan-
ical motion, which is important in carrier-mediated opto-
mechanical systems [61–63].

Last but not least is integration with quantum low-
dimensional structures. Mechanical resonators can be coupled
to quantum structures through strain effects, i.e., piezo-
electricity and deformation potential. The quantum mechan-
ical properties of photons, carriers, and spins can be
mechanically characterized and controlled through the strain-
mediated coupling.

In this article, studies using GaAs-based micro/nano-
mechanical resonators are overviewed. This review paper is
organized as follows. The next section describes funda-
mentals of GaAs-based mechanical resonators, including their
resonance characteristics, fabrication processes, and the

piezoelectric properties. Section 3 details the application of
GaAs/AlGaAs heterostructures to electromechanical para-
metric resonators. The fundamental theory and experimental
demonstrations are both examined in detail. Section 4
describes the carrier-mediated optomechanical properties. In a
way similar to cavity optomechanics, laser cooling and
amplification of thermal motion are both demonstrated
through the back action force induced by the generated
electron-hole pairs, i.e., excitions. Section 5 covers the
hybridization with quantum low-dimensional electron sys-
tems. The interaction of mechanical motion with a two-
dimensional (2D) electron system in the quantum Hall regime
as well as with a zero-dimensional (0D) electron system in a
quantum dot (QD) is described.

2. Fundamental properties of GaAs-based
cantilevers and beam resonators

2.1. Eigenfrequency and eigenfunction of beam resonators

In this section, we describe the dynamics of mechanical
resonators using a standard theory for suspended structures.
The flexural motion of a suspended one-dimensional (1D)
beam structure is described by the Euler–Bernoulli equation
[1, 3, 64]
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where ( )z x t, is the displacement of the beam at longitudinal
position x and time t, E is the Young’s modulus, d is beam
thickness, and r is density. For an infinitely long beam
(figure 1), the equation has the following solution of freely
propagating waves:

w d= - -( ) ( ) ( )z x t z t kx, cos 20

w r= ( )k d E 12 , 32

Here, d is the phase factor, k is the wavenumber, w is the
angular frequency, and z0 is the arbitral real number ampl-
itude. Equation (3) gives the dispersion relation of an elastic
transverse wave propagating through this infinitely long
1D beam.

For a mechanical resonator, a boundary condition applied
at the edge of the beam leads to the discrete eigenfrequency.
Doubly clamped and cantilever beams are two typical
mechanical resonators (figure 2). Hereafter, we simply refer to
them as a beam and a cantilever, respectively.

Figure 1. Schematic drawing of an infinitely long beam with
thickness d. The travelling-wave solution is given by equation (2)
with the dispersion relation (3).

2
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The conditions for a beam and cantilever with length l
are given by

= ¢ = = ¢ =( ) ( ) ( ) ( ) ( ) ( )z t z t z l t z l t0, 0, , , 0 beam . 4

= ¢ =  = ¢¢¢
=

( ) ( ) ( ) ( )
( ) ( )

z t z t z l t z l t0, 0, , ,
0 cantilever . 5

Here, the prime means the derivative with respect to the
coordinate variable x. Condition (5) is satisfied because no
force and bending moment are applied at the unclamped edge
[1, 3]. The mth eigenfunction (i.e., the waveform of the
vibrational mode) ( )u xm and eigenwavenumber km are then
given by

= + +
+

( ) ( ) ( )
( ) ( ) ( )

u x A k x B k x
C k x D k x

sin cos
sinh cosh , 6

m m m m m

m m m m
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k l
4.730, 7.853, 10.996, beam .

1.875, 4.712, 7.854, cantilever . 7
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The ratios of coefficients Am∼Dm are also determined by the
boundary condition [1, 3]. The mth eigenfrequency fm is then
given by

w
p

l
p r

º = ( )f
d

l

E

2 2 12
. 8m

m m
2

2

Equation (7) shows that the fundamental (m=1) eigen-
frequency of a beam is higher than a cantilever’s by more than
a factor of 6. It is proportional to beam thickness d while
inversely proportional to the length squared l ,2 so that the
frequency linearly increases with uniformly decreasing the
structure size. The calculated fundamental eigenfrequencies
are shown for GaAs in table 1. The frequency can be in the
gigahertz range for submicrometer-long beam structures [18].

The mth mode eigenfunction um(x) satisfies boundary
conditions (4) or (5) and the eigenequation

rw
=

( ) ( ) ( )d u x

dx Ed
u x

12
. 9m m

m

4

4

2

2

We can choose dimensionless eigenfunctions um(x) that
satisfy the orthonormal condition.

ò d=( ) ( ) ( )u x u x dx l 10
l

m n mn
0

Figure 3 shows the first three vibrational mode shapes,
u1, u2, and u3, of a beam resonator. We can expand general
waveform z(x, t) using these eigenfunctions as

å=
=

¥

( ) ( ) ( ) ( )z x t q t u x, 11
m

m m
1

Using orthonormal condition (10), equation (1) leads to
the equation of motion for a harmonic oscillator with mode
displacement qm(t):

w= -̈ ( ) ( ) ( )q t q t 12m m m
2

Here, the over-dot is used for the derivative with respect to
time t. The beam resonator can be regarded as an ensemble of
independent (non-interacting) harmonic oscillators. This
result is altered when the effect of beam tension is taken into
account, where the orthogonal normal modes are mixed by
external or vibration-induced tension. This is an important
property for describing the nonlinearity and mode-mode
coupling as shown in section 3.

In real systems, the equation of motion is modified by
taking into account the effect of energy dissipation. When the
system has damping rate g wº Qm m m (whereQm is the mode

Figure 2. Schematic drawings of (a) a cantilever beam and (b) a doubly clamped beam with length l and thickness d. In the 1D Euler–
Bernoulli beam theory, the resonance frequency does not depend on the beam width, which is assumed to be sufficiently larger than the
thickness.

Table 1. Calculated fundamental resonance frequencies of GaAs
beams and cantilevers with aspect ratio l/d=20.

Length (l) 100 μm 3 μm 100 nm

w p21 (beam) 2.06 MHz 68.7 MHz 2.06 GHz
w kB1 (beam) 99 μK 3.3 mK 99 mK
w p21 (cantilever) 0.32 MHz 10.8 MHz 0.32 GHz
w kB1 (cantilever) 15.5 μK 0.52 mK 15.5 mK

Figure 3. Calculated lowest three mode functions for a beam
resonator.
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quality factor) and is driven by external force º( ) ( )F t mf tm m
with beam mass rºm lwd (where w is the beam width), the
equation of motion becomes

g w= - - +̈ ( ) ( ) ( ) ( ) ( )q t q t q t f t . 13m m m m m m
2

The solution for periodic force w=( ) ( )f t g tcosm 0 can
be easily obtained as

c w w d d c w= + =( ) ∣ ( )∣ ( ) ( ) ( )q t g tcos , arg , 14m m m0

where c w( )m is the mechanical susceptibility defined as

c w w w g wº - +( ) ( ) ( )i1 . 15m m m
2 2

The vibration amplitude squared c w∣ ( )∣g ,m0
2 2 which is pro-

portional to the vibration energy, shows the well-known
Lorentzian frequency dependence with the center frequency
of w p2m and the full width at half maximum (FWHM) of
g p w p= Q2 2m m m as shown in figure 4.

2.2. Structure fabrication

GaAs-based mechanical resonators are fabricated by utilizing
standard micromachining techniques with selective etching.
Thin-film crystal growth methods, such as MBE and
MOVPE, are used to prepare the layer structures, where a
micrometer-thick sacrificial layer is grown under the ‘reso-
nator’ layer. After the lateral structures have been defined
with the electrodes prepared, the sacrificial layer is selectively
etched to release the structure from the substrate (figure 5). As
mentioned in section 1, one of the largest advantages of using
compound semiconductor as the host material of micro/
nanomechanical structures is hybridization with electronic
and optical devices. The selective etching can be easily per-
formed to release the mechanical structures that are also
integrated with these devices. Examples of hybrid structures
are shown in figure 6.

For the GaAs/AlGaAs system, a high-Al-composition
(x>0.6) AlxGa1−xAs layer is used as the sacrificial layer. A
solution of hydrofluoric (HF) acid has high etching selectivity
for releasing the mechanical structures [27, 54]. To avoid
degradation due to the HF etching, chromium gold (CrAu) is
employed for the deposition of Schottky contacts. The

sacrificial layer etching for other III-V compound semi-
conductors includes XeF2 dry etching for GaN/AlGaN on Si
substrates [59, 71], wet etching using sulfuric acid [72] and
HF [73] for InP-based structures, and ammonia wet etching
for InAs/AlGaSb on GaAs substrate [66, 74, 75].

As mentioned in section 1, the epitaxial tension can
greatly improve the mechanical resonance characteristics
[52, 53, 76, 77]. The improvement was first demonstrated
using CVD-grown amorphous SiN films [76]. The concept
was applied to single crystalline compound semiconductor
systems: GaAs/In(Al)GaAs [52], GaNAs/GaAs [53], and
InGaP/GaAs [77]. In all cases, the tension applied to the
beam via the epitaxial strain increased the resonance fre-
quency. Furthermore, the Q factor becomes orders of mag-
nitude higher than for unstrained film.

The bottom-up process of semiconductor nanostructures
is also employed for fabricating mechanical resonators, and
semiconductor nanowires are especially promising nanos-
tructures [78–85]. In contrast to the optical motion detection
[79–85], a precise nanowire alignment process is needed in
the fabrication of nanowire electromechanical devices
[78, 83], where the motion can be electrically detected.

2.3. Piezoelectric transduction and measurement setup.

The piezoelectricity of compound semiconductors is also
advantageous in these material systems. Not only electro-
mechanical but also optomechanical transduction becomes
possible through piezoelectricity with the very high crystal-
line quality of mechanical structures maintained. It is well
known that the uniaxial piezoelectricity is maximized along
the (111) axis in zinc blend crystal structures, so that a layer
grown on (111)-oriented substrate is useful for conventional
devices such as bulk acoustic resonators [86, 87]. However,
the piezoelectric transduction between two orthogonal direc-
tions, [001] and [110], can be accessed for layer structures
grown on (001) substrate through the d31 piezoelectric
component [27, 57]. Figure 7 schematically shows the typical
piezoelectric voltage-stress transduction in GaAs. By pre-
paring two parallel-plate electrodes and applying a voltage in
the surface normal direction, stress along the [110] direction
is generated. Because the GaAs and AlGaAs are elastically
and piezoelectrically isotropic materials, stress can be gen-
erated also in the [−110] direction with the opposite polarity.
This transduction scheme can be applied to fabricate GaAs/
AlGaAs piezoelectric mechanical resonators as shown in
figure 8. Surface and back-surface electrodes are formed by a
top Schottky metal layer and a Si-doped conductive n-GaAs
layer, respectively. To enhance their insulation, a layer of
AlxGa1−xAs is sandwiched between them, where the com-
position ratio x is kept lower than 0.3 to avoid damage by the
following HF etching.

The voltage-induced piezoelectric stress generates a
bending moment in the beam structures, leading to the
actuation of flexural motion. The reversed transduction, i.e.,
the generation of motion-induced piezovoltage, is measured
between the two electrodes, allowing the electrical detection
of the mechanical motion. In addition, applying a voltage

Figure 4. Calculated c w∣ ( )∣ ,m
2 which is proportional to the

amplitude squared and the vibration energy, and phase d as a
function of drive frequency. The ratio of the resonance frequency to
the FWHM gives the quality factor Qm.

4

Semicond. Sci. Technol. 32 (2017) 103003 Topical Review



between the electrodes induces beam tension and modifies the
resonance frequency. This third function is important for
applying this structure to parametric resonators [27] (the
details will be quantitatively explained in the next section).
Therefore, this simple structure has three fundamental func-
tions: actuation, detection, and frequency tuning of mechan-
ical resonance. Figure 9(b) shows an example of the

resonance characteristics of a GaAs/AlGaAs beam resonator
[figure 9(a)] as a function of gate voltage. The actuation and
detection are both performed by using the piezoelectric
transduction. The linear shift of the resonance frequency
induced by the constant gate voltage is clearly confirmed.

The displacement sensitivity in this device is in the range
of picometers even at cryogenic temperatures if we simply

Figure 5. Fabrication process for a GaAs/AlGaAs piezoresistive cantilver used in [63]. (a) The electromechanically active structure of Si-
doped Al0.25Ga0.75As (light blue) and GaAs (orange) modulation-doped heterostructure are grown on the sacrificial layer of Al0.65Ga0.35As
(deep blue). (b) AuGeNi Ohmic contact electrodes (yellow) are deposited, followed by the metallization annealing process. (c) The
cantilever-shaped resist pattern (brown) is defined by photolithography. (d) Wet or dry etching is performed down to the sacrificial layer. (e)
The sacrificial layer is selectively etched using a solution of hydrofluoric acid to release the cantilever. (f) Finally, the resist pattern is
removed. The cantilever vibration is electrically measurable as the resistance change between two Ohmic electrodes [63].

Figure 6. Examples of fabricated semiconductor electromechanical
resonators integrated with quantum low-dimensional structures. (a)
Quasi-one-dimensional InAs channel [66], (b) high mobility 2D
GaAs/AlGaAs heterostructure Hall bar [67, 68] (Copyright 2007
The Japan Society of Applied Physics), and (c) GaAs/AlGaAs QD
[69, 70] (reprinted from Appl. Phys. Lett. 103, 192105 with the
permission of AIP Publishing).

Figure 7. Schematic drawing of piezoelectric voltage-stress trans-
duction. When the electric field is applied along the [001] direction,
Ga and As atoms are forced downward and upward, respectively.
Due to the diamond-like bond alignments in a zinc blende structure,
the resultant stress is applied in the [110] direction.

5
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measure the generated piezovoltage with a commercial
amplifier. This sensitivity can be improved by fabricating an
on-chip amplifier. One example is given by integrating a field
effect transistor into a mechanical resonator. The first report
was by Beck et al in 1994 [89], followed by its cryogenic
application [90]. Then a smaller structure with a displacement
sensitivity of 9 pmHz−1/2 at room temperature was reported
[91]. The integration of a semiconductor quantum point
contact (QPC) or QD further enhances the sensitivity at
cryogenic temperatures [69, 70, 92–94].

Laser interferometers are widely used to detect motion
for various types of mechanical resonators. The sensitivity is
generally higher than the piezoelectric transduction, although
the detection in a cryogenic environment requires precisely
aligned optical access. In some studies introduced in this
review paper, an optical interferometer was also employed,
especially for the detection of thermal motion.

In the field of cavity optomechanics, the coupling of
mechanical resonators with an optical cavity greatly enhances
the detection sensitivity. The scheme also allows parametric
coupling between light and mechanical oscillation, which
makes it possible to realize optomechanical cooling. This
topic is out of the scope of this article, but comprehensive
review articles have already been published [19, 95, 96].
Cavity optomechanics is also studied using GaAs-based
mechanical resonators [12,97–99].

3. Parametric electromechanical resonators

In this section, parametric electromechanical resonators—one
of the most important applications of GaAs-based micro-
mechanical resonators—are described in detail. A parametric
resonator is a harmonic oscillator where the oscillations are
driven by periodically modulating some parameter of the
system, such as spring and coupling constants, at a different
frequency from the resonator eigenfrequency. Parametric
resonators have been demonstrated in many physical systems,
from electronic circuits in radio and microwave frequencies to
optical cavities and one of its most important applications is a
very low noise amplifier. For example, it was used in a radio
telescope used in Project Ozma started in 1960, and recently
superconducting resonators are used for the parametric

amplifiers with quantum-limited performance [100]. As
described in 3.3, parametric resonators can be utilized in
many other purposes from quantum physics to signal pro-
cessors, such as squeezed state generation and frequency
conversion.

Similar functions of parametric resonators can be
imported in mechanical domains. Mechanical parametric
resonators have been constructed by utilizing several trans-
duction schemes such as magnetic force gradient [101],
electrostatic force [102–104], laser-induced thermal expan-
sion [105], and dielectric dipole force [106]. The advantage of
piezoelectric GaAs-based resonators is their built-in nature,
which allows highly stable and efficient operation, as also
reported with GaN-based material systems [107].

In parametric resonators, the resonance frequency (or any
coefficient in the equations of motion in general [108]) is
periodically modulated by external means. In GaAs/AlGaAs-
based resonators, the frequency modulation is induced by
piezoelectric stress generated by the applied voltage as
described in the previous section. For example in the device
shown in figure 9(a), the frequency can be periodically
modulated by applying AC voltage on one of the gate elec-
trodes. There are two operational modes of parametric reso-
nators. One is ‘parametric amplification’, where an externally
driven vibration, called a ‘signal’, is amplified by a ‘pump’,
which is an externally applied periodic resonance frequency
modulation at a frequency different from that of the signal.
The other operation mode is parametric oscillation, where the
gain of the parametric amplification becomes infinity and the
self-sustained oscillation is activated without applying the
signal. Parametric amplification can be also categorized into
two types (figure 10). One is degenerate parametric amplifi-
cation, where the pump has twice the signal frequency. In this
case, the amplified vibration has the same frequency as the
signal. The other is non-degenerate parametric amplification.
In this case, a mechanical vibration with a different frequency
from the signal, called an idler, is newly generated. Therefore
non-degenerate parametric amplification has a frequency
conversion function. In the following sections, the theoretical
formulation for parametric resonators and the implementation
by GaAs/AlGaAs parametric resonators are described in
detail.

3.1. Tension-induced frequency modulation

First, the tension-induced frequency modulation is theoreti-
cally described in single-beam resonators [109, 110]. The
Hamiltonian formalism is useful for that purpose because the
effect of tension can be easily introduced as shown in
appendix A. Using mth-mode displacement ( )q tm defined in
equation (11) and its conjugate momentum = ( ) ( )p t mq tm m
with total beam mass rºm lwd (where w is the beam width),
the Hamiltonian is expressed as (see appendix A)

å
w

= +
⎛
⎝⎜

⎞
⎠⎟ ( )H

p

m

m q

2 2
. 16

m

m m m
0

2 2 2

The system can be regarded as an ensemble of independent
harmonic oscillators, as already mentioned in section 2. We

Figure 8. Schematic drawing of a GaAs/AlGaAs piezoelectric
resonator. The piezoelectric AlGaAs barrier layer is sandwiched
between the top Au Schottky gate and conductive n-GaAs layer. The
voltage applied between them induces stress along the beam
direction (white arrows). Because this stress is applied only on the
near-surface region of a GaAs beam, it induces a bending moment to
drive the flexural mechanical motion.
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discuss here the case of doubly clamped beam resonators
because the parametric nonlinear interaction can be naturally
introduced by the beam tension. Tension t is decomposed
into two parts: externally applied tension and that induced by
beam vibration. External tension t ( )text can be electrically
applied by piezoelectric effects in our GaAs/AlGaAs-based
devices, as shown in the previous section. The tension is
proportional to the applied voltage as t =( ) ( )t cV t ,ext g where
c is the piezoelectric coupling constant and Vg(t) is the applied
gate voltage, so that the tension can be precisely controlled by
electrical means. If we take into account only the tension
externally applied, the lowest order contribution is given by

åt
= + ( ) ( ) ( )H H

l
T q t q t

2
. 17ext

m n
mn m n0

,

When only the nth mode is taken into account, the Hamil-
tonian is given by

w t
= +

+( )
( )H

p

m

m T l q

2 2
. 18n

n n ext nn n
2 2 2

This equation shows that the resonance frequency is modified
as

w w
t
w

w
w

t + ~ + ( )T

lm

T

lm
1

2
19n n

ext nn

n
n

nn

n
ext2

by the applied tension. In GaAs-based parametric resonators,
the gate voltage induces the tension, leading to the modula-
tion of the resonance frequency. Equation (17) also shows
that the external tension can induce linear coupling between
different modes. For example, the Hamiltonian of modes n

and m is given by

w w

t

= + + +
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T q q
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where the last term gives the intermodal coupling [111]. This
Hamiltonian is important for describing intermodal para-
metric coupling, as shown in section 3.4. Intermodal coupling
in other multimode systems has also been reported [112, 113].
The parametrically coupled two mode system can be similarly
constructed using paired resonators as shown in appendix B.

3.2. Degenerate parametric amplification and resonance

We then consider the case where the tension is periodically
modulated at frequency w ,p i.e., t t w=( )t tsin .ext p0 The
periodic modulation is called the pump, being analogous to
nonlinear optics, and wp is called the pump frequency. We
then first consider the case when wp is twice the mode
eigenfrequency corresponding to degenerate parametric
amplification [102]. The single-mode Hamiltonian (18) can be
simplified using coefficient t wL = T mlnn0 0

2 as

w
w= + + L[ ( )] ( )H

p

m

m
t q

2 2
1 sin 2 , 21

2
0

2

0
2

where w0 is the eigenfrequency and the mode suffix was
omitted for simplicity. From this Hamiltonian, by taking into
account the finite damping force and applying an external
driving force, w d= +( ) ( )F t mg tcos ,0 0 the equation of

Figure 9. (a) Schematic drawing of a fabricated GaAs/AlGaAs piezoelectric resonator as well as the experimental setup for the measurement
of resonance characteristics. Instead of the layer structure shown in figure 8, a modulation doped heterostrucrure composed of Si-doped
n-AlGaAs (green) and undoped GaAs (blue) is used in this experiment. The piezoelectric transduction can be made using the top Au contact
(yellow) and 2D electron system (2DES: red) as two parallel-plate electrodes. The AC voltage applied on Gate 1 drives the mechanical
motion, which is detected through the voltage generated on Gate 2 measured by a lock-in amplifier. (b) Resonance characteristics measured
as a function of the DC voltage (VDC) applied to Gate 3. The z-axis shows the vibration amplitude. The linear shift in the resonance frequency
induced by the piezoelectric tension is clearly confirmed [27]. Frequency saturation is observed with gate voltage lower than −0.4 V
corresponding to the electron depletion in the conductive layer, showing that the piezoelectric strain between the gate and 2DES is
responsible for the frequency shift. In contrast to the study reported in [88], we used separate gate electrodes for actuation and frequency
modulation so that the mechanical oscillation can be induced even when the 2DES is fully depleted by Gate 3. The measurement was
performed at 2.5 K in vacuum.
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motion is given by

w
w w
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where Q is the quality factor. This equation is called the
forced Mathieu equation. To find the time evolution of q(t),
we use a rotating frame approximation to introduce slowly
varying amplitudes c(t) and s(t) as

w w= +( ) ( ) ( ) ( ) ( ) ( )q t c t t s t tcos sin . 230 0

When g wL < = -Q ,0
1 equation of motion (22) can be then

simplified as
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Therefore, the damping rate g is effectively reduced by w L0

for the cosine quadrature, c(t), whilst it is effectively
increased by the same amount for the sine quadrature, s(t).
This is an important property of degenerated parametric

amplification, where the cosine quadrature is amplified while
the sine quadrature is damped (figure 11).

The steady state solution is easily calculated by assuming
that c and s are time-independent. The vibration amplitude
á ñ = +( )q t c s 22 2 2 normalized by that with no pump,
L = 0, gives the amplification gain expressed as

d
w g

d
w g
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2
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2
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2
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It has strong driving-phase (δ) dependence: the maximum
gain is obtained at d p= 2 whilst the minimum gain (i.e.
maximum damping) is at d = 0. The experimental results
using a GaAs-based piezoelectric resonator are shown in
figure 12 with the theoretical gain curve [equation (25)] [114].

The amplification gain for non-zero phase difference
d ¹ 0 becomes infinite when the parametric excitation
approaches the threshold, g wL  L º .th 0 If the excitation
becomes stronger than the threshold, the self-sustained
oscillation is induced even without any harmonic driving, (i.e.

=g 00 ) [3, 23, 27, 115]. This regime is called ‘parametric
oscillation’ and is also shown in figure 12(c). The oscillation
amplitude in this case is limited not by energy dissipation as
in the case of harmonic driving because the effective energy
dissipation becomes negative. Instead, the nonlinearity
becomes important and damps the vibration amplitude
[23, 115].

The degenerate parametric oscillation can be described
using the concept of broken discrete time translational sym-
metry. When =g 0,0 equation (22) has a discrete time
translational symmetry with the period p w .0 In comparison,
the solution corresponding to the parametric oscillation has
the frequency w ,0 which has the doubled period p w2 ,0

breaking the discrete symmetry. Due to the broken symmetry,
two independent solutions with π phase difference emerge.
This fact causes a bistability in the oscillation states, which is
applicable for binary signal processing [27, 115, 116].

Figure 10. Schematic illustration of the two parametric amplification
schemes. In both schemes, periodic force F(t) (at ωs) is applied
externally to harmonically drive the resonator at around its resonance
frequency to induce signal vibration. The vibration is then
amplified/frequency-converted by parametric drive (pump), which is
the sinusoidal modulation at ωp of the force constant k from its
average k0. (a) In degenerate parametric amplification, force constant
k is modulated at twice the harmonic drive frequency ωp=2ωs,
leading to the amplification or damping of harmonically driven
signal vibration qs(t) as described in 3.2. (b) In non-degenerate
parametric amplification, the modulation can be made at an arbitrary
frequency ωp and the new frequency of vibration emerges at the sum
or difference frequency w w w= ∣ ∣.i s p To efficiently detect the
‘idler’ vibration qi(t), both the signal and idler should be within the
bandwidth of some resonance modes.

Figure 11. Calculated free decay curves (i.e. in the case =g 00 ) of
mechanical oscillation with parametric amplification. The sine
component (blue line) decays more rapidly while the cosine
component (red line) decays more slowly than in the case without
the pump, whose amplitude envelope is shown by green dashed
lines. When the parametric driving L becomes larger than the native
damping rate g w ,0 the cosine component develops to infinity,
corresponding to the parametric oscillation.
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3.3. Application of degenerate parametric amplification and
oscillation.

One of the most impressive applications of parametric
amplification is noise squeezing [102, 117, 118]. As seen in
the previous subsection, two orthogonal vibration amplitudes,
c(t) and s(t), have gain with opposite signs. When c(t) is
amplified (damped), s(t) is damped (amplified). This is also
the case for the amplification of quantum noise, i.e., the zero-
point fluctuation. Using the parametric amplification, the
quantum noise of one quadrature can be suppressed. Noise
squeezing for mechanical resonators was first demonstrated
for thermal noise by D Rugar [96]. Recently, quantum
squeezing was demonstrated using microwave frequency
radiation pressure [119, 120].

As a practical application of parametric amplification,
atomic force microscopy with improved detection sensitivity
was demonstrated [121]. Parametric amplification can
improve the resonance linewidth of a mechanical cantilever,
and the force sensitivity can be improved when the noise is
dominated by that in external electronics. In contrast, in the
cases where thermal vibration noise limits the sensitivity, both
the signal and noise are amplified and the force sensitivity
shows no improvement by parametric amplification.

Using the degenerate parametric oscillation of on-chip
GaAs-based mechanical resonators, a parametron logic circuit
has been proposed and memory operation [27] as well as a
shift resistor [116] have been demonstrated. There are two
oscillation phases allowed in parametric resonance at around
the mechanical eigenfrequency. ‘Parametron’ computation
uses the two oscillation phase states assigned to binary
information ‘0’ and ‘1’. In the 1950’s, computation systems
with several thousand electrical LC resonators were

constructed and used for practical calculations [115]. The
same concept of binary logic operation was demonstrated
using mechanical parametric resonators [27, 116]. The use of
coupled GaAs cantilevers for mechanical logic elements was
also proposed [57].

3.4. Quantum mechanical description of intermodal parametric
coupling

Next, we consider the non-degenerate parametric resonator,
which is realized by intermodal parametric coupling between
two different vibration modes. The non-degenerate resonator
can generate a different frequency of oscillation so that it can
be applied to frequency conversion in practical applications.
Furthermore, the resonator is significantly important in the
application to quantum physics. As shown later, the pump
excitation at the sum of two eigenmode frequencies can
generate an entangled boson pair in the quantum regime. The
scheme can therefore be one of the most promising techniques
to prepare non-classical state of macroscopic objects.

The interaction can be derived from Hamiltonians (20)
for a single beam = t( )H T q q ,

l nm n mint 2
ext and also for coupled

beams ( t l=H q qext c L Hint as described in appendix B). To
describe the parametric intermodal coupling, it is instructive
to describe the systems using a quantum mechanical phonon
picture in analogy to quantum optics [122].

In quantum mechanics, q and p can be expressed by the
creation and annihilation operators of a single phonon, †a and

Figure 12. (a) Device structure and measurement setup used for the degenerate parametric amplification reported in [114]. Phase-locked
pump and harmonic input voltages are applied on the conductive layer and one of the gate electrodes at w2 0 and w ,0 respectively. The
vibration amplitude at w0 is measured as the output voltage (signal) through another gate electrode using a lock-in amplifier. (b) The
measured vibration amplitude when the pump and harmonic drive frequencies are swept around the resonance. The output voltage increases
with increasing pump voltage. (c) The measured gain as a function of pump voltage. When pump excitation L approaches its threshold,

g wL º ,th 0 the gain becomes large and unstable. The maximum gain of 38 dB was obtained just below the threshold of parametric
oscillation.
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Here,  w w=A T lm8mn m n for a single beam and
l w w=A m4c L H for coupled beams as shown in

appendix B, and mode suffixes 1 and 2 are used in both cases.
We again consider the case where the tension is periodically
modulated with t, i.e., t t w=( )t tcos .ext p0 By introducing the
interaction representation, Hint becomes
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We consider the two most important cases: w w w= +p 1 2 and
w w w= -∣ ∣,p 2 1 which are referred to as blue- and red-
sideband pumps, respectively. By neglecting rapidly oscil-
lating terms using rotating frame approximation, the interac-
tion becomes
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With the blue-sideband parametric pump, phonons are
simultaneously generated (or annihilated) in both modes,
which corresponds to non-degenerate parametric amplifica-
tion (figure 13(a)). With the red-sideband parametric pump,
one phonon is annihilated in one mode but one phonon is
created in the other mode, which corresponds to the beam
splitter interaction in quantum optics (figure 13(b)). Because
the two modes have different frequencies, the beam splitter
interaction converts the phonon frequency. Therefore, the

intermodal parametric coupling has two functions. One is
parametric amplification and the other is frequency conver-
sion, depending on which sideband frequency the pump
excites.

3.5. Non-degenerate parametric amplification

The demonstration of the blue-sideband pump with a GaAs/
AlGaAs single beam was first reported using detuned fre-
quencies in a single mode [123] and later using two inde-
pendent modes [42]. The experiments were performed by
applying strain modulation at the sum of the pump fre-
quencies w w w= +( )p 1 2 as well as a harmonic drive (signal)
at w .1 An idler signal at w2 generated by the blue-sideband
pump was detected to confirm non-degenerate parametric
amplification. Furthermore, a frequency multiplexing phonon
computation scheme using higher-order idler generation was
proposed [123]. Generating a new frequency from two cor-
responds to AND logic. By adequately choosing the signal
and pump frequency and using destructive interference, the
whole fundamental logic operation was demonstrated using a
single-beam structure (figure 14).

The work was extended to perform experiments on two-
mode thermal phonon squeezing. As described in 3.3, noise
squeezing is based on the concept that the quadrature
component of vibration noise is damped while the orthogonal
one is amplified. The concept can be extended to the coupling
of two oscillation modes using non-degenerate parametric
amplification [122, 124]. Instead of the cross correlation
between two orthogonal quadratures of a single mode in the
degenerate case, the quadrature component of one mode has a
correlation with the perpendicular component of the other
mode. For example, the sine (cosine) noise component of the
first mode has a correlation with the cosine (sine) noise
component of the second mode.

For two vibrational modes, with the periodic tension
modulation t w~( )t tcos ,ext p Hamiltonian (20) leads to the

Figure 13. Schematic drawings of intermodal parametric pump processes using quantum mechanical phonon pictures. (a) The blue-sideband
pump w w w= +( )p 1 2 excites two phonons simultaneously in the two modes and induces non-degenerate parametric amplification. (b) The
red-sideband pump w w w= -( )p 2 1 transfers phonons from one mode to the other and causes the beam splitter interaction.
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Langevin equations
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where ( )F tth
1 and ( )F tth

2 are thermal Langevin forces applied
to the two modes. The pump frequency is given by
w w w= + ,P 1 2 and L is the pump intensity, which is pro-
portional to the strain modulation amplitude t .0 We can
decompose the two mode variables into sine and cosine
components as w w= +( ) ( ) ( ) ( )q c t t s t tcos sin ,i i i i i where ci
and si are slowly varying quadrature amplitudes of the ith
mode and are measurable as the sine and cosine amplitude
with a lock-in amplifier in experiments. The amplitude cor-
relation in thermal noise becomes [43]

w
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k T
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. 31i i

B2 2

0
2 2

w
á ñ = á ñ = -
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. 32B

1 2 2 1
0

2 2

where w g g= L +( )r L H0 is the normalized pump intensity
and both w1 and w2 are replaced by w0 for simplicity by
considering the case of w w» .1 2 The equations show that the
correlation increases with pump intensity and becomes unity
when r approaches the threshold value, rth=1. Figure 15
shows the measured normalized cross-correlation
á ñ á ñá ñs c s c1 2 1

2
2

2 for coupled GaAs/AlGaAs electro-
mehcanical resonators [43]. The dotted line shows the
theoretical model calculation with the finite response time of
the measurement system taken into account, showing good
agreement with experiments.

The concept of two-mode squeezing was initially intro-
duced in quantum optics, where the quantum vacuum noise
becomes correlated by the parametric pump [122, 124]. The
pump translates the photon vacuum state into one consisting
of a finite number of photons, and the quantum correlation
over the two modes is generated. This correlated quantum
state corresponds to the entangled photons and is important in
the field of quantum information. The application of this
scheme to parametric mechanical resonators in the quantum
regime makes it possible to generate entangled phonon states
in macroscopically distinguishable objects. Recently, the

Figure 14. Schematic drawing of the concept of frequency-multiplexing phononic logic gates [123]. (a) Two-tone AC voltages applied to the
resonator perform non-degenerate parametric amplification, generating different frequencies corresponding to the output of binary Boolean
logic operation. (b) Examples of the output voltage spectra, demonstrating the three inputs majority (green) and (AND+OR) (purple) gates.

Figure 15. Cross correlation of the measured thermal noise
component of two vibrational modes as a function of blue-sideband
pump amplitude [43]. Red open circles and blue closed triangles
show the experimental results, while the dotted line is the theoretical
calculation. In the calculation, the threshold pump voltage of 0.29 V
is assumed, which corresponds to the pump intensity: r=1.
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generation of entangled states between phonons and micro-
wave photons has been experimentally reported using the
blue-sideband pump [119, 120].

When the pump amplitude becomes larger than the
threshold, self-sustained oscillation is excited. Using a third
resonance mode to effectively increase the pump amplitude in
single beam geometry, all-mechanical phonon lasing opera-
tion was demonstrated [44]. This is another example of how
the blue-sideband parametric pump can be used.

3.6. Beam-splitter interaction and frequency conversion

Now let us discuss the case of the red-sideband pump. As
discussed in 3.4, the red-sideband pump generates the beam-
splitter type interaction, which transfers a phonon in one
mechanical mode to the other without changing the total
phonon number. This operation can be expressed as
ñ ñ   ñ ñ∣ ∣ ∣ ∣n m n m1 1 ,1 2 1 2 where n and m is the initial

phonon number in mode 1 and mode 2, respectively. These
two modes have a different frequency, so that the interaction
converts the phonon energy. In the case of classical oscilla-
tion, where the vibration is represented not by a phonon
number state but by the superposition of different number
states, i.e., a coherent state, the red-sideband pump can
transfer the vibration energy from one mode to the other for
frequency conversion in classical oscillation. Demonstrations
of frequency conversion using micro/nanomechanical reso-
nators are reported in [34, 36, 37].

When the frequency conversion rate becomes faster than
the energy relaxation rate, phonons can stay in both modes,
leading to their mixing. A red-sideband pump with enough
intensity can strongly couple the two modes. This is tech-
nologically important in the sense that two modes with a
different frequency can couple to each other and the coupling
strength can be controlled by the intensity of the para-
metric pump.

We here theoretically describe the dynamics of two
mechanical oscillation modes parametrically coupled to each
other through the red-sideband pump. The equations of
motion become

g w w
w w d
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where only mode 1 is harmonically driven by an external
force [36]. The equation can be easily solved by applying
rotating frame approximation when we assume that
w w w~ -P 2 1 and w w~ .s 1 The resonance characteristics
calculated using the parameters in [36] are shown in figure 16.
As a function of pump and harmonic drive frequency, the
vibration amplitude of the two modes shows the avoided
crossing when the coupling rate becomes larger than the
damping. The calculation shows excellent agreement with the
experimental results.

The red-sideband pump has great importance in the field
of optomechanics, where the coupling is made between

optical and mechanical modes. Compared to the number of
thermally excited phonons, there are far fewer thermally
excited photons because of the large energy quanta, so that
their coupling can cool the mechanical mode by reducing the
phonon number. The red-sideband-pump is induced by
applying red-detuned laser light, and this laser cooling
scheme is called sideband cooling. To achieve a phonon
quantum ground state, a resolved-sideband condition is
required [125], where the mechanical mode frequency is
higher than the linewidth of the optical mode. Ground state
cooling has been reported experimentally in both the micro-
wave [126] and optical domains [127].

3.7. Application to electromechanically controlled phononic
crystals

In condensed matters, the discrete electronic states localized
at each atom position are laterally coupled to form energy
bands where a crystal is constructed by an equally spaced
array of atoms. The optical analog, i.e., photonic crystal, has
recently been extensively studied by periodically modulating
the reflective index in continuous media in artificial nanos-
tructures. The passive and active control of photon propaga-
tion dynamics has been demonstrated by constructing
photonic crystal waveguides. Similarly, the concept of the
coupled mechanical resonator can be extended to form pho-
nonic crystals. The experimental study of phononic crystal
was triggered in 1995 by experiments that confirmed the
presence of band gaps in soundwave propagation through a
2D periodic arrangement of stainless steel cylinders [128]. By
making periodically arranged holes in Si membranes, the
formation of a band gap was also confirmed via surface
acoustic wave (SAW) propagation in an on-chip device-based
platform [129]. One of the most important motivations to use
phononic crystals is the control of thermal transport [130].
Phononic crystals are also used to fabricate high frequency
mechanical resonators [131] as well as the acoustic wave-
guides [132, 133].

The use of GaAs-based piezoelectric mechanical reso-
nators as the building blocks of phononic crystals [134]
allows the dynamic control of travelling acoustic waves
[135, 136]. The locally generated strain induced by the
mechanical vibration can modify the propagation dynamics.

Figure 17 shows a 1D phononic crystal waveguide fab-
ricated using a GaAs/AlGaAs heterostructure. It consists of
equally spaced membrane resonators. The acoustic wave is
excited as the piezoelectrically induced mechanical vibration
at one end, and the propagated acoustic vibration is detected
at the other end of the waveguide both electrically and opti-
cally. The frequency response clearly shows the continuous
propagation band as well as the band gap. By inserting a
localized mechanical resonator at the middle of the wave-
guide, phononic wave propagation can be modulated. All-
mechanical random access memory operation has also been
demonstrated using a similar phononic waveguide structure
[32]. Recently, GaAs-based phononic crystal for opto-
mechanical applications has also been demonstrated [137].
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4. Carrier-mediated optomechanical systems

The integration of a mechanical resonator with optically
active devices is also an advantage of III-V based electro-
mechanical systems. GaAs/AlGaAs heterostructures are
widely used for fabricating optoelectronic devices. One of the
most pioneering works on III-V based optomechanical sys-
tems is the integration of a GaAs/AlGaAs laser with a
micromechanical cantilever [54]. The mechanical modulation
of laser emission was demonstrated using the cantilever as
one mirror to form a laser cavity. The vibration modifies the
cavity length, leading to the mechanical emission control.
This experiment was the first demonstration of not only an

on-chip optomechanical device but also of state-of-the-art
cavity optomechanics. As demonstrated by this example, the
use of optomechanical devices allows the mechanical control
of photonic devices. We here briefly show the results for
carrier mediated optomechanics using GaAs/AlGaAs
mechanical resonators [61–63], where similar optomechanical
functions are incorporated without using an optical cavity.

The optical excitation of electron-hole pairs at the
clamping point can create an electric field, leading to the
formation of piezoelectric bending moment. Figure 18 shows
the mechanical vibration characteristics measured through the
optical drive and the dependence of vibration amplitude as a
function of laser wavelength. When the excitation photon
energy becomes larger than the band gap of GaAs, the
vibration amplitude is drastically increased. A peak at the
band edge (∼850 nm) is visible, corresponding to the exci-
tonic absorption. These results show that the photo-excited
electron-hole pairs drive the mechanical vibration. The phase
of the mechanical oscillation is reversed when an orthogonal
cantilever is used, reflecting the fact that the piezoelectric
force generated by the decomposed electron-hole pairs drives
the mechanical motion.

The optopiezoelectric force on the mechanical mode
allows the back-action effect in the mechanical resonant
characteristics [61, 62]. The back-action effect on the har-
monic oscillator is generally described by the following
equations.

g w+ + = +̈( ) ( ) ( ) ( ) ( ) ( )q t q t q t F t F t , 34ext BA0
2

ò= - ¢ ¢ ¢
-¥

( ) ( ) ( ) ( )F t g h t t q t dt . 35BA

t

Figure 16. Numerical simulations of oscillation amplitudes of (a) beam 1 at drive frequency fs, (b) beam 2 at first-order idler frequency
fs+fp, and (c) beam 2 at second-order idler frequency fs+2fp. The resonance frequencies of mode 1 and mode 2 are
f1=ω1/2π=294.045 kHz and f2=ω2/2π=294.645 kHz, respectively. The avoided crossing is confirmed when pump frequency fp
becomes the red-sideband frequency [f2-f1] and its half frequency [( f2-f1)/2], corresponding to the diagrams shown in (d) and (e),
respectively. [36].

Figure 17. False-color SEM image of a phononic crystal embedding
an electromechanical resonator [135]. The purple area is suspended
and consists of an AlGaAs/n-GaAs heterostructure, where the
acoustic vibration is propagating. The yellow areas are Shottky
electrodes for the electromechanical control of the wave propagation.
The waveguide is totally 1 mm long (not shown).

13

Semicond. Sci. Technol. 32 (2017) 103003 Topical Review



Here, q(t) is the resonator displacement, h(t) is the response
function of the back action with the coupling constant g,
where Fext is the externally applied driving force, which is the
thermal Langevin force when describing the Brownian
motion of a mechanical resonator. We use the exponential
response function t t= --( ) [ ]h t texp ,1 which is com-
monly used to describe the back action force with the
response time constant τ. When the coupling constant g is
much smaller than w ,0

2 the renormalization of the resonance
frequency and damping is derived from equation (34) as
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Therefore, the damping can be both increased and decreased
depending on the sign of the back action. For thermally dri-
ven resonators in particular, the increase of damping leads to
the lowering of the effective mode temperature. The effective
temperature, which can be measured as the area of the thermal
noise power spectrum, is then given by g g=T T ,eff eff which
can be increased/decreased by a negative/positive g value.
Depending on the wavelength detuning from the exciton
absorption peak, both cooling and heating were demonstrated
using a GaAs/AlGaAs modulation-doped heterostructure
[63]. The cantilever motion modifies the exciton absorption
peak energy, modulating the absorption coefficient. The
generated number of electron-hole pairs is then modulated by
the cantilever motion, leading to the back-action effects. The
present cooling efficiency of 50% [63] is expected to be
improved by using the sharper absorption peak observed in
quantum wells and quantum dots.

5. Hybridization with quantum low-dimensional
electron systems

III-V compound semiconductor heterostructures are widely
used to fabricate quantum low-dimensional (LD) structures.
Their hybridization with mechanical resonators provides
novel functionality both in mechanical and electronic devices.
The extremely high force sensitivity of the mechanical reso-
nator can be utilized for investigating the electron behavior in
LD structures; on the other hand, the resonator motion can
also modify the electronic state, leading to the mutual back-
action force. In this section, the reported results that describe
the coupling between mechanical modes and electronic states
are briefly introduced.

5.1. Coupling with high-mobility 2D electron systems

One of the most important quantum LD systems in the study
of electron transport is the high-mobility 2D electron systems
(2DES). A variety of rich physics, such as quantum Hall
effects and spin-related transport, have been studied using
such systems. One of the pioneering works demonstrating the
coupling of mechanical degrees of freedom with electron
behavior was performed by Eisenstein et al [138, 139]. They
studied the magnetization of a 2DES using a suspended piece
of a 2DES sample. In mechanical systems, the magnetization
of a 2DES, i.e., de Haas van Alphen effects, can be studied
because the interaction between the magnetic moment of a
2DES and applied magnetic field generate torque. Related
studies were later done by using similarly suspended struc-
tures [140–142] and more recently by using micromechanical
resonators [143–145].

A 2DES was also used for detecting the mechanical
motion. Integrating a 2DES FET as a strain sensor in a
micromechanical resonator (for example figure 6(b)) allows

Figure 18. (a) The experimental setup for optopiezoelectric actuation. The intensity-modulated Ti:Sa laser is applied to the resonator to
induce a periodic bending moment. The scale bar is 10 μm. (b) The mechanical resonance characteristics measured at room temperature. (c)
The vibration peak amplitude as a function of laser wavelength. The optical drive is effective when the photon energy is larger than the band
gap of GaAs.
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the sensitive detection of mechanical motion. As already
cited, Beck et al developed a piezoresistive cantilever and
proposed its use as a low-temperature AFM cantilever
[89, 90]. The localized and delocalized electronic state
transition in a 2DES was used as a sensitive strain sensor, and
a very high strain gauge factor of 26 000 was reported [67].
This value is more than two orders of magnitude larger than
that of a Si piezoresistive cantilever. The strain induced by the
mechanical beam motion causes the modulation of electronic
states, leading to the order-disorder transition in the 2DES,
and the conductance is highly sensitive to the motion-induced
transition.

The motion-induced order-disorder transition causes
electron transport along the strain gradient within the sample.
This electron transport generates a magneto-piezo voltage,
which is highly sensitive to the filling factor. At very low
temperature, the intrinsic Q of the cantilever becomes about
106, where the dominant source of energy dissipation is
ohmic loss caused by the electron transport. The increase in Q
at the edges of the quantum Hall plateau, where localized
electronic states suppress the ohmic loss, shows the back-
action of the 2DES onto the mechanical motion [67, 68].
Similar phenomena were also observed in the propagation
characteristics of surface acoustic waves [146]. Hybrid
structures integrating a 2DES in a micromechanical resonator
are also studied in [147] and [148]. Structures integrating
superconductor-semiconductor weak link junctions for
motion detection are studied in [149–151].

5.2. Coupling with 0D quantum structures

The coupling of mechanical degrees of freedom with artifi-
cially localized electrons has also been studied not only with
semiconductor-based single-electron transistors (SETs) and
quantum QPCs [69, 70, 92–94] but also with hybrid structures
with normal metal [93] and superconductor [152, 153] SETs,
for which highly sensitive motion detection was reported. The
0D systems with a small number of electrons, i.e., QDs, have
also been studied, mainly using semiconductor-based struc-
tures [70]. An example of the device structures is shown in
figure 6(c). The use of 0D transport, i.e., the quantized con-
ductance through a QPC, for strain sensing and, recently,
motion detection using photoluminescence in QD structures
were reported. These works are based on the strain-mediated
coupling between electronic states and mechanical motion.

As in the 2DES, electron–induced back-action has also
been confirmed in a hybrid device comprising a top-down
semiconductor QD and mechanical resonator. An increase in
energy dissipation as well as the amplification of mechanical
motion was observed. The bias current flowing through the
QD amplifies the mechanical vibration, which might be
applicable to current-injected phonon lasers in the future
[154, 155].

Experiments using bottom-up self-organized quantum
dots [80, 82] as well as theoretical works describing the
hybrid devices have also been reported [156–159]. One of the
main targets is the realization of a Jaynes–Cummings model.
Phonon-based cavity-QED experiments can be performed

using a QD and mechanical resonator as a quantum two-level
system and harmonic oscillator, respectively.

6. Conclusions

The high crystalline quality and piezoelectric properties of
epitaxially grown GaAs enables the fabrication of high-per-
formance mechanical resonators for various applications. In
particular, the parametric resonators can be used for signal
processing, from frequency converters and high-accuracy
timing devices to electromechanical logic.

By integrating the high functionalities of GaAs/AlGaAs
optoelectronic micro and nanostructures into mechanical
resonators, new device concepts have been introduced. The
high crystalline quality of single-crystal heterostructures
allows highly reliable and stable opto- and electromechanical
operation. Although the material system of only GaAs/
AlGaAs is discussed in this article, other compound semi-
conductor materials are also promising for the opto- and
electromechanical applications. For instance, highly piezo-
electric nitride semiconductors have recently been studied for
high-frequency mechanical resonator applications as well as
InP-based structures allowing telecom band optomechanical
operation.

Finally, the integration with quantum low-dimensional
systems is discussed. The hybrid structures provide new
techniques to artificially manipulate quantum electronic states
as well as to achieve their mutual coupling. Reversely, the
quantum structures modify the mechanical resonance char-
acteristics through back-action.

The studies shown here are basically ‘proof of concept’
experiments and further improvements are required to apply
the concepts to real applications. For example, the QD-
mechanical resonator hybrid device has very high position
sensitivity only at cryogenic temperatures. To make it
working as a practical device, a high performance room
temperature SET/QD is required. Such a device has been
demonstrated so far only using Si-based transistors [160], so
that the heterogeneous integration of III-V and Si-based
devices might play an important role.

One important key improvement is to increase the reso-
nance frequency into the GHz region. Practical device
applications such like nonlinear signal processing and highly
stable timing devices require the operation at the frequency
region. The resonance frequency can be increased by redu-
cing the structure size as described in section 2.1 but the
confinement of mechanical vibration becomes insufficient due
to the reduced acoustic mismatch between the flexural beam
motion and the surface acoustic wave. Different designs of
mechanical resonators, such as bulk acoustic resonators
[86, 87] and phononic crystal wave guide resonators [137] are
promising to overcome the difficulties. In addition, the quality
factor lowered by the insufficient acoustic mismatch can be
improved by using strained layer heterostructures. The use of
compound semiconductors is advantageous for strain engi-
neering as already described [52, 53, 77].
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Also in the application of quantum hybrid devices to
quantum information technology, the electronic and
mechanical systems have different energy scales at present
but increasing the resonance frequency into the GHz region
put single phonons and electrons into superposed and/or
entangled states. There are several activities in this direction,
opening up a new research field of electron-phonon hybrid
quantum systems.
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Appendix A

To describe the parametric resonators, we start from the
expression of the Euler–Bernoulli equation using Hamiltonian
formalism:

òP = +
r
P ¶

¶
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Here, r dP = ( ) ( )x t A z x t, , is the momentum density,
A=dw is the area of the beam cross section, and
=I d w 12y

3 is the moment of inertia. The first term in the
square brackets gives the kinetic energy and the second one
gives the potential energy induced by the elastic deformation
of the beam. Equation (1) as well as the definition of P( )x t,
can be derived from the canonical equations of motion

d d= P( ) ( )z x H x0 and d dP = - ( ) ( )x H z x0 by assuming
the appropriate boundary condition, for example,
equations (4) or (5). The displacement and the momentum
density, which also generally satisfy the same boundary
condition, can be expanded by the mode function um(x) as
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Then, using the orthonormal condition [equation (10)], the
Hamiltonian can be expressed by mode displacement ( )q tm
and momentum variables = ( )p t mqm m as

å
w

= +
⎛
⎝⎜

⎞
⎠⎟[ ]H p q

p

m

m q
,

2 2
.

m

m m m
0

2 2 2

The system can be regarded as an ensemble of inde-
pendent harmonic oscillators.

Then, we take into account the effect of beam tension.
Because the propagation velocity of longitudinal elastic
waves (i.e., LA phonons) is much higher than the time scale
of the mechanical oscillation, the tension can be assumed to
be position-independent. The modified Hamiltonian is given

by
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Here, tension t is decomposed into two parts: an externally
applied one and that induced by beam vibration (figure 19),
i.e.,
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First, let us consider the case when no external tension is
applied. The Hamiltonian becomes
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up to the forth order in z, where the z-independent term is
neglected because it does not affect the beam dynamics. By
expanding ( )z x t, using the normal mode wave functions
um(x), we finally obtain the important expression
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Tmn is a dimensionless matrix given by
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for doubly clamped beam resonators. The tension generated
by the beam oscillation gives fourth-order nonlinearity. If
only the nth mode has finite vibration amplitude, the Hamil-
tonian corresponds to the well-known nonlinear Duffing
oscillator [1, 3, 23, 110]:

w
= + +H
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3

Figure 19. Schematic drawing showing the beam extension induced
by its displacement.
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Next, let us consider the case when tension text is
externally applied. The lowest order contribution is given by

åt
P = +[ ] [ ] ( ) ( )H z H p q

l
T q t q t, ,

2
.ext

m n
mn m n0

,

When only the nth mode is taken into account, the Hamil-
tonian (18) is obtained:
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Appendix B

Tension-induced mode coupling can also be derived for
paired-beam resonators [36]. Figure 20 shows an example of
coupled structures with electrodes to drive and detect the
mechanical motion. Two parametric resonators are structu-
rally coupled through an overhang, which is formed by
sacrificial etching.

The Hamiltonian of the two coupled beams, A and B, is
given by

w t
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The last term gives the structural coupling between the two
beams induced by the overhang, and the external tension
modulation is assumed to be applied only to beam A as an
electric voltage, corresponding to the term t T l.ext AA Because
of the structural coupling, each normal mode receives finite
contributions from both beams even when they have a dif-
ferent eigenfrequency (i.e., w w¹A B).

The variables in this equation can be transformed into
normal mode ones by using the following orthonormal

transformation:
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This leads to the new Hamiltonian with normal mode vari-
ables:
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where the coefficients l l, ,L H and lc are given by
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where L and H are indices specifying low- and high-fre-
quency diagonalized modes, respectively. Although the initial
form has only the parametric modulation of beam A’s force
constant, the transformed Hamiltonian includes the parametric
modulation of both normal modes, as well as the intermodal
coupling. This Hamiltonian is the combined form of (18) and
(20), and it shows that both intramodal (i.e., the degenerate
parametric) and intermodal (non-degenerate parametric)
coupling can be induced by the strain, with the coefficients
l lL H and l ,c respectively. The strain applied to beam A
modifies the two lowest normal modes, leading to the fre-
quency modulation in both modes as well as their intermix-
ing. Nonlinear dynamics in coupled resonators have also been
studied in other systems [161–163].
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