
     

REVIEW

Green’s functions for geophysics: a review
To cite this article: Ernian Pan 2019 Rep. Prog. Phys. 82 106801

 

View the article online for updates and enhancements.

You may also like
Rate-programming of nano-particulate
delivery systems for smart bioactive
scaffolds in tissue engineering
Mohammad Izadifar, Azita Haddadi,
Xiongbiao Chen et al.

-

High surface area graphene foams by
chemical vapor deposition
Simon Drieschner, Michael Weber, Jörg
Wohlketzetter et al.

-

Graphene-based fibers for supercapacitor
applications
Lianlian Chen, Yu Liu, Yang Zhao et al.

-

This content was downloaded from IP address 18.118.193.232 on 02/05/2024 at 01:24

https://doi.org/10.1088/1361-6633/ab1877
https://iopscience.iop.org/article/10.1088/0957-4484/26/1/012001
https://iopscience.iop.org/article/10.1088/0957-4484/26/1/012001
https://iopscience.iop.org/article/10.1088/0957-4484/26/1/012001
https://iopscience.iop.org/article/10.1088/2053-1583/3/4/045013
https://iopscience.iop.org/article/10.1088/2053-1583/3/4/045013
https://iopscience.iop.org/article/10.1088/0957-4484/27/3/032001
https://iopscience.iop.org/article/10.1088/0957-4484/27/3/032001


1 © 2019 IOP Publishing Ltd  Printed in the UK

Reports on Progress in Physics

E Pan

Printed in the UK

106801

RPPHAG

© 2019 IOP Publishing Ltd

82

Rep. Prog. Phys.

ROP

10.1088/1361-6633/ab1877

10

Reports on Progress in Physics

Ernian Pan

University of Akron, Akron, OH 44325, United States of America

E-mail: ernian.pan@gmail.com

Received 9 November 2018, revised 16 March 2019
Accepted for publication 11 April 2019
Published 4 September 2019

Recommended Professor Michael Bevis

Abstract
The Green’s function (GF) method, which makes use of GFs, is an important and elegant 
tool for solving a given boundary-value problem for the differential equation from a real 
engineering or physical field. Under a concentrated source, the solution of a differential 
equation is called a GF, which is singular at the source location, yet is very fundamental 
and powerful. When looking at the GFs from different physical and/or engineering fields, 
i.e. assigning the involved functions to real physical/engineering quantities, the GFs can be 
scaled and applied to large-scale problems such as those involved in Earth sciences as well 
as to nano-scale problems associated with quantum nanostructures. GFs are ubiquitous and 
everywhere: they can describe heat, water pressure, fluid flow potential, electromagnetic (EM) 
and gravitational potentials, and the surface tension of soap film. In the undergraduate courses 
Mechanics of Solids and Structural Analysis, a GF is the simple influence line or singular 
function. Dropping a pebble in the pond, it is the circular ripple traveling on and on. It is the 
wave generated by a moving ship in the opening ocean or the atom vibrating on a nanoscale 
sheet induced by the atomic force microscopy. In Earth science, while various GFs have been 
derived, a comprehensive review is missing. Thus, this article provides a relatively complete 
review on GFs for geophysics. In section 1, the George Green’s potential functions, GF 
definition, as well as related theorems and basic relations are briefly presented. In section 2, 
the boundary-value problems for elastic and viscoelastic materials are provided. Section 3 is 
on the GFs in full- and half-spaces (planes). The GFs of concentrated forces and dislocations 
in horizontally layered half-spaces (planes) are derived in section 4 in terms of both Cartesian 
and cylindrical systems of vector functions. The corresponding GFs in a self-gravitating and 
layered spherical Earth are presented in section 5 in terms of the spherical system of vector 
functions. The singularity and infinity associated with GFs in layered systems are analyzed 
in section 6 along with a brief review of various layer matrix methods. Various associated 
mathematical preliminaries are listed in appendix, along with the three sets of vector function 
systems. It should be further emphasized that, while this review is targeted at geophysics, 
most of the GFs and solution methods can be equally applied to other engineering and science 
fields. Actually, many GFs and solutions methods reviewed in this article are derived by 
engineers and scientists from allied fields besides geophysics. As such, the updated approaches 
of constructing and deriving the GFs reviewed here should be very beneficial to any reader.

Keywords: dislocation, Love number, layered sphere, layered half-space, Green's function, 
elasticity, viscoelasticity

(Some figures may appear in colour only in the online journal)

Green’s functions for geophysics: a review

Review

IOP

2019

1361-6633

1361-6633/19/106801+52$33.00

https://doi.org/10.1088/1361-6633/ab1877Rep. Prog. Phys. 82 (2019) 106801 (52pp)

publisher-id
doi
https://orcid.org/0000-0001-6640-7805
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6633/ab1877&domain=pdf&date_stamp=2019-09-04
https://doi.org/10.1088/1361-6633/ab1877


Review

2

List of main symbols

L, M, N	 Vector functions
δ(r), δij	� Dirac delta function of r and Kronecker 

delta (scalar and tensor)
  ∇  	 Gradient operator vector
  ∇  2  =  ∂ii	� 2D or 3D Laplacian operator
∂if 	� Partial derivative of f  with respect to 

coordinate xi

∂nf :  =  ni∂if 	� Partial derivative along normal direc-
tion ni

cij	 Elastic (or viscoelastic) coefficients
xs	 (or xs) Source point coordinates
xf 	� Field point coordinates
(x, y , z)  =  (x1, x2, x3)	 Cartesian coordinates
[A]	 matrix with elements as Aij

νj 	� Dislocation (or displacement disconti-
nuity) components

nj 	� Normal directions of the dislocation 
(or fault) plane

ξj 	 Tangential of dislocation line
dA	 Dislocation element
ciner  �=  0 for elastostatic    

=  ρω2 for time-harmonic  
=  �−ρs2 for viscoelastic in Laplace-transform domain 

(related to the inertia term)
λ	� Horizontal transform variable; also for 

one of the elastic Lamé constants

λ, μ or λe, μe	 Elastic Lamé constants

λv, μv or (λ(s), μ(s))	� Viscoelastic Lamé constants
ρ	� Material density; also for the source 

function
g	 Gravity
ui	 Elastic (or viscoelastic) displacements
σij	 Elastic (or viscoelastic) stresses
εij	 Elastic (or viscoelastic) strains
φ	 Perturbed potential
s	 Laplace variable
t	 Time variable
ω	 Angular frequency
2D	 Two-dimensional
3D	 Three-dimensional

G	� Scalar Green’s function; also for the 
universal gravitational constant

GF	 Green’s function or Green function
ELLN	 Elastic load Love number
DLN	 Dislocation Love number
GIA	 Glacial isostatic adjustment
DDM	 Displacement discontinuity method
BEM	 boundary element method
FEM	 Finite element method
NME	� Normal mode expansion or normal 

mode summation
SMM	 Stiffness matrix method
PMM	 Propagator matrix method

DVP	 Dual variable and position
VSH	� Vector spherical harmonics; also the 

spherical system of vector functions
TI	� Transversely isotropic or transverse 

isotropy; For spherical geometry, TI 
denotes spherically isotropic, or spheri-
cal isotropy

1.  Introduction

‘In the other class of methods the quantities to be deter-
mined are expressed by definite integrals, the elements 
of the integrals representing the effects of singularities 
distributed over the surface or through the volume. This 
class of solutions constitutes an extension of the meth-
ods introduced by Green in the Theory of the Potential.’ 
� … A. E. H. Love, 1944

In this section, using potential theory as an example, we intro-
duce the concept of Green’s function (GF) and related fun-
damental theorems. These include the GF definition, basic 
features of the GFs, Green’s theorems, the representative rela-
tion, and the corresponding boundary integral equations. We 
neglect the detailed derivation of most of the formulae since 
this would be beyond the scope of the article. We also assume 
that all the functions and their derivatives discussed in this 
paper satisfy the necessary smoothness/continuity conditions 
and that the involved integrations are bounded, unless specified 
otherwise. For readers who are interested in more details on 
the theory of potential and potential GFs, the following refer-
ences are recommended: Books and reviews concentrated on 
potential theory only (Kellogg 1953, Helms 2009, Freeden 
and Gerhards 2013, Gerhards 2018), textbooks on partial 
differential equations or mathematical methods where GFs of 
potential were presented more rigoriously as a tool to solve the 
differential equations (Folland 1976, Roach 1982, Riley et al 
2002, Greenberg 2015), and books where GFs of elasticity as 
well as potentials were discussed (Butkovskiy 1982, Seremet 
2003, Melnikov and Melnikov 2012, Bona and Slawinski 
2015, Duffy 2015, Pan and Chen 2015). The historical devel-
opment of GFs in general can be found in Duffy (2015).

The GF is named after George Green for his seminal 
contributions in physics and mathematics (Green 1828, Dyson 
1993, Schwinger 1993, Cannell 2001, Challis and Sheard 
2003). Below we use the three-dimensional (3D) potential 
problem as an example to introduce the fundamental concepts 
and relations. Even for this simple potential problem, the GF 
has applications in nearly every science and engineering field 
when assigning the potential function to the related real physi-
cal or engineering quantity. In geophysics, the potential func-
tion describles the gravitational potential.

1.1.  Green’s function (GF)

We assume that ρ is the ‘source’ function given in a bounded 
domain V in 3D space (figure 1(a)) and that the boundary of 
V is S. The potential function φ in V is the solution of the 
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following Poisson’s equation, subjected to proper boundary 
conditions for φ and/or its derivative on the boundary S.

∇2φ(x) = ρ(x); x ∈ V� (1.1)

where  ∇2 is the 3D Laplace differential operator and x is any 
field point within the problem domain V. It should be pointed 
out that the potential φ and source function ρ are quite gen-
eral in mathematical point of view, and as such, are appli-
cable to many different engineering and physical fields when 
associating them with the corresponding field quantities. For 
instance in Earth science, equation (1.1) will be the govern-
ing equation  for the gravitational potential with the source 
function ρ being proportional to the mass density (Dahlen 
and Tromp 1998, Gerhards 2018). Furthermore, if ρ  =  0 in 
(1.1), we then have the Laplace equation with its solutions 
being generally called harmonic functions (Helms 2009). The 
Laplace equation is the mathematical key and describes phe-
nomena that are everywhere in our daily life (Cole 2016).

The corresponding free-space GF G in the entire 3D space 
is defined as (figure 1(b))

∇2G(x; xs) = δ(x − xs)� (1.2)

where xs is the source point at which a concentrated source of unit 
magnitude is applied, and δ is the Dirac delta function ‘distribu-
tion’ (Zemanian 1987). The GF solution (also called singular or 
fundamental solution) of equation (1.2) is (Pan and Chen 2015)

G(x − xs) =
−1

4π |x − xs|
≡ −1/(4πr)� (1.3)

where r is the distance between the field and source points.

1.2.  Basic features of GF

	 •	�Uniqueness: The GF solution (1.3) is the unique solution 
of (1.2) upon making use of the integration property of 
the Dirac delta function, as elaborated below.

	 •	�Singularity: The GF solution (1.3) is singular at the source 
point x  =  xs (in the order of 1/r) and decays to zero with 
increasing relative distance between the source and field 
points (also in the order of 1/r).

	 •	�Integration around the source point: The volumetric 
integration of the GF (1.3) over any domain including the 
source point should equal to one (i.e. the unit magnitude 
on the right-hand side of equation (1.2)). This is actually 

the integration condition which makes the GF solution 
(1.3) unique.

	 •	�Reciprocity between the source and field points of 
the GF (1.3): G(x  −  xs)  =  G(xs  −  x), or in more 
general notation, G(x; xs)  =  G(xs; x). Furthermore, 
∂G(x; xs)/∂xi = −∂G(x; xs)/∂xs

i . Note that these rela-
tions only hold for GFs in an infinite homogeneous space 
without any boundary!

1.3.  Green’s representative theorem

The Green’s theorem presented below is also called the 
divergence theorem, Gaussian theorem, or Green’s second 
identity. It states that for any two functions which are twice 
differentiable with respect to the 3D coordinate (x, y , z)  =   
(x1, x2, x3), the following identity holds (similar to the well-
known Maxwell reciprocity or Betti’s reciprocity).

ˆ

S
[φ∇ψ − ψ∇φ] · dS =

ˆ

V
[φ∇2ψ − ψ∇2φ]dV� (1.4)

where the gradient   ∇   (a vector!) is with respect to the vec-
tor variable x (i.e. ∂i). Notice that a relation similar to equa-
tion  (1.4) is the Stokes’ theorem/relation, where the area 
integral is connected to the line integral along the contour (or 
loop) of the area. Stokes’ theorem is very useful in analyzing 
a 3D fault/dislocation loop (Hirth and Lothe 1982), where one 
can convert the area integral over the fault to the line integral 
along its contour (or loop).

We now apply (1.4) to the following two different sets: one is 
the real problem associated with φ (governed by (1.1) in V and 
bounded by S, with also suitable boundary conditions on S),  
and the other is the GF, governed by (1.2) and defined by G. 
In other words, we let φ be the solution of the real problem of 
(1.1) with given boundary conditions and G the solution of 
(1.2) for the entire space. Then, upon substituting these solu-
tions into equation (1.4), we arrive at, for any point xs within 
the problem domain V,

φ(xs) =

ˆ

S
[φ(x)∇G(x; xs)− G(x; xs)∇φ(x)] · dS(x)

+

ˆ

V
G(x; xs)ρ(x)dV(x)

�

(1.5)

Equation (1.5) expresses the unknown function φ in the prob-
lem domain in terms of the given inhomogeneous ‘source’ ρ, 

Figure 1.  A distributed source ρ within a domain V bounded by S in (a), a concentrated source at xs in the corresponding infinite space in 
(b), and an arbitrarily oriented internal surface A (with its normal direction n) over which the field quantity φ is discontinuous in (c).
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and the given φ and/or its derivative on the problem boundary. 
This is the well-known representative theorem derived first by 
Green (1828) for the general potential problem. It is suited 
for a very general problem where the source ρ can be arbi-
trary and φ and/or its derivative is described on the problem 
boundary.

Important applications of representative theorem (1.5):

	(1)	� We assume that the potential function φ and GF G in 
equation  (1.5) satisfy the same homogeneous boundary 
conditions on S (Burridge and Knopoff 1964, Pan 1991). 
Then equation (1.5) is reduced to

φ(xs) =

ˆ

V
G(x; xs)ρ(x)dV(x).� (1.6)

		 Examples of equation  (1.6) are: (1) the homogeneous 
half-space (plane) or spherical (circular) domain where 
its boundary is either traction-free (i.e. the normal deriva-
tive of both ∂nG and ∂nφ are zero on the boundary) or 
rigid (i.e. both G and φ are zero on the boundary); and 
(2) the homogeneous and infinite space where both G 
and φ and their first derivatives decay in such a way that 
the boundary integral on a very large sphere (a very large 
cicle) in equation (1.5) is zero.

		 It is noted that, in general, the locations of the two coor-
dinate variables x and xs in the GF G in equation  (1.6) 
cannot be exchanged. They are exchangeable only when 
G in equation (1.6) is the GF in the corresponding infinite 
and homogeneous space. For this case, equation (1.6) can 
be alternatively written as

φ(x) =
ˆ

V
G(x; xs)ρ(xs)dV(xs).

�

(1.7)

		  Both equations  (1.6) and (1.7) simply imply that the 
potential φ induced by a given source ρ can be obtained 
by the method of superposition, i.e. by integrating the GF 
over the source domain V. Furthermore, by substituting 
GF expression (1.3) into equation (1.7), we then have the 
well-known solution for the (gravitational) potential due 
to a given distributed (mass) density.

	(2)	� The opposite case of (1), where the body source ρ is zero 
but there are applied boundary conditions over S. Then, 
the solution at any point xs of the problem domain can be 
represented in terms of the given boundary values as the 
following boundary integration

φ(xs) =

ˆ

S
[φ(x)∇G(x; xs)− G(x; xs)∇φ(x)] · dS(x).�

(1.8)

		  Three special cases of (2):

	 (a)	�φ is given on the entire boundary (i.e. the type I, or 
Dirichlet boundary-value problem). Then, the solution 

can be simply expressed as (by choosing the ‘rigid’ GF 
Grigid which is zero on the problem boundary S)

φ(xs) =

ˆ

S
[φ(x)∇Grigid(x; xs)] · dS(x).� (1.9)

	(b)	�∂nφ (≡n ·  ∇  φ where n is the outward normal of the 
boundary S) is given on the entire boundary (i.e. the 
type II or Neumann boundary-value problem). Then, 
the solution can be simply expressed as (by choosing 
the flux ‘free’ GF Gfree such that its normal derivative 
∂nGfree on the problem boundary S is zero)

φ(xs) = −
ˆ

S
[Gfree(x; xs)∇φ(x)] · dS(x).� (1.10)

	(c)	�The integral representative expression (1.8) is the 
fundamental relation in deriving the boundary integral 
equation and the corresponding well-known boundary 
element method (BEM). To achieve the boundary 
integral equation, we only need to let xs approach any 
smooth boundary point xb ∈ S (at which its tangential 
derivative is continuous). This gives us

0.5φ(xb) =

ˆ

S
[φ(x)∇G(x; xb)− G(x; xb)∇φ(x)] · dS(x).

� (1.11)

		 In equation (1.11), both the field and source points are on 
the problem boundary. Therefore, the boundary can be 
discretized and the resulting equation can be solved for 
the involved unknowns (at discretized collocation points). 
This is the essential formulation used in the BEM (i.e. Liu 
et al (2011)), as applied to various engineering material 
fields (Qin 2007) and also extended to wave propagation 
with cracks (Zhang and Gross 1998). A brief history on 
BEM can be found in Cheng and Cheng (2005).

	(3)	�A final application of equation (1.5): we let φ be the par
ticular solution of equation (1.1), as shown in figure 1(c). 
We assume now that there exists an internal surface A 
with normal n, across which φ is discontinuous (with its 
normal derivative ∂nφ being continuous). By applying 
this problem to (1.5), and assuming the potential function 
φ and GF G in equation (1.5) satisfy the same homoge-
neous boundary conditions on S (Burridge and Knopoff 
1964 Pan 1991), we then have

φ(xs) =

ˆ

A
[φ(x)]∇G(x; xs) · dA(x) +

ˆ

V
G(x; xs)ρ(x)dV(x)

� (1.12)

		  where [  f ]  =  f (A+)  −  f (A−) denotes the jump of the 
function across the internal interface A, with its normal 
being defined as n  =  n−  =  −n+ and its two sides being 
A+  and A−, as in figure 1(c)).

Furthermore, if there is no body source ρ, then we arrive at 
another representative expression where the potential at any 
location induced by a given internal discontinuity of itself can 
be simply expressed in terms of an area integral over the inter-
nal surface (with the point-source GF gradient and the given 
internal discontinuity being the integrand).

Actually, the corresponding elastic formulation of (1.12) 
forms the displacement-discontinuity method (DDM) 

Rep. Prog. Phys. 82 (2019) 106801



Review

5

(Crouch 1976). The DDM formulation is very convenient in 
analyzing fracture problems where the crack could experience 
a displacement discontinuity (or relative displacement) over 
its two surfaces (Weertman 2008). They are potential applica-
tions for equation (1.12) in ground movement due to mining 
(Berry 1960, Berry and Sales 1961, 1962), as well as in rock 
breakage and mine excavation (Tan et al 1998, Yacoub 1999).

By introducing the delta function ‘distribution’ property, as 
well as the GF properties (i.e. Burridge and Knopoff (1964) 
and Aki and Richards (1980)), equation (1.12) can be rewrit-
ten as

φ(xs) =

ˆ

V
G(x; xs)

ï
−
ˆ

A
[φ(ξ)]ni∂xiδ(x − ξ)dA(ξ)

ò
dV(x)

+

ˆ

V
G(x; xs)ρ(x)dV(x).

�

(1.13)

Comparing the first and second terms on the right-hand side of 
equation (1.13), one immediately concludes that the internal 
discontinuity [φ] over A (or dislocation) can be equivalently 
expressed in terms of a body-source (or body-force) function 
as

ρ(x) = −
ˆ

A
[φ(ξ)]ni∂xiδ(x − ξ)dA(ξ).

�
(1.14)

The body-force equivalent expression (1.14) has many appli-
cations when it is extended to different fields, e.g. poroelastic-
ity (i.e. Pan (1991)) and magnetoelectroelasticity (Zhao et al 
2015). We will revisit the equivalent body-force expression 
for the dislocation or displacement discontinuity over a fault 
surface later on.

1.4.  Summary of section 1

Using the 3D potential problem as an example, we have intro-
duced the GF or GF solution of equations  (1.1) and (1.2), 
along with various useful features. Based on the Green’s 
theorem (1.4), we have derived the important representative 
expression (1.5). This expression (1.5) is then applied to the 
point source (or source as force) as well as the discontinu-
ity source (or dislocation) cases. These two types of sources 
can be further connected by introducing the so-called equiva-
lent body-force concept of the concentrated ‘dislocation’ (or 
displacement discontinuity), which will be used later when 
deriving the GF solutions due to dislocations. Equation (1.5) 
is further the essential expression for the boundary integral 
equation and thus the corresponding numerical methods, like 
the BEM.

While the GF of the potential problem can find various 
direct applications in fluid mechanics, this review emphasizes 
only on the elastic and/or viscoelastic media. Readers who 
are interested in GFs in fluid mechanics with applications 
can refer to the following typical and related works by the 
GF researchers in fluid mechanics (Dorning, 1981, Telste and 
Noblesse 1986, Chen et al 2001, Jensen et al 2011). For GFs 
in solid-state physics, readers may refer to the review article 

by Tewary (1973) and the book by Doniach and Sondheimer 
(1999). GFs for nanoscale device applications can be found in 
Datta (2000).

2.  Elasticity and viscoelasticity

In this section, we review the basic equations  associated 
with elastostatic, viscoelastic, and time-harmonic elastic 
deformations. While we derive only 3D equations, they 
can be simply reduced to the corresponding 2D (x, y ) (or 
x1, x2) plane-strain deformation (ux, uy ) (or u1, u2) plus the 
anti-plane deformation (uz) (or u3) by assuming that all 
the physical quantities including the boundary conditions 
are independent of the third coordinate z (or x3) and that 
the involved material properties satisfy certain symmetric 
conditions (Ting 1996). The Cartesian coordinate system is 
used; however, the corresponding governing equations  in 
other systems, particularly in the cylindrical and spherical 
coordinate systems, can be easily derived. We present the 
formulation for general anisotropy, but when applying to 
geophysics, we only concentrate on the isotropic or trans-
versely isotropic (TI) case with its axisymmetry along the 
given normal direction of the plane (for 2D half-plane and 
3D half-space deformation) or along the radial direction of 
the sphere (for spherical Earth deformation). In geophys-
ics, depending upon the time-scale, our Earth could deform 
elastically or viscoelastically.

2.1.  Elasticity

In terms of the displacement gradient uk,l, the symmetric strain 
tensor can be expressed as εij  =  0.5(ui,j   +  uj ,i). Then, the con-
stitutive relation and equations of motion are, respectively,

σij = cijkluk,l� (2.1)

σji,j + fi = ρ∂ttui.� (2.2)

For an orthotropic elastic material (with TI and isotropy being 
its special cases), the constitutive relation in terms of the 
Cartesian system and the Voigt notation, from 4 indices in cijkl 
(varying from 1 to 3) to 2 indices in cij (varying from 1 to 6), 
using the correspondence between their indices 11 ↔ 1, 22 ↔ 2,  
33 ↔ 3, 23 ↔ 4, 13 ↔ 5, 12 ↔ 6, can be written as

σxx = c11ux,x + c12uy,y + c13uz,z

σyy = c12ux,x + c22uy,y + c23uz,z

σzz = c13ux,x + c23uy,y + c33uz,z

σyz = c44(uy,z + uz,y); σxz = c55(ux,z + uz,x);σxy = c66(ux,y + uy,x).
�

(2.3)
In general, for the orthotropic material, there are nine inde-
pendent constants. For the TI material with z-axis being its 
axis of symmetry, there are only five independent constants 
(since c11  =  c22, c13  =  c23, c44  =  c55, and c66  = (c11–c12)/2). 
Furthermore, for the isotropic elastic material, there are only 
two independent constants, say the two Lamé elastic con-
stants, related to cij as

Rep. Prog. Phys. 82 (2019) 106801



Review

6

c11 = c33 = λe + 2µe

c12 = c13 = λe; c44 = c66 = µe
�

(2.4)

where the subscript e to the two Lamé constants is used to 
distinguish the elastic one from the viscoelastic one (with 
subscript v and depending on the Laplace variable s) to be 
discussed later. For the elastostatic case, the inertial term on 
the right-hand side of equation (2.2) is zero.

For many elastodynamic problems, a typical approach is 
to first solve the governing equations in the frequency domain 
and then transform them back to the time domain. The Fourier-
transform pair for any function f (t) is defined as

f (xi;ω) =
ˆ ∞

−∞
f (xi; t)eiωtdt� (2.5a)

f (xi; t) =
1

2π

ˆ ∞

−∞
f (xi;ω)e−iωtdω.� (2.5b)

Notice that, to distinguish if the solution is in the frequency 
or time domain, if needed, we add the function’s dependence 
as f (ω) or f (t). Thus, for solving the dynamic problem, finding 
the corresponding time-harmonic solution is sufficient. Note 
that for the Fourier-transform pair, people may also switch the 
positive and negative signs in the exponential terms on the 
right-hand sides of equations (2.5a) and (2.5b). In so doing, 
the results in the transformed frequency domain would be dif-
ferent, although the final time-domain solutions are the same.

Considering only the time-harmonic problem, equation (2.2) 
is then replaced by its Fourier-transformed (frequency) domain 
one as (time-domain solution is proportional to e−iωt)

cijkluk,lj + ρω2ui + fi = 0.� (2.6)

Notice that the constitutive relation (2.1) is the same in 
Fourier-transformed domain if we assume that the material 
properties are independent of frequency. After the problem 
is solved in the frequency domain, the fast Fourier transform 
(FFT) is usually applied to find the time-domain solution. 
Therefore, to treat the transient dynamic deformation, we only 
need to solve and discuss the Fourier-transformed amplitudes 
of the physical quantities, say the displacement uj (xi; ω) (since 
the time-domain solution is proportional to e−iωt).

2.2.  Viscoelasticity

In most viscoelastic problems in Earth science, we assume 
that the time-scale is very large and the response is extremely 
slow. Therefore, the inertia term in the dynamic equation (2.2) 
can be assumed to be zero. For the viscoelastic problem, it is 
the Laplace transform pairs, instead of the Fourier transform 
ones, which are applied to solve the problem. While for the 
elastodynamic case, we have the same constitutive relations, 
for the viscoelastic case, the explicit time-dependent constitu-
tive relations are used as briefly reviewed below.

For the given viscoelastic problem, one first solves the 
problem in the Laplace-transformed domain; then, the trans-
formed domain solution is inverted (usually numerically) back 
to the time domain. Based on the viscoelastic correspondence 
principle (Lee 1955, 1962, Radok 1957, Christensen 1982), 

under the condition that all the quantities and their derivatives 
are zero for time t  <  0, the formulation of the viscoelastic 
problem will be equal to the corresponding elastic problem in 
the Laplace domain with Laplace-transformed complex mat
erial properties. The Laplace transform pairs of a real function 
f  with f (t)  =  0 for t  <  0 and its inverse are defined as (we fur-
ther assume that all the physical quantities and their different 
orders of time-derivatives are also zero when t  <  0)

f (s) =
´∞

0 e−stf (t)dt

f (t) = 1
2πi

´ γ+i∞
γ−i∞ estf (s)ds

�
(2.7)

where the integration path is chosen along the vertical line 
γ  =  Re(s) in the complex plane such that γ is greater than the 
real part of all singularities of f (s).

In Earth science, the initial and final values of f (t) (i.e. the 
deformation field) are very important and they can be found 
by taking the limit of its Laplace transform f (s), as

lim
t→0+

f (t) = lim
s→∞

[sf (s)]; lim
t→∞

f (t) = lim
s→0

[sf (s)].� (2.8)

Notice that while the initial value for a viscoelastic problem 
corresponds to the elastic solution, the final value is useful 
because it gives the long-term behavior without having to 
perform partial decompositions or other difficult algebra. The 
second expression holds under the assumption that f (s) has no 
pole in the right-hand plane nor on the imaginary axis.

Then, in the Laplace-transformed domain, the equilibrium 
equation can be expressed as

σji,j − ρs2ui + fi = 0�
(2.9)

where we have assumed that the initial values of ui and its 
derivatives are all zero. Comparing equation (2.9) to the fre-
quency-domain equation  (2.6), we immediately obtain the 
simple relation between the two transformed systems of equa-
tions, i.e. simply substituting their variables using s  =  −iω. 
This can be also observed by comparing the definition of the 
two transforms defined above.

What is left is the constitutive relation in the Laplace-
transformed domain. This is discussed based on the work by 
Carcione (1990). In a given orthonormal coordinate system, 
the general constitutive relation for a linear anisotropic vis-
coelastic medium, in both time and Laplace domains, can be 
expressed as (Christensen 1982),

σij(x; t) = Jijkl(x; t) ∗ ∂tεkl(x; t)� (2.10a)

σij(x; s) = s Jijkl(x; s)εkl(x; s) = cijkl(x, s)εkl(x; s)�
(2.10b)

while equation  (2.10b) defines the fourth-order viscoelastic 
tensor in the Laplace-transformed domain, the right-hand side 
in equation (2.10a) is the convolution integral, defined as (for 
a strain history from time t  =   −   ∞  to t

Jijkl(x; t) ∗ ε̇kl(x; t) =
ˆ t

−∞
Jijkl(x; t − τ)∂τεkl(x; τ)dτ

� (2.11)
with Jijkl (t) (=0 for  −∞ < t  <  0) being the fourth-order 
relaxation function tensor (Carcione 1990). It is noted that 
this tensor has the same symmetry properties as the stiffness 
tensor in the purely elastic case.
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Following Carcione (1990) and also Molavi Tabrizi and Pan 
(2015), the Laplace-transformed Jijkl(s) (with cijkl(s)  =  sJijkl(s)) 
can be expressed (in the reduced Voigt notation and for gen-
eral viscoelasticity) as

[J(s)] =




J11(s) J12(s) J13(s) c14/s c15/s c16/s
J22(s) J23(s) c24/s c25/s c26/s

J33(s) c34/s c35/s c36/s
c44χ2(s) c45χ2(s) c46χ2(s)

Sym c55χ2(s) c56χ2(s)
c66χ2(s)




�
(2.12)

where cij are the time-independent elastic moduli at t  =  0 of 
the general anisotropic material. For the TI case with z-axis (or  
x3-axis) being its axis symmetry, we have only five indepen-
dent elastic moduli (Molavi Tabrizi and Pan 2015) as discussed 
above (c11, c12, c13, c33, and c44, with c66  =  0.5(c11–c12)).

In equation  (2.12), the elements of the relaxation matrix 
are defined as,
®

Jij(s) = [cij − D]/s + (D − 4µe/3)χ1(s) + 4χ2(s)µe/3 if i = j
Jij(s) = [cij − D + 2µe]/s + (D − 4µe/3)χ1(s)− 2χ2(s)µe/3 if i �= j

� (2.13)
with

D = (c11 + c22 + c33)/3;µe = (c44 + c55 + c66)/3.� (2.14)

Furthermore in equations (2.12) and (2.13), the two relaxation 
functions are defined as

χν(s) = 1/s −
Lν∑
l=1

(1 − τνεl/τ
ν
σl) [1/s − 1/(s + 1/τνσl)] ν = 1, 2

� (2.15)
where τνεl  and τνσl  are the material relaxation times for the lth 
mechanism and Lv is the total number of relaxation mech
anisms. It is noted that the relaxation matrix [J] is formed in 
such a way that the trace and deviatoric components of the 
stress tensor depend on the time variable through the kernels 
χ1 and χ2, respectively. The trace of the stress tensor is an 
invariant upon the transformation of the coordinate system, 
implying that the hydrostatic stress (one third of the trace) 
is only related to function χ1. Hence, function χ1 describes 
the dilatational deformation whereas χ2 represents the shear 
deformation (Carcione et  al 1988 and Carcione 1990). We 
should point out that the relaxation functions presented in 
equation  (2.15) are similar to, but different from, those in 
Carcione (1990). The difference is that in Carcione (1990), 
time t  =  ∞ (0) corresponds to the elastic (relaxation) limit 
whilst in equations (2.13) and (2.15), t  =  0 (∞) corresponds 
to the elastic (relaxation) limit.

The constitutive relations in the Laplace domain presented 
above are for the general anisotropic viscoelastic media. 
They can be reduced to the TI viscoelastic case (Molavi 
Tabrizi and Pan 2015), and particularly to the isotropic vis-
coelastic case. The most commonly studied Maxwell viscoe-
lastic model (Peltier 1974) can be reduced from equations   
(2.10)–(2.15) and expressed as (with Lv  =  1, χ1  =  χ2, τνεl   =  0, 
and τνσl = νt/µe)

cijkl(s) = λ(s)δijδkl + µ(s)(δikδjl + δilδjk)� (2.16)

with

λv ≡ λ(s) =
λes + µeB/νt

s + µe/νt
; µv ≡ µ(s) =

µes
s + µe/νt

; B = λe + 2µe/3

� (2.17)
where νt is the shear viscosity. It is noted that this Maxwell 
material behaves as fluid when time t approaches infinity, or 
s approaches zero. It is further noted that the purely elastic 
constitutive relation can be simply obtained from (2.16) and 
(2.17) by letting s approach infinity (i.e. the values at the 
initial time t  =  0). For Kelvin-Voigt model and other linear 
viscoelastic models with multiple elements, one is referred to 
Spada (2008).

In summary, the elastostatic deformation, time-harmonic 
deformation (its proportional amplitude in the frequency 
domain), and the viscoelastic deformation (in the Laplace 
domain) problems can all be discussed uniformly by solv-
ing their equilibrium/motion equations  in the transformed 
domain. We now derive the important reciprocity theorem, 
which has been very useful in obtaining the GF solution.

2.3.  Betti’s reciprocity

We first derive the Betti’s reciprocity theorem for the elasto-
static deformation, for the time-harmonic deformation in the 
transformed domain (in terms of their amplitude, proportional 
to e−iωt), and the viscoelastic deformation in the Laplace-
transformed domain (in terms of their amplitude, proportional 
to est).

We assume that there are two sets of the boundary-value 
problem (with superscripts (1) and (2)) associated with the 
same material system. Then the following reciprocity theorem 
holds for the stresses and strains in the two sets of the system:

σ
(1)
ij u(2)

i,j = σ
(2)
ij u(1)

i,j .
�

(2.18)

This important relation can be easily proved by making use of 
the constitutive relation (with the same material property) and 
noticing the symmetric conditions of the stresses, strains, and 
material properties.

We now integrate equation (2.18) over the problem domain 
by parts, and making use of the Green’s theorem (1.4) to 
arrive at
ˆ

∂V
σ
(1)
ij u(2)

i njdS −
ˆ

V
σ
(1)
ij,j u(2)

i dV =

ˆ

∂V
σ
(2)
ij u(1)

i njdS −
ˆ

V
σ
(2)
ij,j u(1)

i dV .
�

(2.19)

Furthermore, making use of the equilibrium equations (or the 
equations  in the Fourier-/Laplace- transformed domain), we 
have

´
∂V σ

(1)
ji nju

(2)
i dS +

´
V [ f (1)

i + cineru
(1)
i ]u(2)

i dV

=
´
∂V σ

(2)
ji nju

(1)
i dS +

´
V [ f (2)

i + cineru
(2)
i ]u(1)

i dV .
� (2.20)
where

ciner =





0 Elastostatic
ρω2 Time-harmonic
−ρs2 Viscoelastic

.

�

(2.21)
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Equation (2.20) is the well-known Betti’s reciprocity, which 
was originally derived by Love (1944). It states that the work 
done by the forces of the first set (including kinetic reaction), 
acting over the displacements produced by the second set, is 
equal to the work done by the second set, acting over the dis-
placements produced by the first.

As indicated clearly by equations  (2.20) and (2.21), this 
Betti’s reciprocity contains the following three deformation 
cases: elastostatic (ciner  =  0), time-harmonic (ciner  =  ρω2), and 
viscoelastic in the Laplace-transformed domain (ciner  =  −ρs2). 
It is further noted that the reciprocity (2.20) holds also for the 
self-gravitating elastostatic (viscoelastic or time-harmonic) 
deformation of the Earth, provided that we have (along the 
interface and also on the surface)

[ψ
(1)
,i + 4πGρu(1)

i ]+− = [ψ
(2)
,i + 4πGρu(2)

i ]+− = 0
�

(2.22)

where ψ is the perturbed gravitational potential, and G is the 
universal gravitational constant. For detailed discussion on 
this relation, readers are referred to the works by Smylie and 
Mansinha (1971), Dahlen (1972) and Boschi (1973). An inter-
esting application to the relation between the body and surface 
Love numbers can be found in Pan and Ding (1986).

2.4.  Representative theorem and relation between force  
and dislocation GFs

The most important application of the Betti’s reciprocity rela-
tion (2.20) is the reduced representative theorem presented 
below. This can be obtained by letting set (1) be the real prob-
lem of the given material domain V (bounded by ∂V) and set 
(2) the corresponding GF solution of the concentrated force in 
the same material.

uk(y) =
´
∂V σij(x)uk

i (x; y)nj(x)dS(x)
−
´
∂V cijmluk

m,xl
(x, y)ui(x)nj(x)dS(x)

+
´

V fi(x)uk
i (x; y)dV(x)

�
(2.23)

where the displacement GF uk
i  is the solution of the following 

governing equations (in the full-space, or in the given special 
spaces to be discussed later)

cijlmuk
l,mi + cineruk

j = −δjk(x − y)� (2.24)

where ciner is defined by (2.21), and cijlm is either the elastic 
stiffness (for time-harmonic deformation) or the viscoelastic 
stiffness (for viscoelastic deformation in the Laplace domain). 
The superscript k in the displacement GF denotes the applied 
point-force direction, and the subscript l (or i, j ) the displace-
ment component. The concentrated unit force is applied at 
y , and the derivative in the second term on the right-hand 
side of equation  (2.23) is with respect to the field point of 
the displacement GF. It is very important that in writing this 
Green’s representative theorem, one should be very careful on 
the point-force source point y  and the field point x since their 
translational symmetry only holds in an infinite and homoge-
neous space.

We now assume that the real problem is the one associ-
ated with an internal dislocation in a given bounded domain 

V similar to that in figure 1(c) without body force f i. In other 
words, we let ni (= n−i = −n+i ) be the unit normal to the 
internal surface A, and bj   =  u+

j − u−
j  be the dislocation on 

the plane with normal ni. This dislocation over A may have 
any form provided that the following traction-continuity 
condition holds:

σ+
ij n+

i + σ−
ij n−

i = 0.� (2.25)

Applying the representative expression (2.23) to this case by 
further assuming that the field quantities in both sets satisfy 
the homogeneous boundary conditions on ∂V, we then have 
(Pan and Chen 2015).

uk(y) =
ˆ

A
σk

ij(x; y)bj(x)ni(x)dA(x).� (2.26)

It is noted that the kernel function in equation  (2.26) is the 
Green’s stress with component (ij) at the field point x due to a 
point force at y  applied in the k-direction. Alternatively and in 
terms of definition, the displacements uij

k  at x due to the point 
dislocation ‘tensor’ bj ni at y  can be expressed by the point-
dislocation kernel function as,

uk(x) =
ˆ

A
uij

k (y; x)bj(y)ni(y)dA(y)� (2.27)

where uij
k  represents the induced displacement in k-direc-

tion due to a point dislocation with its plane normal in the  
i-direction and its Burgers vector component in the j -direction.

Comparing equation (2.27) to (2.26) and also noticing that 
bj ni is an aribitrary dislocation density tensor, we immediately 
obtain the following important equivalence between the stress 
due to a point force and the displacement due to a point dislo-
cation (the first relation below)

uij
k (y; x) = σk

ij(x; y) = cijml(x)uk
m,xl

(x; y)� (2.28)

where the second relation is from the constitutive relation. It 
is noted that the locations of the source and field points in the 
point-force Green’s stresses need to be switched in order to 
obtain the point-dislocation Green’s displacements. This rela-
tion has to be very carefully executed particularly when the 
material is heterogeneous, as in a layered material system. If 
the system under consideration is a full-plane or full-space, 
the field and source points can be switched in equation (2.28); 
If the problem domain is a half-plane or half-space, then only 
the components of the field and source points parallel to the 
surface of the half-plane or half-space can be exchanged.

One can define the moment density ‘tensor’ (moment ‘ten-
sor’ per unit area) as

mlq(x) = cijlq(x)bj(x)ni(x).� (2.29)

Then, in terms of the moment tensor, equation (2.26) can be 
expressed as

uk(y) =
ˆ

A
mlq(x)uk

l,xq
(x; y)dA(x).� (2.30)

Since uk
l  are the displacement solutions due to the point 

force, uk
l,q  can be considered as the solutions corresponding 
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to the couple force (point force in k-direction with a force 
arm in q-direction, Bacon et  al 1979). In other words, the 
moment tensor and the dislocation pair (bj ni) are equivalent 
to each other. Furthermore, since the indices i and j  in cijkl are 
exchangeable, the responses from pairs (bj ni) and (binj ) are 
undistinguishable.

Finally, the surface integration over the dislocation can be 
changed using the delta function properties (Aki and Richards 
1980, Pan and Chen 2015), and by doing so, one can find the 
following important representation of the equivalent body-
force density of a given dislocation over the area A

fl(η) = −
ˆ

A
cijlpbj(ξ)ni(ξ)

∂

∂ηp
δ(η − ξ)dA(ξ).� (2.31)

This relation holds for the time-harmonic and viscoelastic 
deformations when reviewing them in the transformed domain. 
Notice further that a dislocation in material science and fault 
(or displacement discontinuity) in Earth science are the same 
in 3D deformation. In other words, the displacements due to a 
concentrated dislocation have a higher singularity than those 
due to a concentrated force. In the homogeneous full-space, to 
find the dislocation-induced displacement field, one just needs 
to take the derivative of the displacement GFs due to the point 
force and multiply the results by suitable coefficients, simi-
lar to the last term in equation  (2.28). In the heterogeneous 
material, however, one needs to be very careful with the rela-
tion between xf  and xs since they are no longer exchangeable. 
Besides the equivalent body-force expression of a dislocation 
(bj ni) (or seismic moment tensor), seismic moment tensors 
of different (higher) ranks can also be derived for static and 
dynamic deformations (Kagan 1987a, 1987b).

It should be noted, however, that a 2D fault in Earth sci-
ence and a line dislocation in material science are completely 
different. A good reference for this is the review by Savage 
(1980). In the following sections, we will also illustrate their 
differences and furthermore, the interesting connections 
between them with examples.

2.5.  Summary of section 2

For the elastostatic, time-harmonic, and viscoelastic (in the 
Laplace domain) deformations, we have derived the general 
Betti’s reciprocity in equation  (2.20), applicable also to the 
elastic-gravitational Earth medium. Based on it, the important 
representative expressions due to forces and dislocations are 
obtained, respectively, as in equations (2.23) and (2.27). The 
equivalence between the force and dislocation sources is pre-
sented in equation (2.28) and the equivalent body-force den-
sity is given in equation (2.31).

3.  GFs in 2D/3D elastic and viscoelastic media

In this section, we present analytical GFs in 2D/3D full- and 
half-planes (spaces). For the 2D case, the deformation is 
located on the (x, y )-plane (for easy discussion using complex 

variables). The source can be concentrated force or dislocation, 
and solutions to the corresponding finite source can be found 
by integrating the GF over the source domain. Traction-free 
boundary conditions are assumed on the surface of the half-
plane (or half-space) for the internal source case. The materials 
are assumed to be isotropic or TI, with the GF solutions in the 
corresponding general anisotropic domain being further avail-
able in Pan and Chen (2015) for the static case and in Wang 
and Achenbach (1995) for the time-harmonic case. In 2D, we 
call the concentrated sources as the line forces and line disloca-
tions (Nabarro 1967). An early brief history of dislocation can 
be found in Hirth (1985) and a brief review on 2D/3D faults 
in Earth science was given by van Zwieten et al (2013). The 
classic references on dislocations in 2D/3D from material point 
of view are the books by Hirth and Lothe (1982) and Hull and 
Bacon (2011). The two volumes, which comprise the proceed-
ings of the conference on ‘Fundamental Aspects of Dislocation 
Theory’ edited by Simmons et al (1970), are also very impor-
tant references. In this section, without loss of generality, for 2D 
deformation, we restrict ourselves to the plane-strain deforma-
tion, whilst the solution in the corresponding plane stress can 
be easily obtained by using the simple relation between plane-
strain and plane-stress deformations. While we concentrate on 
the elastic solution, solutions of the corresponding viscoelastic 
deformation in the Laplace domain can be simply found by 
replacing the elastic moduli by the corresponding viscoelastic 
moduli (i.e. the ones depending on the Laplace variable s).

3.1.  GFs in full- and half-planes by concentrated line forces 
and line dislocations

We start with the half-plane (in the (x, y )-plane) case with trac-
tion-free boundary condition on its surface. The solution for this 
case includes the reduced full-plane solution as the special case 
(by neglecting the complementary or image part of the solu-
tion). We first consider the anti-plane case where we have only 
the out-of-plane (or anti-plane) displacement uz in z-direction 
and we further assume that the material is isotropic.

3.1.1.  Anti-plane force.  We assume that the half-plane  
(−∞ < x  <   + ∞  and y   >  0) has a shear modulus µ (elastic or 
viscoelastic µ(s)). We denote the anti-plane displacement by u 
(≡uz). We further assume that an anti-plane line force of unit 
magnitude is applied at (x, y )  =  (xs, y s). Therefore, the anti-
plane governing equation of the GF in terms of the anti-plane 
displacement in the half-plane with shear modulus µ is

∇2u = −δ(x − xs)δ(y − ys)/µ� (3.1)
where the Laplace differential operator  ∇2 is 2D in the  
(x, y )-plane. For the half-plane (y   >  0) under the traction-
free boundary condition (σzy  =  0 on y   =  0), the GF solution  
(Pan and Chen 2015) is

u(x, y; xs, ys) =
1

2πµ ln(1/r1) +
1

2πµ ln(1/r2)

σzx(x, y; xs, ys) = − x−xs
2πr2

1
− x−xs

2πr2
2

σzy(x, y; xs, ys) = − y−ys

2πr2
1
− y+ys

2πr2
2

�

(3.2)
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where

r1 =
»
(x − xs)

2
+ (y − ys)

2; r2 =
»
(x − xs)

2
+ (y + ys)

2.
� (3.3)
The first terms on the right-hand side of equation (3.2) are just the 
full-plane GFs, and the second part or the complementary (image) 
part is used to satisfy the traction-free boundary conditions.

3.1.2.  Anti-plane dislocation.  We assume that there is a uni-
formly distributed line (screw) dislocation (anti-plane disloca-
tion, i.e. screw dislocation) with Burgers vector component 
b (≡bz) in x3-direction located at zs (=xs  +  iy s with y s  >  0) 
in the half-plane (y   >  0). More specifically, the dislocation is 
located on the horizontal semi-plane formed by  −∞<x  <  xs, 
y   =  y s, −∞<z  <   +   ∞  . It is noted that hereafter the complex 
variable z simply denotes the (x, y )-plane coordinates, and it is 
different from the third axis coordinate z (i.e. x3 that we also 
use in this article). We introduce the local polar coordinates 
(r, θ) originated at source location zs, where r is the distance 
between the field point z (=x  +  iy ) and source point zs, and θ 
is the angle from the horizontal axis with the origin at zs. Then 
the jump condition across the line dislocation is (in terms of 
the polar coordinates r and θ)

u(r,π)− u(r,−π) = b� (3.4)

where r is the distance measured relative to the source loca-
tion zs.

The dislocation-induced displacement and stresses can be 
found as

u(z; zs) = − b
2π Re[iln(z − zs)] +

b
2π Re[iln(z − z̄s)]

σzx(x, y; xs, ys) = −µb
2π

y−ys

r2
1

+ µb
2π

y+ys

r2
2

σzy(x, y; xs, ys) =
µb
2π

x−xs
r2

1
− µb

2π
x−xs

r2
2

�
(3.5)

where the overbar denotes the complex conjugate. Similarly, 
the first term on the right-hand side is just the full-plane GF, 
and the second term, or the complementary (image) part is 
introduced to satisfy the traction-free boundary condition on 
the surface of the half-plane. Comparing the dislocation (3.5) 
and force (3.2) solutions, it is noted that their expressions are 
very similar to each other: displacements are in terms of loga-
rithmic function and stresses are in terms of very simple ratio-
nal functions.

3.1.3.  Line force and line dislocation in plane-strain defor-
mation.  Under plane-strain deformation, the line-force and 
line-dislocation (or edge dislocation) induced displacement 
and stress fields can be expressed in a uniform format as in 
Pan and Chen (2015). We first define the following complex 
parameters.

	—	� For line force (Fx, Fy ) at z  =  zs

A = −
Fx + iFy

2π(1 + κ)
; B =

κ(Fx − iFy)

2π(1 + κ)
.� (3.6a)

	—	� For line (edge) dislocation (bx, by ) at z  =  zs

A = −
iµ(bx + iby)

π(1 + κ)
; B =

iµ(bx − iby)

π(1 + κ)
� (3.6b)

where κ = 3 − 4ν  with ν being the Poisson’s ratio of the 
material.

In terms of complex variable z, the full-plane GFs of the 
line force and line dislocation can be expressed as

[2µ(ux + iuy)]f = κAln(z − zs)− Ā(z − zs)/(z̄ − z̄s)− B̄ln(z̄ − z̄s)

[σxx + σyy]f = 2[A/(z − zs) + Ā/(z̄ − z̄s)]

[σyy − σxx + 2iσxy]f = 2[−A(z̄ − z̄s)/(z − zs)
2
+ B/(z − zs)].

� (3.7)
For the corresponding half-plane case under the traction-free 
boundary condition on the surface, we only need to add the 
following complementary (image) part to the full-plane solu-
tion (3.7)

[2µ(ux + iuy)]c = − κ

ï
Ā

z − zs

z − z̄s
+ B̄ ln(z − z̄s)

ò

+ (A + B)
z − z̄
z̄ − zs

− A
(z − z̄)(z̄ − z̄s)

(z̄ − zs)
2 + A ln(z̄ − zs)

� (3.8)

[σxx + σyy]c = −2
[

Ā+B̄
z−z̄s

− Ā z−zs
(z−z̄s)

2 +
A+B
z̄−zs

− A z̄−z̄s
(̄z−zs)

2

]

[σyy − σxx + 2iσxy]c = 2z̄
[

B̄
(z−z̄s)

2 − 2Ā z̄s−zs
(z−z̄s)

3

]

− 2Ā(z−zs)

(z−z̄s)
2 − 4Āz(z−z̄s)

(z−z̄s)
3 − 2B̄z̄s

(z−z̄s)
2 .

�

(3.9)

Again, comparing the line-force and line-dislocation 
solutions, it is noted that their expressions are the same, 
except for the fact that in order to find the solution due to 
the force and dislocation, one just needs to use the differ-
ent parameters A and B defined by equations  (3.6a) and 
(3.6b).

3.2.  Solutions in full- and half-planes by line forces and line 
dislocations over finite region

It is observed from section 3.1 that the GFs due to concen-
trated forces and dislocations, in both anti-plane and in-plane 
deformations, and for both full- and half-planes, are in exact-
closed forms and are in terms of very simple functions of 
the coordinates. Therefore, the solution corresponding to the 
finite force (or finite dislocation) over a finite line segment 
can be easily found by integrating the concentrated GF over 
the line segment. We select only the case of anti-plane (screw) 
dislocation-induced displacement to illustrate the process.

We assume that the Burgers vector component (screw dis-
location) b in (3.5) is constant along the dislocation line seg-
ment from A1 (xs1, y s1) to A2 (xs2, y s2). To integrate over the 
line segment, we introduce the following parameter t which 
varies from 0 to 1 when the source point varies from A1 to A2:

xs = xs1 + t(xs2 − xs1); ys = ys1 + t(ys2 − ys1)

L =
»
(xs2 − xs1)

2
+ (ys2 − ys1)

2.
�

(3.10)

Then the total contribution at any field point z from the finite 
line segment can be found from the following line integration
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u(z; LA1−A2) = b
2πRe

´ A2

A1
[i ln(z − z̄s)− i ln(z − zs)]dls

= bL
2πRe

´ 1
0 {i ln[z − z̄s(t)]− i ln[z − zs(t)]}dt.

�

(3.11)Making use of the following integral expression
ˆ

ln(ax + c)dx = (x + c/a)ln(ax + c)− x; a �= 0� (3.12)

the integral in equation (3.11) can be carried out analytically 
so that we finally have

u(z; LA1−A2) =
bL
2π

Re

ñ
i[(a1 + c1)ln(a1 + c1)− c1lnc1]/a1

−i[(a2 + c2)ln(a2 + c2)− c2lnc2]/a2

ô

� (3.13)
where

a1 = −(xs2 − xs1) + i(ys2 − ys1); c1 = z − (xs1 − iys1)

a2 = −(xs2 − xs1)− i(ys2 − ys1); c2 = z − (xs1 + iys1).
�

(3.14)

Taking the derivative of equation (3.13) with respect to field 
point z (=x  +  iy ) of the displacement induced by the finite-
length dislocation, one can find the strains and then the 
stresses using the constitutive relations (Molavi Tabrizi et al 
2014). Similar analytical expressions can be obtained for non-
uniform dislocation distributions (linear or quadratic), and for 
the corresponding in-plane deformation due to the finite edge 
dislocation (Molavi Tabrizi et al 2014).

3.3.  Displacements in full- and half-planes by a 2D fault

It is noted from the solutions above for the concentrated line 
force and line dislocation that they both are in exactly the 
same form (with the same order of singularity). This is dif-
ferent from the corresponding 3D case where the point-force 
GF and the point-dislocation GF have different forms and thus 
different orders of singularity (e.g. equation  (2.28)). This is 
due to the different definitions of the line dislocation and line 
force in 2D, as explained by Pan and Chen (2015)). Therefore, 
the 2D line-dislocation solution (in material science) and the 
2D fault solution (in Earth science) are different but can be 
connected via a special relation for many direct applications 
(Savage 1980). This is illustrated below.

We take a 2D line dislocation in the isotropic full-plane 
as example. Figure  2 shows an edge (line) dislocation with 
Burgers component by  applied at the origin. The dislocation 
line vector ξ is along positive z-direction (i.e. x3-direction) 
(Hirth and Lothe 1982). Physically, it means that there is a 
cutting plane at y   =  0 (with x  <  0 and  −∞ < z  <   + ∞) over 
which there exists the relative displacement on its top and bot-
tom surfaces, or the displacement discontinuity uy (+)  −  uy (−), 
is by . In other words, a line dislocation applied at origin of 
(x, y )-plane (in material science) is actually a semi-infinite 
fault on the y   =  0 plane (in Earth science). This is the relation 
between the line dislocation and 2D fault.

Making use of the relation between GF solution by the line 
dislocation and that by the 2D fault, we can easily derive the 
GF solution due to a finite 2D fault using the exact-closed form 
expression of the line-dislocation GF. Let us assume that there 

is finite 2D fault located on the y   =  0 plane (infinitely long in 
z-direction), with a uniform relative displacement discontinuity 
Δuy  (uy (y   =  0+)  −  uy (y   =  0−)) over the width 2a (figure 3(b)). 
Then in order to find the GF solution of this 2D fault, we need 
only to superpose two GF solutions due to the line dislocations 
located at both ends of the 2D fault with Burgers components 
by   =  Δuy  and  −by   =  −Δuy , respectively (figure 3(a)).

To further illustrate the process, we first write the 
line-dislocation solution equation (3.7) in a real form, for the 
stresses induced in the full-plane by Burgers component by  
only, as in figure 2. The stresses at (x, y ) by the line dislocation 
located at (xs, y s) are

σyy(x, y; xs, ys) =
µby

2π(1−ν)
(x−xs)[(x−xs)

2+3(y−ys)
2]

r4

σxx(x, y; xs, ys) =
µby

2π(1−ν)
(x−xs)[(x−xs)

2−(y−ys)
2]

r4

σxy(x, y; xs, ys) =
µby

2π(1−ν)
(y−ys)[(x−xs)

2−(y−ys)
2]

r4
�

(3.15)

where r is the distance between the field (x, y ) and source  
(xs, y s) points.

Then, in order to find the stress field induced by a 2D fault 
with uniform displacement discontinuity Δuy (=uy (y   =  0+)  −   
uy (y   =  0−)) over the length x  ∈  [−a, a], we just need to super-
pose the solution (3.15) by the two Burgers components at xs  =  a 
and xs  =  −a (by   =  Δuy  at xs  =  a, and by   =  −Δuy  at xs  =  –a) 
(with y s  =  0). In so doing, we obtain the following relations

σyy(x, y)
∣∣∣∆uy
2a = σyy(x, y; xs, ys)

∣∣∣by=∆uy

(xs,ys)=(a,0) + σyy(x, y; xs, ys)
∣∣∣by=−∆uy

(xs,ys)=(−a,0)

=
µ∆uy

2π(1−ν)
(x−a)[(x−a)2+3y2]

r4
+

− µ∆uy

2π(1−ν)
(x+a)[(x+a)2+3y2]

r4
−

σxx(x, y)
∣∣∣∆uy
2a =

µ∆uy

2π(1−ν)
(x−a)[(x−a)2−y2]

r4
+

− µ∆uy

2π(1−ν)
(x+a)[(x+a)2−y2]

r4
−

σxy(x, y)
∣∣∣∆uy
2a =

µ∆uy

2π(1−ν)
y[(x−a)2−y2]

r4
+

− µ∆uy

2π(1−ν)
y[(x+a)2−y2]

r4
−

r+ =
»
(x − a)2

+ y2; r− =
»

(x + a)2
+ y2.� (3.16)

These are the exact-closed form GF stresses induced by 
a 2D finite fault located on the x-axis with x  ∈  [–a, a] 
in a full plane. It is noted that on the plane of y   =  0, the 
stress expression σyy will be reduced to the one obtained 
by Crouch (1976) who solved this complicated boundary 
value problem using the Papkovitch functions. These and 
similar dislocation solutions are fundamental, and can be 
served as kernel functions in various crack/fracture analyses 

Figure 2.  An edge dislocation with Burgers component by  applied 
at (x, y )  =  (0, 0) (i.e. the dislocation line direction vector ξ is along 
positive z-axis), reviewed equally as a semi-infinite fault on the 
y   =  0 plane (with x  <  0 and  −∞ < z  <+  ∞) with the relative 
displacement uy (+)  −  uy (−)  =  by .

Rep. Prog. Phys. 82 (2019) 106801



Review

12

(e.g. Crouch and Starfield (1983), Hills et  al (1996) and 
Weertman (2008)).

The GF solutions obtained so far are for the elastostatic 
deformation. They can be also regarded as the solutions for 
the corresponding viscoelastic deformation (in the Laplace-
transformed domain, with material properties being func-
tions of the Laplace variable s) without the inertia term (i.e. 
ciner  =  0) in equation  (2.21). Since the line-dislocation GFs 
are also available in exact-closed form in the general aniso-
tropic full-, half-, and bi-plane (Pan and Chen 2015, Vattre and 
Pan 2017), more complicated 2D fault solutions can be eas-
ily derived, including multiple 2D faults or dislocation arrays 
(Chu and Pan 2014, Vattre and Pan 2017), moving dislocation/
fault (Wang and Pan 2007), and their important interactions 
(Savage 1980).

3.4.  GFs in a full-space by point forces and dislocations

The point-force GF in an isotropic elastic full space (with 
shear modulus µ and Poisson’s ratio ν) is the famous Kelvin 
solution (Thompson 1848, Lord Kelvin). For a point force in 
k-direction applied at source point y  (y 1, y 2, y 3) of unit mag-
nitude, the elastic displacement GF in j -direction at the field 
point x (x1, x2, x3) is

uk
j (x; y) =

1
16πµ(1 − ν)r

ï
(3 − 4ν)δjk +

xj − yj

r
xk − yk

r

ò

�
(3.17)

where r is the distance between the field and source points, i.e.

r =
»
(x1 − y1)

2
+ (x2 − y2)

2
+ (x3 − y3)

2.
� (3.18)

Remark 3.1.   The point-force induced elastic displacement 
GF is symmetric with respect to the direction of the point 
force and the direction of the displacement. In other words, 
the upper and lower indices k and j  in equation  (3.17) are  
exchangeable.

Remark 3.2.   This GF is also symmetric with respect to the 
source and field positions. As such, the following relations hold

uk
j (x; y) = u j

k(x; y) = uk
j (y; x).� (3.19)

The corresponding strain GF due to the point force can be 
obtained by taking the derivatives of the displacement GF 
with respect to the field point x. Namely, we have

εk
lm =

1
16πµ(1 − ν)r2

[
δlm(xk−yk)−(1−2ν)[δmk(xl−yl)+δkl(xm−ym)]

r

− 3(xk−yk)(xl−yl)(xm−ym)
r3

]
.

� (3.20)

Using the constitutive relation of the isotropic material, the 
stress GF can be expressed as:

σk
lm =

1
8π(1 − ν)r2

ñ
(1 − 2ν)[δlm(xk − yk)− δlk(xm − ym)− δmk(xl − yl)]/r

−3(xk − yk)(xl − yl)(xm − ym)/r3

ô
.

� (3.21)
To find the displacement GF at y  due to a concentrated (point) 
dislocation at x (with Burgers component bi and unit normal 
nj ), we can simply make use of equation (2.28), which gives us

uk(y) = ulm
k (y; x)bl(x)nm(x)

= bl(x)nm(x)
8π(1−ν)r2

ñ
(1 − 2ν)[δlm(xk − yk)− δlk(xm − ym)− δmk(xl − yl)]/r

−3(xk − yk)(xl − yl)(xm − ym)/r3

ô
.�

(3.22)

By taking derivative with respect to y  in equation (3.22), we 
then find the concentrated dislocation-induced strains, and 
finally making use of the constitutive relation, we have the 
dislocation-induced stresses.

Remark 3.3.   Since the solutions by a point force or a 
point dislocation are in terms of rational functions, finite 
forces and dislocations over a flat surface could be inte-
grated out analytically. In material science, the area integral 
over the fault (or dislocation) surface is usually converted to 
a line (loop) integral using the Stokes’ theorem (Hirth and 
Lothe 1982, Pan and Chen 2015), so that the loop integral 
can be integrated out for certain shapes of the fault plane, 
in the TI full-space (Yuan et al 2013a) and even the general 
anisotropic full-space (Chu et al 2011). The equivalent rela-
tion between the 3D fault and 3D dislocation loop as con-
nected by the Stokes’ theorem is particularly useful since it 
helps us reduce the area integral over the 3D fault plane into 
a simple line integral along the loop of the 3D dislocation 
(or boundary of the 3D fault).

Figure 3.  The GF relation between a 2D finite fault and two line-dislocations where the Burgers component by  is related to the relative 
displacement discontinuity Δuy   ≡  uy (y   =  0+)  −  uy (y   =  0−) with by   =  Δuy . The field induced by the uniform displacement discontinuity 
Δuy (=uy (y   =  0+)  −  uy (y   =  0−)) within the finite domain x  ∈  [−a, a] can be found by superposing the solutions by the two Burgers vector 
components at xs  =  a and xs  =  −a (by   =  Δuy  at xs  =  a and by   =  −Δuy  at xs  =  –a) (with y s  =  0).
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3.5.  GFs in a half-space by forces and dislocations

GFs by concentrated forces were, respectively, derived by 
Boussinesq (1885) and Cerruti (1888) for surface loading 
and by Mindlin (1936) for internal loading (commonly called 
Mindlin solution). The detailed formulation can be found in 
Pan and Chen (2015). These fundamental solutions can be 
integrated over a given domain to find the displacement and 
stress fields induced by the distributed loads. Various prob-
lems related to loading over a finite domain within an isotro-
pic or TI half-space were also solved (i.e. Busby and Dydo 
(1995), Li and Berger (2001), Wang and Liao (2001, 2002a, 
2002b), Becker and Bevis (2004), Yue et  al (2005), Wang 
et al (2006a, 2009, 2013), Wang and Tzeng (2009), Lubarda 
(2013), Marmo and Rosati (2016) and Marmo et  al (2016, 
2018)). This topic is still an active research area in geome-
chanics and solid mechanics.

Making use of the relation between the point-force and 
point-dislocation solutions as discussed above, we can derive 
the corresponding point-dislocation GFs. Integrating over 
the finite fault (dislocation) surface, we then obtain the finite 
fault-induced fields in the elastic half-space. Notable contrib
utions in faulting were made by Maruyama (1964, 1966) for 
both 2D/3D full and half-spaces. The most important and 
well-recognized works are those by Okada (1985, 1992) who 
also distributed his FORTRAN code for easy use by Earth 
scientists for a fault of rectangular shape. Faults are viewed 
in materials as dislocations and therefore, material scientists 
have also contributed to the topic, starting from the works by 
Steketee (1958) and Yoffe (1960, 1961).

The fault shape was extended to the more general case of 
triangle (Comninou and Dunders 1975, Jeyakumaran et  al 
1992, Meade 2007, Nikkhoo and Walter 2015). Maerten and 
colleagues took another step forward and developed a BEM 
code utilizing the triangular dislocation solution as the funda-
mental kernel function, which is now used intensively in Earth 
science (Maerten et al 2002, 2005, 2014). Most recently, the 
finite-dislocation solution in an isotropic elastic half-space was 
extended to the elastic TI (Yuan et al 2013b, Pan et al 2014) 
and general anisotropic (Chu et  al 2012a, 2012b, Pan et  al 
2015a, Vattre and Pan 2018) half-spaces. In the viscoelastic 
case without the inertia term, the Laplace domain solution can 
be simply obtained by replacing the elastic coefficients with 
the Laplace variable-dependent coefficients, and then carrying 
out the inverse Laplace transform. These inverses were carried 
out numerically for the isotropic viscoelastic case (Singh and 
Rosenman 1974, Piombo et al 2007) and for the TI viscoelas-
tic half-space case (Molavi Tabrizi and Pan 2015).

Besides the force- and dislocation-related GF solutions, 
various inclusion/inhomogeneity problems (Mura 1987, Li 
and Wang 2018) can be also solved and the corresponding 
GFs can be applied to different fields, including multi-phase 
coupled material solids (Liu et al 2001). An inclusion/inho-
mogeneity can be related either to an equivalent dislocation 
(Eshelby 1957, 1961, Mura 1987) or to an equivalent force 
(Pan 2004a, 2004b, Pan and Chen 2015). With the known 
fundamental solutions of the equivalent dislocation or equiv-
alent force, the inclusion/inhomogeneity approach can be 

applied to hydraulic fracture analysis (Chen et al 2018a), to 
finite 3D inhomogeneity in both elastic and viscoelastic half-
spaces (Wu and Wang 1988, Bonafede 1990, Wu et al 1991, 
Bonafede and Ferrari 2009, Zhong et al 2019) and even to the 
current quantum-wire and quantum-dot nanotechnology (Pan 
2004a, 2004b, Pan et al 2008, Zou and Pan 2012, Yue et al 
2015, Lee et al 2015). Furthermore, the dislocation solutions 
can be directly or indirectly applied to solve various crack/
fracture problems, as in Bonafede and Rivalta (1999a, 1999b) 
for the tensile dislocation/crack problems in a half-plane or a 
bimaterial plane. A brief review on elastic dislocation solu-
tions in geophysics can be found in van Zwieten et al (2013). 
Fault rupture and ground motion were recently investigated 
by Meng (2017) and Meng and Wang (2018) using the FEM-
related methods, with further open source codes available.

3.6. Time-harmonic GFs in full- and half-planes/spaces  
by forces

Under the action of a time-harmonic and concentrated line 
force in a full plane, the GFs for the anti-plane and in-plane 
deformation can be derived analytically (Achenbach 1973, 
Graff 1975, Kausel 2006). In a 3D full space, the transient 
GF in the time-domain can be found in Eringen and Suhubi 
(1974) and Aki and Richards (1980). Also in the 3D full-
space case, the time-harmonic GF of the point force can be 
expressed in an exact-closed form (Kausel 2006). However, 
for the corresponding half-space, there is no closed-form 
solution. The corresponding time-harmonic GFs were 
derived numerically by Banerjee and Mamoon (1990) fol-
lowing the superposition method in Mindlin (1936) for the 
corresponding static case. Some of the functions involve line 
integral to infinity. While in principle, these GF expressions 
can be utilized to find the corresponding dislocation GFs, 
we will discuss the corresponding dislocation GF associ-
ated with horizontally layered half-space (plane) media later 
where the half-space or half-plane is the special case of the 
layered structure.

Below, we list only the 2D full-plane and 3D full-space 
solutions, derived by Dominguez and Abascal (1984) and 
Kausel (2006). While the 2D half-plane solution was pre-
sented by Rangelov and Manolis (2010), the 3D half-space 
solution by Banerjee and Mamoon (1990) may contain some 
errors (Yuan and Pan 2016). Again, since the half-plane 
and half-space solutions are the special cases of their corre
sponding layered systems, these will be discussed more in the 
next section.

First, it is noted that the GF for the time-harmonic wave 
case is governed by

c2
p∂i∂kuk − c2

sεijkεklm∂jlum + ω2ui = −δin(x − 0)/ρ
�

(3.23)

where the force of unit magnitude is applied at the origin 
in the n-direction and the induced displacement GF is in 
i-direction at the field point x; εijk is the permutation sym-
bol; cp  and cs are the longitudinal and shear wave veloc-
ity of the material, i.e. in terms of the two Lamé constants, 
cp =

√
(λ+ 2µ)/ρ; cs =

√
µ/ρ. It should be noted that on 
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the right-hand side of (3.23), the delta function is divided by 
the material density ρ.

For an anti-plane (corresponding to the SH wave) line 
force (i.e. the force is in the z-direction) applied at (x, y )  =   
(0, 0) in the (x, y )-plane, the induced full-plane displacement 
GF in z-direction is

uz
z(r) =

−i
4µ

H(2)
0 (rω/cs)� (3.24)

where r is the distance between the field and source points, 
and H(2)

n  is the second Hankel function of order n, or Bessel 
function of the third kind.

For an in-plane line force (i.e. the P-SV wave) applied at 
the origin with force in α-direction (α  =  x, y ), the induced 
full-plane displacement GF in β-direction (β  =  x, y ) at dis-
tance r from the origin is

uα
β (r) = (ψδαβ + χr,αr,β)/µ� (3.25)

where r,j is the derivative of r with respect to xj , and

ψ = i
4

ï
H(2)

1 (ωr/cs)

ωr/cs
− c2

s
c2

p

H(2)
1 (ωr/cp)

ωr/cp
− H(2)

0 (ωr/cs)

ò

χ = i
4

[
c2

s
c2

p
H(2)

2 (ωr/cp)− H(2)
2 (ωr/cs)

]
.

�
(3.26)

Finally, for a concentrated point force in i-direction applied at 
the origin in 3D, the full-space displacement GF in j -direction 
at distance r from the origin is

ui
j(r) =

(ψδij + χr,ir,j)

4πµr� (3.27)

ψ = e−iωr/cp c2
s

c2
p

[
i

ωr/cp
+ 1

(ωr/cp)
2

]
+ e−iωr/cs

[
1 − i

ωr/cs
− 1

(ωr/cs)
2

]

χ = e−iωr/cp c2
s

c2
p

[
1 − 3i

ωr/cp
− 3

(ωr/cp)
2

]
− e−iωr/cs

[
1 − 3i

ωr/cs
− 3

(ωr/cs)
2

]
.

�
(3.28)

It is noted that by replacing  −iω with s and the elastic moduli 
with the s-dependent ones, one then obtains the GFs in the 
corresponding Laplace domain (i.e. equation (2.21)).

3.7. Transient GFs in full- and half-planes/spaces  
by forces/dislocations

While transient GFs due to concentrated forces and disloca-
tions are difficult to derive, some have been derived. These 
GFs should be particularly useful as benchmarks to verify the 
solutions based on the Fourier transform method presented 
above (i.e. first derive the GFs in the transformed-domain and 
then invert back them to the time-domain).

For the elastic isotropic case and under either impulsive 
source (i.e. δ(x  −  ξ)δ(t  −  τ)) or a given time history of the 
source (i.e. δ(x  −  ξ)f (t)), the full-space GFs of point forces 
and dipoles (and thus dislocations) can be found in Eringen 
and Suhubi (1974) and Aki and Richards (1980). Transient 
GFs in 2D and 3D full/half-planes and full/half-spaces due 
to forces and dipoles were collected and listed in details by 
Kausel (2006) with numerical examples.

For the general case of elastic anisotropy in a full domain 
(a full-plane or a full-space), Wang and Achenbach (1994) 

derived both 2D and 3D transient GFs of a concentrated force 
under impulsive time variation by Radon transform. The solu-
tions are in the form of a surface integral over a unit sphere for 
the 3D case and in the form of a contour integral over a unit 
circle for the 2D case. An interesting method was proposed by 
Yakhno and Cerdik Yaslan (2011) for deriving the 3D transient 
GFs. By this new method, the governing equations were first 
written in the form of the time-dependent first-order symmetric 
hyperbolic system with respect to the displacement velocity 
and stress components, and then solved as the summation of 
the Fourier-transformed images of the fundamental solution 
with respect to a space variable. The time-harmonic GFs in the 
full-plane/space domain were derived by Wang and Achenbach 
(1995). Tewary and Fortunko (1992) derived the retarded 
anisotropic GF in both full- and half-spaces where the source is 
delta function in space and delta or Heaviside function in time.

For the 3D half-space case, the Lamb’s problem (Lamb 
1904) is particularly useful. For the isotropic half-space 
with traction-free boundary conditions, Johnson (1974) 
derived the complete GFs using the Cagniard-de Hoop 
method. Feng and Zhang (2018) recently revisited the solu-
tion by Johnson (1974) and were able to obtain the exact 
closed-form GFs for the Lamb’s problem using the superpo-
sition method where only elementary algebraic expressions 
and elliptic integrals were involved. For the corresponding 
anisotropic half-space (half-plane), Wang and Achenbach 
(1996) derived the GFs via superposition of the time-
transient plane waves. When the concentrated forces are 
applied on the surface, the GF expression is given in terms 
of integrals defined in a finite domain, which has a simple 
structure for convenient computation. The computationally 
efficient half-space GF derived by Tewary and Fortunko 
(1992) should be also a good reference.

3.8.  Summary of section 3

Since various line-dislocation solutions are available (Hirth 
and Lothe 1982) or can be derived, many 2D fault problems 
in geophysics can be solved by making use of the simple 
relation between the two as illustrated by figure 3. In other 
words, instead of carrying out the line integral of the con-
centrated GF solution along the 2D fault boundary, one just 
needs to superpose the two line-dislocation solutions corre
spondingly located at the ends of the 2D fault. Similarly and 
equally important is the relation between a 3D fault in geo-
physics and a (3D) dislocation loop in material science, where 
the area integral could be inverted into a simple line integral 
along the loop of the fault. Making use of it, one needs only 
to carry out the line integral along the loop of the disloca-
tion (or the boundary of the fault), instead of the area integral 
over the 3D fault plane. Certain time-harmonic GFs in 2D and 
3D domains are also briefly listed and/or discussed, involv-
ing both material isotropy and anisotropy. It is finally pointed 
out that while various analytical approaches with solutions in 
TI media can be found in Fabrikant (1989, 1991) and Ding 
et al (2006), many elastic GFs are listed in the handbook by 
Kachanov et al (2003).
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4.  GFs in layered half-spaces

In this section, we present the general formulation for the elas-
tic and viscoelastic gravitational deformation in layered half-
spaces, but concentrate on the elastostatic deformation and 
wave motion induced by concentrated forces and dislocations. 
Both 2D and 3D GFs in elastic (viscoelastic) and layered half-
plane and layered half-space, with and without gravity, are 
considered. The sources will be concentrated forces and dislo-
cations, or forces and dislocations applied over a given finite 
domain. Source functions and GF solutions are expressed 
in terms of both Cartesian and cylindrical systems of vector 
functions, with their expansion coefficients being derived via 
the dual variable and position (DVP) method. In geophysics, 
the regional structure of our Earth is a horizontally layered 
half-space.

4.1.  General solutions with gravity

Considering the gravitational contribution, the general gov-
erning equation in terms of the cylindrical coordinate system 
can be written as

σji,j + (ρguz),i − ρψ,i − g(ρuj),jδiz + fi + cinerui = 0
ψ,jj + 4πG(ρuj),j = 0

�
(4.1)

where ciner is defined in equation (2.21) for the static, time-
harmonic, and viscoelastic deformations. The sign convention 
used here is consistent with that in Farrell (1972) and Rundle 
(1980).

If we further assume that the material is TI with its sym-
metry axis along z-direction, then the constitutive relation 
between the stresses (σij) and the deformation gradients (ui,j ) 
(in terms of the cylindrical coordinate system) is

σrr = c11ur,r + c12r−1(uθ,θ + ur) + c13uz,z

σθθ = c12ur,r + c11r−1(uθ,θ + ur) + c13uz,z

σzz = c13ur,r + c13r−1(uθ,θ + ur) + c33uz,z

σθz = c44(uθ,z + r−1uz,θ);σrz = c44(uz,r + ur,z)

σrθ = c66(r−1ur,θ + uθ,r − r−1uθ)�
(4.2)

where cij are the elastic moduli (N/m2) with c66  =  0.5(c11  −  
 c12), which can be also regarded as the Laplace domain  
coefficients. This constitutive relation is similar to equa-
tion (2.3) in terms of the Cartesian coordinate system.

We define the flux component in z-direction, qz, related to 
the perturbed potential ψ as

qz = ψ,z + 4πGρuz.� (4.3)
For a given half-space (plane) problem with possible inho-
mogeneity in vertical z-direction, the general approach for 
solving the problem is to first apply an integral transform to 
suppress the horizontal variables. While the Fourier transform 
or the Cartesian system of vector functions (Pan 1989a) can 
be applied for the general deformation, axisymmetric prob-
lems are usually solved by applying the Hankel transform, or 
better the cylindrical system of vector functions (Pan 1989a). 
For the problem at hands where the governing equations are 

axisymmetric, we solve it in terms of the cylindrical system of 
vector functions (L, M, N) (Pan 1989a, 1989b), as also listed 
in appendix where definition of the basis functions (L, M, N) 
and their properties are discussed. In other words, we expand 
displacement and traction vectors as

u(r, θ, z) ≡ urer + uθeθ + uzez

=
∑
m

´ +∞
0 [UL(z)L(r, θ) + UM(z)M(r, θ) + UN(z)N(r, θ)]λdλ

t(r, θ, z) ≡ σrzer + σθzeθ + σzzez

=
∑
m

´ +∞
0 [TL(z)L(r, θ) + TM(z)M(r, θ) + TN(z)N(r, θ)]λdλ

� (4.4)
and the perturbed potential and flux z-component as

ψ =
∑
m

´ +∞
0 [Ψ(z)S(r, θ)]λdλ

qz =
∑
m

´ +∞
0 [Q(z)S(r, θ)]λdλ.

�
(4.5)

The body force (including the equivalent body force of dislo-
cations) can be also expanded as

f(r, θ, z) =
∑

m

ˆ +∞

0
[FL(z)L(r, θ) + FM(z)M(r, θ) + FN(z)N(r, θ)]λdλ.

� (4.6)
The surface boundary conditions can be also expressed in 
terms of them: a scalar function is expanded in terms of S, and 
a vector function in terms of (L, M, N) vector system.

Substituting these into the governing equations, one obtains 
a linear system of ordinary differential equations with respect 
to z for the expansion coefficients. Since in general the elas-
tic coefficients cij and density ρ (and gravity g) are functions 
of the depth-coordinate z, this system of differential equa-
tions needs to be solved numerically, using, for instance, the 
Runge–Kutta method (i.e. Abramowitz and Stegun (1970)).

On the other hand, if cij and ρ (and g) depend weakly (or 
piece-wisely) on z, which is true for the problem under considera-
tion, one can then approximate them as piece-wise functions of z. 
In other words, we arrive at a layered half-space where cij and ρ 
(and g) in each layer are uniform as illustrated in figure 4. For this 
case, it can be shown that the N-type solution (the coefficients of 

Figure 4.  A layered structure over a homogeneous half-space with 
source located in layer j  at z  =  zs. The source layer is divided into 
two sublayers: sublayer j 1 of thickness zs  −  zj −1, and sublayer j 2 
of thickness zj   −  zs. Concentrated or distributed loads can be also 
applied on the top surface (e.g. a uniform vertical load with load 
density q within a given surface region).
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vector function N) is purely elastic, independent of the gravity 
effect. The associated deformation is torsional and is governed 
by the following ordinary differential equations in the given layer 
(with material properties c44, c66, and ρ)

U′
N = TN/c44

T ′
N = λ2c66UN − FN − cinerUN� (4.7)

where the prime denotes the derivative with respect to z. As 
for the LM-type problem in any given layer (the coefficients 
of vector functions L, M, and of scalar function S), we have, 
from the constitutive and flux-potential relations,

TL = −λ2c13UM + c33U′
L

TM = c44(UL + U′
M)

Q = Ψ′ + 4πGρUL.
�

(4.8)

The other three equations can be derived from the governing 
equation (4.1), which results, in the given layer,

−λ2c11UM(z) + c13U′
L(z) + T ′

M(z) + ρgUL − ρΨ+ FM(z) + cinerUM(z) = 0
−λ2TM(z) + T ′

L(z)− ρΨ′ + λ2ρgUM + FL(z) + cinerUL(z) = 0
(Ψ′′ − λ2Ψ) + 4πGρ(U′

L − λ2UM) = 0
�

(4.9)

where the material properties (cij, ρ, and g) are those related to 
each layer. Again, since the N-type problem equation  (4.7) is 
related to the distortional deformation which is independent of 

the gravity effect, its solution is the same as that in the purely 
elastic system (Pan 1989a, 1989b). On the other hand, the LM-
type deformation is coupled to the gravity, which is governed by 
the following set of first-order differential equations in each layer

d
dz




UL

UM

Ψ

TL

TM

Q



=




0 λ2c13/c33 0 1/c33 0 0
−1 0 0 0 1/c44 0

−4πGρ 0 0 0 0 1
−4πGρ2 − ciner −ρgλ2 0 0 λ2 ρ

−ρg c11λ
2 − (c13c13/c33)λ

2 − ciner ρ −c13/c33 0 0
0 λ24πGρ λ2 0 0 0







UL

UM

Ψ

TL

TM

Q



−




0
0
0

FL

FM

0




.

� (4.10)
Equation (4.10) contains six equations for six unknown expan-
sion coefficients. The general solution in each layer can be 
expressed in terms of the eigenvalues and eigenvectors of the 
coefficient matrix on the right-hand side of equation  (4.10). 
However, since the eigenvalues and eigenvectors are also func-
tions of the transformation variable (also called wavenumber) 
λ, physically sounded solution may not exist for all λ from zero 
to positive infinity. For the elastic isotropic, gravitational and 
layered half-space, Rundle (1980) found that depending on the 
λ value, the eigenvalues could be real, imaginary, or just zero.

This problem was studied by Wang (2005a, 2005b, 2007) and 
Wang et al (2006b) again, who has also provided a solution by 

making certain reasonable assumptions, including the Adams–
Williamson condition similar to that used by Longman (1963) 
for the corresponding layered spherical earth structure. This 
remedy method was discussed in details in the textbook by 
Segall (2010), and the corresponding formulation has been also 
implemented into the program PSGRN/PSCMP for studying the 
deformation and gravity change due to dislocations in a layered 
viscoelastic-gravitational half-space (Wang et al 2006b).

To illustrate the solution existence issue, we follow Wang 
(2005a, 2005b) and Segall (2010) by assuming that the prob-
lem is static (or quasi static, with ciner  =  0) and that only the 
constant gravity g is coupled to the elastic deformation. In 
other words, equation (4.10) is reduced to the following 4  ×  4 
system

d
dz




UL

UM

TL

TM


 =




0 λ2c13/c33 1/c33 0
−1 0 0 1/c44

0 −ρgλ2 0 λ2

−ρg c11λ
2 − (c13c13/c33)λ

2 −c13/c33 0







UL

UM

TL

TM


 .

� (4.11)
The general solutions of equation  (4.11) can be derived by 
assuming the following type of solutions

(UL, UM , TL, TM) = (a1, a2, a3, a4)eλpz� (4.12)

which results in the following four eigenvalues

p2
1,2 =

(c11c33 − 2c13c44 − c2
13)±

»
(c11c33 − 2c13c44 − c2

13)
2 − 4c33c44[c44c11 − (ρg/λ)2

]

2c33c44
.

�

(4.13)

It is observed that in order to avoid the purely imaginary 
eigenvalue (i.e. to have the problem solvable), the wavenum-
ber λ has to satisfy the following condition:

λ > λg ≡ ρg/
√

c11c44� (4.14a)

λ > λg ≡ ρg/
»

µe(λe + 2µe).� (4.14b)

The first relation is for the TI material and the second 
for the isotropic material with subscript ‘e’ for elasticity. 
Equation  (4.14) indicates that there will be no solution in 
the transformed domain if the wavenumber λ is less than the 
critical wavenumber λg. This is due to the fact that, in the per-
turbed half-space, the constant gravity g exists in the entire 
horizontal domain  −∞ < x, y   <   +∞  so that the solution 
there does not decay to zero (Amadei and Pan 1992).

Besides the remedy method by Wang (2005a, 2005b), 
the effect of gravity can be also considered by the following 
two simple/approximate approaches: (1) solving the prob-
lem numerically by introducing the gravity-related initial 
stress status (Aagaard et al 2013, 2017, Domez et al 2017); 
(2) including the gravity g by modifying the surface/interface 
condition, i.e. approximating the gravity contribution by the 
so-called ‘buoyancy restoring force’ (see, i.e. Pan (1990) and 
Barbot and Fialko (2010a)). Since locally the deformation 
would still be dominated by the elastic or visco-elastic nature, 
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a GF solution to the corresponding deformation without grav-
ity g in a layered visco-elastic half-space is fundamental, as 
briefly reviewed and presented below.

4.2.  General solutions in elastic or viscoelastic layered  
half-spaces

This subsection provides 2D/3D GFs in elastic (viscoelastic) 
and layered half-planes (2D) and layered half-spaces (3D). 
Surface loading cases have been extensively studied in geo-
mechanics as well as in geophysics. Under internal loading, 
we constrain our discussion to the concentrated forces and 
dislocations, with traction-free boundary conditions on the 
surface of the half-space (plane). Before we present the GF 
solutions, we first provide a brief review on the related litera-
ture since scientists from different fields have made contrib
utions in different ways.

As soil and/or rock foundation (and also pavement) is in 
general made of layered materials, surface (point and circu-
lar) and internal (concentrated and finite-size) loadings in the 
layered half-plane and half-space have been always active 
topics by researchers in different fields. In geomechanics, for 
surface loading over layered rock foundation, one may refer 
to the works by Wang and coworkers (see the review papers 
by Liao and Wang 1998, Wang et al 2003a). For both surface 
and internal loadings, and further from a more mathemati-
cal point of view with their applications to BEMs, one may 
refer to the works by Yue and colleagues (review papers by 
Yue (2015) along with many references, including Yue (1995, 
1996) and a recent monography by Xiao and Yue (2014)). 
We should also mention an early contribution made by Chan 
et al (1974) where the generalized Mindlin solution (i.e. the 
elastic solution due to an internal point force in an elastic lay-
ered half-space) was derived. In layered pavements, impor-
tant contributions were made by many, including the classic 
series of papers by Burmister (1945). It should be further 
mentioned that the approaches for solving the problems by 
these authors are semi-analytical and thus are very efficient 
(Chen et  al 2009, 2011). Two other papers contributing to 
the geomechanics are the ones by Small and Booker (1984, 
1986) where they proposed the finite layer analyses to the 
elastic layered structure modeling. The finite layer method 
is inspired from the finite element method (FEM), but in 
the former, one only needs to discretize along the thickness 
direction of the layered material and then to form the flexibil-
ity (or stiffness) matrix. Theory of an elastic layered system 
was also presented by Bufler (1971). An early brief review 
with the point-force GF solutions in a layered half-space can 
also be found in Pan (1997).

In Earth science and under surface loadings, early contrib
utions were made by Kuo (1969) and Singh (1986). An inter-
esting analytical solution was presented by Nakiboglu and 
Lambeck (1982) for predicting the deformation near Lake 
Bonneville of the flatly layered earth due to the time-depend-
ent vertical load where the viscoelastic layer property was 
considered. Surface loading over TI and layered half-spaces 
was also solved with numerical examples (Pan 1989a). A fast 
algorithm was further developed for fast calculation where 

the surface loads can involve many different stations on the 
surface (Pan et al 2007, Bevis et al 2015). A software prod-
uct was published for predicting the elastic and viscoelastic  
deformation of the half-space under surface loading 
(Grapenthin 2014).

For 2D dislocation or 2D fault (or a general concentrated 
2D source) in layered planes, scientists in solid mechanics 
contributed to this topic by studying the line dislocations as 
the GF sources. Wu and Chid (1995) derived the line-disloca-
tion solution in an anisotropic strip; Kelly et al (1995) solved 
the stress field due to a line dislocation in layered isotropic 
media; Ma and Lee (2009) presented a theoretical analysis 
for dislocations in an anisotropic and magnetoelectroelastic 
layered half-plane where the purely elastic solution is a spe-
cial case of their solution. More recent contributions on line 
dislocation-induced fields in layered elastic media are by Kuo 
(2014), Khanna and Kotousov (2015) and Xia et al (2016). 
In geophysics where the source is 2D fault, we refer to the 
works by Freund and Barnett (1976), Rybicki (1971, 1986) 
and Savage (1980, 1998). Xu and Mal (1987) derived the in-
plane GFs for a layered viscoelastic solid (2D).

For the corresponding 3D dislocations (or concentrated 
sources) within the purely elastic or viscoelastic layered 
half-space, GF solutions for the static or quasi-static defor-
mations were derived mostly in geophysics (Singh 1970,  
Ben-Menahem and Gillon 1970, Jovanovich et  al 1974a, 
1974b, Pan 1989b, Roth 1990, Hisada 1994, 1995, Zhu and 
Rivera 2002). Notice that once we have the point-dislocation 
GFs, solutions to the corresponding finite-dislocation source 
can be found by the simple method of superposition (Sato 
1971, Sato and Matsu’ura 1973, Matsu’ura and Sato 1975, 
Ma and Kusznir 1992, 1994, He et  al 2003, Fukahata and 
Matsu’ura 2005). Finite faulting in the layered elastic half-
space has also important applications on hydraulic fracture 
analyses as reported by Peirce and coworkers (Peirce and 
Siebrits 2001a, 2001b, Siebrits and Peirce 2002, Peirce et al 
2009). For calculating the static deformation in a layered elas-
tic half-space caused by finite dislocation, Wang et al (2003b) 
further published a FORTRAN code. By applying the Laplace 
transform, the corresponding viscoelastic deformation by 
finite dislocations can be also solved (Rundle 1978, Matsu’ura 
et al 1981, Folch et al 2000, Fukahata and Matsu’ura 2006, 
Hashima et al 2014), using the normal mode expansion (NME) 
approach (see, Schapery (1962)) for inverse Laplace transform. 
Deformation by a finite fault in the elastic and layered half-
space with gravity was solved by Rundle (1981), and the corre
sponding deformation by a finite fault in a viscoelastic-gravity 
layered half-space was reported by Rundle (1982) and Wang 
et al (2006b) where the latter also published their FORTRAN 
code with the inverse Laplace transform being carried out by 
the FFT method. Viscoelastic (Maxwell) deformation by a 
finite fault in 3D layered half-spaces was also solved semi-
analytically by Smith and Sandwell (2004) via the 3D Fourier 
transform method. The inverse Laplace transform issue will be 
discussed further in the next section.

Next, we present the GF solutions in horizontally layered 
system made of elastic media, in terms of the cylindrical (for 
3D) and Cartesian (for both 2D and 3D) systems of vector 
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functions. The corresponding viscoelastic deformation can be 
obtained by applying the correspondence principle first and 
then carrying out the inverse Laplace transform. The time-har-
monic deformation for general anisotropic and layered media 
will be also presented.

For the quasistatic deformation (purely elastic or viscoe-
lastic without the inertia term), the eigenvalues p i depend 
only on the material properties of the layer, independent of 
the wavenumber λ. In terms of both Cartesian and cylin-
drical systems of vector functions, the point source (point 
force and point dislocation) solutions can be derived (Pan 
1997 for point force, and Pan 1989b for point dislocation). 
It is noted that, under the assumption of TI, the solution 
matrix in each layer as well as the propagator matrix are 
exactly the same in terms of both systems of vector func-
tions so that both 2D and 3D deformations can be treated 
uniformly. Furthermore, in terms of the cylindrical system 
of vector functions, the axisymmetric deformation (and the 
deformation associated with volumetric change) is related 
to the LM-type only and torsional deformation to the N-type 
only. In the time-harmonic case, the LM-type is associated 
with Rayleigh (P and SV) wave and the N-type the Love 
(SH) wave. In terms of the Cartesian system of vector func-
tions, the LM-type is associated with the in-plane deforma-
tion/wave (Rayleigh), and the N-type with the anti-plane or 
out-of-plane deformation/wave (Love).

By letting ρg  =  0 in equation (4.11), we then have four 
eigenvalues for the purely elastic (or viscoelastic) case 
(depending on the layer material properties only, but inde-
pendent of the wavenumber λ), and their corresponding 
eigenvectors (LM-type). As such, the general solution 
in each homogenous (TI) layer (zj −1  <  z  <  zj ) can be 
expressed as, including also the N-type, (Pan 1989a, 1989b, 
Liu et al 2018):

ñ
U(z)
T(z)

ô
=

ñ
E11 E12

E21 E22

ô ñ〈
eλp∗12(z−zj)

〉
0

0
〈
eλp∗34(z−zj−1)

〉
ô ñ

c+
c−

ô

�
(4.15a)

〈
eλp∗12z

〉
=

ñ
eλp1z 0

0 eλp2z

ô
;

〈
eλp∗34z

〉
=

ñ
eλp3z 0

0 eλp4z

ô

with Re(p1) � Re(p2) � Re(p3) � Re(p4)�
(4.15b)

ñ
UN(z)

TN(z)/λ

ô
=

ñ
EN

11 EN
12

EN
21 EN

22

ô ñ
eλpN

1 (z−zj) 0
0 eλpN

2 (z−zj−1)

ô ñ
cN
+

cN
−

ô

pN
1 =

√
c66/c44; pN

2 = −
√

c66/c44� (4.15c)

where [Eij] are the submatrices of the eigenvectors of  
LM-type and EN

ij  are the elements of the eigenvectors of N-
type. Also in equation (4.15a),

U = [UL,λUM]
t; T = [TL/λ, TM]

t.� (4.16)

By eliminating coefficients c+, c−, cN
+, and cN

−
 in equa-

tions (4.15a) and (4.15c), one can find the following propa-
gating relations for both LM- and N-types between the upper 
(z  =  zj −1) and lower (z  =  zj ) interfaces of any layer j  (which is 
assumed to be source free, Liu et al 2018)

ñ
U(zj−1)

T(zj)

ô
=

ñ
S j

11 S j
12

S j
21 S j

22

ô ñ
U(zj)

T(zj−1)

ô

ñ
UN(zj−1)

TN(zj)/λ

ô
=

ñ
N j

11 N j
12

N j
21 N j

22

ô ñ
UN(zj)

TN(zj−1)/λ

ô�

(4.17)

where the submatrices and matrix elements are

[S j] ≡
ñ

S j
11 S j

12

S j
21 S j

22

ô
=

ñ
E11

〈
e−λp∗12hj

〉
E12

E21 E22
〈
eλp∗34hj

〉
ô

×
ñ

E11 E12
〈
eλp∗34hj

〉
E21

〈
e−λp∗12hj

〉
E22

ô−1

�

(4.18)

[N j] ≡
ñ

N j
11 N j

12

N j
21 N j

22

ô
=

ñ
EN

11e−λpN
1 hj EN

12

EN
21 EN

22eλpN
2 hj

ô

×
ñ

EN
11 EN

12eλpN
2 hj

EN
21e−λpN

1 hj EN
22

ô−1

�

(4.19)

where hj   =  zj   −  zj −1 is the thickness of layer j . Similar propa-
gating relation as equation (4.17) can be written for its adja-
cent layer j   +  1 (Liu et al 2018).

Assuming that the interface zj  between the two layers are 
well-bonded (i.e. the displacements and tractions are continu-
ous at z  =  zj ), and propagating the layer relation (similar to 
equation  (4.17)) from layer j  to layer j   +  1, the following 
recursive relation is achieved
ñ

U(zj−1)

T(zj+1)

ô
=

ñ
S j:j+1

11 S j:j+1
12

S j:j+1
21 S j:j+1

22

ô ñ
U(zj+1)

T(zj−1)

ô

ñ
UN(zj−1)

TN(zj+1)/λ

ô
=

ñ
N j:j+1

11 N j:j+1
12

N j:j+1
21 N j:j+1

22

ô ñ
UN(zj+1)

TN(zj−1)/λ

ô

�
(4.20)

where the involved submatrices and elements are defined as

S j:j+1
11 = S j

11S j+1
11 + S j

11S j+1
12 [I − S j

21S j+1
12 ]

−1
S j

21S j+1
11

S j:j+1
12 = S j

11S j+1
12 [I − S j

21S j+1
12 ]

−1
S j

22 + S j
12

S j:j+1
21 = S j+1

21 + S j+1
22 [I − S j

21S j+1
12 ]

−1
S j

21S j+1
11

S j:j+1
22 = S j+1

22 [I − S j
21S j+1

12 ]
−1

S j
22

�

(4.21a)

N j:j+1
11 = N j

11N j+1
11 + N j

11N j+1
12 [1 − N j

21N j+1
12 ]

−1
N j

21N j+1
11

N j:j+1
12 = N j

12 + N j
11N j+1

12 [1 − N j
21N j+1

12 ]
−1

N j
22

N j:j+1
21 = N j+1

21 + N j+1
22 [1 − N j

21N j+1
12 ]

−1
N j

21N j+1
11

N j:j+1
22 = N j+1

22 [1 − N j
21N j+1

12 ]
−1

N j
22

�

(4.21b)

where [I] is a 2  ×  2 identify matrix. This new recursive rela-
tion (4.21) can be propagated in the layered half-space involv-
ing multiple layers, as long as the interfaces are perfect, or 
well-bonded. As an example, we choose the LM-type to derive 
the transformed coefficients. We assume that the surface is 
traction-free and that at z  =  zs in layer j  there is a given con-
centrated source (figure 4). We now propagate equation (4.20) 
from the surface z  =  z0 to the upper side of the source zs−; 

Rep. Prog. Phys. 82 (2019) 106801



Review

19

then from the lower side of the source zs+ to the last interface 
z  =  zn of the layered half-space. This gives us

ñ
U(z0)

T(zs−)

ô
=

ñ
S1:j1

11 S1:j1
12

S1:j1
21 S1:j1

22

ô ñ
U(zs−)

T(z0)

ô

ñ
U(zs+)

T(zn)

ô
=

ñ
S j2:n

11 S j2:n
12

S j2:n
21 S j2:n

22

ô ñ
U(zn)

T(zs+)

ô
.

�

(4.22)

Making use of the boundary conditions on the surface, the 
discontinuity conditions at the source level, and the condi-
tions in the last homogeneous half-space, we can eventually 
solve analytically the expansion coefficients on the surface. 
After that, similar relations as equation (4.22) can be used to  
find the solutions at any z-level. It is noted that the new 
propagator matrix—the DVP method as introduced in equa-
tion  (4.20)—is very stable at large/small λ and thin/thick 
layer, as has been demonstrated by many researchers (Zhong 
et al 2004, Cai and Pan 2018, Liu et al 2018).

As an example, we assume that the concentrated disloca-
tion source is 3D with component nxvy  (or vxny , noticing that 
the dislocation direction vj  and fault normal direction nj  are 
undistinguishable). Then, the displacements at any depth z can 
be expressed as (with the expansion coefficients UL, UM and 
UN being solved from equation (4.22) using the DVP method)

ur(r, θ, z) = − sin(2θ)
´ +∞

0

î
UM(z)

i
∂J2(λr)

∂r + 2UN(z)J2(λr)
r

ó
λdλ

uθ(r, θ, z) = − cos(2θ)
´ +∞

0

î
2UM(z)J2(λr)

ir + UN(z)∂J2(λr)
∂r

ó
λdλ

uz(r, θ, z) = − sin(2θ)
´ +∞

0

î
UL(z)J2(λr)

i

ó
λdλ.

�

(4.23)

Similar expressions can be derived for all the strains and 
stresses at the given z-level, with the final expression involving 
only simple line integration as in equation (4.23). The numer
ical integration involved can be carried out using the accurate 
Bessel function integral program (e.g. Lucas 1995, Ratnanather 
et al 2014) to find the physical-domain solutions (e.g. Pan 1997) 
and Pan and Han (2004)). These provides the displacements 
and strains/stresses at that depth of the given layered half-space 
due to the given dislocation sources (for both 2D line and 3D 
point faults). Therefore, the only left task is to derive the source 
functions corresponding to the concentrated force and disloca-
tion, which are presented below.

4.3.  Source functions of concentrated forces  
and dislocations

In terms of the Cartesian or cylindrical system of vector func-
tions, the source functions Us, Ts, UNs, and TNs (with subscript 
s for the source) are defined as the discontinuities at the source 
level z  =  zs

ULs = UL(zs + 0)− UL(zs − 0)
UMs = UM(zs + 0)− UM(zs − 0)
UNs = UN(zs + 0)− UN(zs − 0)
TLs = TL(zs + 0)− TL(zs − 0)

TMs = TM(zs + 0)− TM(zs − 0)
TNs = TN(zs + 0)− TN(zs − 0).

�

(4.24)

Notice that for the elastic-gravitational deformation, there is 
no discontinuity on the gravitational coefficients Ψ and Q if 
the source is the concentrated force or dislocation.

For a point force vector f  of unit amplitude applied at  
(x, y , z)  =  (r, θ, z)  =  (0, 0, zs) with directional components nj , 
we have (in terms of both Cartesian and cylindrical coordinate 
systems, respectively)

fj(x, y, z) = δ(x)δ(y)δ(z − zs)nj� (4.25a)

fj(r, θ, z) =
δ(r)δ(θ)δ(z − zs)

r
nj.� (4.25b)

Expanding (4.25a) and (4.25b) in terms of the Cartesian and 
cylindrical systems of vector functions, respectively, we find 
the corresponding expansion coefficients (Pan 1997). For the 
point force in terms of Cartesian vector system, we have

FL(z) = δ(z − zs)nz/(2π)
FM(z) = −δ(z − zs)i(αnx + βny)/(2πλ2)

FN(z) = −δ(z − zs)i(βnx − αny)//(2πλ2)
�

(4.26)

and in terms of the cylindrical system, we have

FL(z) = δ(z − zs)nz/
√

2π (m = 0)
FM(z) = −δ(z − zs)(∓nx + iny)/(2λ

√
2π) (m = ±1)

FN(z) = −δ(z − zs)(inx ± ny)/(2λ
√

2π) (m = ±1).
�

(4.27)
This concentrated force causes the following nonzero discon-
tinuities or the source functions as

TLs = −nz/(2π)
TMs = i(αnx + β ny)/(2πλ2)

TNs = i(β nx − αny)/(2πλ2)
�

(4.28)

in terms of the Cartesian vector system, and
TLs = −nz/

√
2π (m = 0)

TMs = (∓nx + iny)/(2λ
√

2π) (m = ±1)
TNs = (inx ± ny)/(2λ

√
2π) (m = ±1)

�
(4.29)

in terms of the cylindrical vector system.

Remark 4.1.   For the axisymmetric deformation (i.e. the 
force component is in z-direction only), we have m  =  0 in 
terms of the cylindrical system of vector functions. For 2D 
line forces in the (x, z)-plane, we have only 1D-type Fourier 
transform in the Cartesian system of vector functions (Pan 
1989a, 1989b). As such, in order to reduce it to the 2D plane-
strain (and anti-plane) deformation, we only need to replace 
2π by 

√
2π  and β by 0 (thus, λ  =  |α|) in the expression of the 

3D source functions, which gives the source functions corre
sponding to the 2D line forces.

For a point dislocation of magnitude Δu (i.e. Δuj   =  Δuνj , 
with νj  being the cosine of the dislocation magnitude, or the 
Burgers vector direction) located over a small element dA cen-
tered at (x, y , z)  =  (0, 0, zs) with its normal direction ni, we 
have the equivalent body force (equation (2.31), or Aki and 
Richards 1980) in the Cartesian coordinate system as

fl(x) = −∆udAcijlpnjνi
∂

∂xp
[δ(x)δ(y)δ(z − zs)].� (4.30)
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If the source is described by (r, θ, z)  =  (0, 0, zs), we have the 
equivalent body-force in the cylindrical coordinate system as

fl(x) = −∆udAcijlpnjνi
∂

∂ηp

ï
δ(r)δ(θ)δ(z − zs)

r

ò
� (4.31)

where ∂η1  =  ∂r, ∂η2  =  r∂θ, ∂η3  =  ∂z.
Expanding the equivalent body-force in terms of the 

Cartesian and cylindrical systems of vector functions, we find 
that the expansion coefficients of the equivalent body-force 
can be expressed as Pan (1989b)

FL(z) = Fδ
Lδ(z − zs) + Fd

Lδ
′(z − zs)

FM(z) = Fδ
Mδ(z − zs) + Fd

Mδ
′(z − zs)

FN(z) = Fδ
Nδ(z − zs) + Fd

Nδ
′(z − zs)

�
(4.32)

where a prime indicates the derivative with respect to z. The 
quantities with superscripts δ and d are the proportional 
expansion coefficients, which can be derived easily. Thus, 
for the TI material and in terms of the reduced Voigt elastic 
constants (with isotropy being the special case), the source 
functions at the source point z  =  zs can be found in terms of 
both systems of vector functions (Takeuchi and Saito 1972, 
Kennett 1983, Pan 1989b). These important source functions 
are listed below.

For a point dislocation at z  =  zs, the source functions in 
terms of the Cartesian system of vector functions are (omit-
ting factor ΔudA/(2π))

ULs = (nxνx + nyνy)c13/c33 + nzνz

UMs = i[α(nxνz + nzνx) + β(nyνz + nzνy)]/λ
2

TMs = −(nxνx + nyνy)c2
13/c33

+[nxνx(α
2c11 + β2c12) + nyνy(α

2c12 + β2c11)

+2(nxνy + nyνx)αβc66]/λ
2

�
(4.33a)

UNs = i[β(nxνz + nzνx)− α(nyνz + nzνy)]/λ
2

TNs = [(nxνy + nyνx)(β
2 − α2) + 2(nxνx − nyνy)αβ]c66/λ

2
�

(4.33b)
where (nj νi) represents the dislocation source pairs.

Special case: In 2D (x, z)-plane, we have only 1D-type 
Fourier transform in the Cartesian system of vector functions. 
In order to reduce the source functions to 2D plane-strain 
(anti-plane) deformation, we only need to replace 2π by 

√
2π  

and β by 0 (thus, λ  =  |α|) in the expression of the 3D source 
functions (Pan 1989b).

For a point dislocation at z  =  zs, the source functions in 
terms of the cylindrical system of vector functions (omitting 
factor ΔudA/√  (2π)) are

ULs = (nxνx + nyνy)c13/c33 + nzνz (m = 0)
UMs = [±(nxνz + nzνx)− i(nyνz + nzνy)]/(2λ) (m = ±1)
TMs = [(c11 + c12)/2 − c2

13/c33](nxνx + nyνy) (m = 0)
= [(nyνy − nxνx)± i(nxνy + nyνx)]c66/2 (m = ±2).

�
(4.34a)

UNs = [−i(nxνz + nzνx)∓ (nyνz + nzνy)]/(2λ) (m = ±1)
TNs = [(nxνy + nyνx)± (nxνx − nyνy)]c66/2 (m = ±2).
�

(4.34b)
Special case: For an axisymmetric dislocation source, we 
have only the terms related to m  =  0. This dislocation source 

is physically an expansion source where we have only the 
opening displacement discontinuity along the normal direc-
tion of the dislocation plane. The reduced source functions are

ULs = (nxνx + nyνy)c13/c33 + nzνz (m = 0)
TMs = [(c11 + c12)/2 − c2

13/c33](nxνx + nyνy) (m = 0).
�

(4.35)
Remark 4.2.   For general material anisotropy, the source 
functions can be expanded and solved in terms of 2D Fourier 
transforms, as presented below for the time-harmonic deforma-
tion. Actually, under the assumption of elastostatic deformation, 
the dislocation-induced fields in general anisotropic and layered 
solids were also investigated by researchers from solid mechan-
ics of point of view (Ghoniem and Han 2005, Gao and Larson 
2015, Vattre and Pan 2019, Yuan et al 2019). These works, par
ticularly the most recent ones (Vattre and Pan 2019, Yuan et al 
2019), could be utilized for direct geophysics applications.

Remark 4.3.   Besides the concentrated forces and disloca-
tions, source functions of other concentrated sources, such as 
the moments and force couples, can also be derived and ana-
lyzed (Takeuchi and Saito 1972, Kennett 1983).

Remark 4.4.   It should be further noted that if the nor-
mal direction of dislocation element is along the depth 
direction, one does not need to find the equivalent body-
force; the discontinuity of the displacements on the given 
z-level can be directly applied to derive the solutions (see, 
e.g. Chu et  al (2013) and Zhao et  al (2013, 2014)). This 
further indicates that for this special orientation of the dis-
location plane, the source functions related to the traction 
vectors are zero!

Remark 4.5.   For the viscoelastic deformation, the expan-
sion coefficients are in the Laplace domain s. Thus in the 
source function expressions, the elastic coefficients cij be-
come the functions of the Laplace variable s. Furthermore, 
depending on whether the force/dislocation source is impul-
sive (proportional to the delta function δ(t)) or constant after 
t  >  0 (proportional to the Heaviside function H(t)), the source 
functions may need to be modified slightly by a factor.

Remark 4.6.   For the time-harmonic case, the source func-
tions for concentrated force and dislocation are the same as 
those provided above, except that these source functions are 
now proportional to the time-harmonic factor e−iωt. Notice 
that for this case, the general solutions in the given layer and 
the propagating relations among different layers are different 
since the eigenvalues and eigenvectors are also functions of 
the given frequency. This is discussed in the next subsection.

4.4. Time-harmonic GFs in anisotropic and layered elastic 
half-spaces

Wave propagation in horizontally layered half-spaces or 
layered plates (elastic without gravity) has been studied 
extensively in different engineering and science fields. 
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So many papers and books have been published, and as 
such, a detailed review would be difficult if not impos-
sible. Nevertheless, some beneficial review papers and 
books are listed here for possible future reference (e.g. 
review or thesis by Ursin (1983), Braga (1990), Chimenti 
(1997), Cormier (2007), books by Ewing et  al (1957), 
Brekhovskikh (1980), Kennett (1983), van der Hijden 
(1987), Chew (1990), Nayfeh (1995), Liu and Xi (2001), 
Chapman (2004) and Jensen et al (2011)). Notice further 
that although some were on horizontally layered structures, 
the approaches used could be useful to study wave propa-
gation in the corresponding layered sphere to be discussed 
in the next section.

As previously stated, if the problem is axisymmetric (asso-
ciated with isotropic or TI materials), the Hankel transform or 
cylindrical system of vector functions is commonly used to 
analyze the time-harmonic deformation in a horizontally lay-
ered half-space; otherwise, the Fourier transform or Cartesian 
system of vector functions needs to be applied. To connect 
the transformed coefficients from one layer to the other, the 
Thomson–Haskell propagator matrix method (Thomson 
1950, Haskell 1953) can be applied (Zhu and Rivera 2002). 
Theoretical and numerical seismogram syntheses in elas-
tic and layered half-spaces were investigated by many 
(Dunkin 1965, Harkrider 1970, Bouchon 1993, 2003, Chen 
1993, 1999, Chen et  al 1996, Chen and Zhang 2001, Chen 
and Chen 2002, Wu and Chen 2016, Fryer and Frazer 1984, 
1987, Chapman 1978, 2003). A numerically stable algorithm 
for any frequency was proposed by O’Toole and Woodhouse 
(2011) where a brief review on various algorithms in han-
dling both lower and higher frequencies was given. O’Toole 
and Woodhouse (2011)’s approach was based on the minor 
matrix method by Gilbert and Backus (1966). Notice again 
that many approaches developed for the horizontally layered 
system can be equally applied to the corresponding layered 
spherical system.

Besides the works by geophysicists, time-harmonic GFs 
in layered half-spaces have been also derived by engineers. 
These include time-harmonic point-force GFs (Kausel and 
Peek 1982, Apsel and Luco 1983, Luco and Apsel 1983, 
Guzina and Pak 2001, Pak and Guzina 2002, Khojasteh et al 
2011), solutions to the periodic surface loading on layered 
composites (Mal 1988), and time-harmonic point-dislocation 
GFs (Kundu and Mal 1985).

Below we briefly present the time-harmonic solutions due 
to a given concentrated source within a generally anisotropic 
and layered elastic half-space. The solutions are based on the 
mathematically elegant and computationally powerful Stroh 
formalism (Ting 1996) along with the stable DVP method. 
We define the following 2D Fourier transform pairs, corre
sponding to the horizontal space variables xα, as (which is 
already in the frequency domain)

f̃ (z, kα) =
ˆ ∞

−∞

ˆ ∞

−∞
f (z, xα)e−ikαxαdx1dx2

�

(4.36a)

f (z, xα) =
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞
f̃ (z, kα)eikαxαdk1dk2

�

(4.36b)

where the repeated Greek index α takes the summation from 
1 to 2.

Applying the Fourier transform (4.36a) to (2.6), we have, in 
the transformed domain (kα, also in the frequency ω-domain)

−k2Qjlũl + ik(Rt
jl + Rjl)ũl,3 + Tjlũl,33 + f̃j + ρω2ũj = 0

� (4.37)
where the superscript t denotes transpose of a vector or matrix, 
and the matrices [Q], [R], and [T] are defined as

Qik = cjiksmjms, Rik = cjiksmjns, Tik = cjiksnjns� (4.38)
with




k1

k2

0


 = km ≡

»
k2

1 + k2
2m;

m =




m1

m2

0


 =



cos θ

sin θ

0


 ≡




k1/k
k2/k

0


 ; n =




0
0
1


 .

�

(4.39)

We also define the traction vector t (with components tj ) with 
unit normal ni (=(0, 0, 1) for the horizontally layered case), 
which has nothing to do with the unit vector n defined in equa-
tion (4.39), and the in-plane stress vector s as

tj = σijni = σ3j = c3jmlum,l

s ≡ (σxx,σxy,σyy)
t

= (c11mlum,l, c12ml um,l, c22ml um,l)
t

�
(4.40)

In the 2D Fourier-transformed domain, we have the traction 
and in-plane stresses expressed in terms of the transformed 
elastic displacements as

t̃ = (c31ml ũm,l, c32ml ũm,l, c33ml ũm,l)
t

s̃ ≡ (σ̃xx, σ̃xy, σ̃yy)
t

= (c11ml ũm,l, c12ml ũm,l, c22ml ũm,l)
t.�

(4.41)

We therefore have, in vector/matrix form (with ̃u = [ũ1 ũ2 ũ3]
t)

t̃ = ik[R]tũ + [T]ũ,3

s̃ = ik[Mdc]ũ + [Mrc]ũ,3
� (4.42)

where

[Mdc] =




c11m1 + c16m2 c16m1 + c12m2 c15m1 + c14m2

c61m1 + c66m2 c66m1 + c62m2 c65m1 + c64m2

c21m1 + c26m2 c26m1 + c22m2 c25m1 + c24m2




� (4.43a)

[Mrc] =




c15 c14 c13

c65 c64 c63

c25 c24 c23


 .� (4.43b)

Combining equation  (4.40) with (4.37), we finally arrive at 
the following set of first-order ordinary differential equations

d
dz

ñ
ũ
t̃

ô
=

ñ
−ikT−1Rt T−1

Qk2 − ρω2I − k2RT−1Rt −ikRT−1

ô ñ
ũ
t̃

ô
+

ñ
0
−f̃

ô
.

� (4.44)

In any homogeneous and anisotropic elastic layer free of the 
source, we assume that the solution of the homogeneous equa-
tion (4.44) as

ũ = aeikpz; t̃ = ikbeikpz� (4.45)

Rep. Prog. Phys. 82 (2019) 106801



Review

22

where the eigenvalue p  and eigenvectors a and b are the eigen-
solutions of the following eigensystem of equations
ñ

−T−1Rt T−1

RT−1Rt − Q + (ρω2/k2)I −RT−1

ô ñ
a
b

ô
= p

ñ
a
b

ô
.

� (4.46)
There are six eigenvalues and their corresponding eigen-
vectors from equation  (4.46), and therefore, we can express 
the general solution as, in layer j  bounded by zj  and zj −1  
(zj  – 1  ⩽  z  ⩽  zj , with thickness hj   =  zj   −  zj −1) (z  ≡  x3)
ñ

ikũ
t̃

ô
=

ñ
A1 A2

B1 B2

ô ñ〈
eikp1(z−zj)

〉
0

0
〈
eikp2(z−zj−1)

〉
ô ñ

c1

c2

ô

� (4.47)
where [c1, c2]t are coefficient vectors to be determined, and

A1 = [a1, a2, a3] , A2 = [a4, a5, a6]

B1 = [b1, b2, b3] , B2 = [b4, b5, b6]〈
eikp1z

〉
= diag[eikp1z, eikp2z, eikp3z]〈

eikp2z
〉
= diag[eikp4z, eikp5z, eikp6z]

�

(4.48)

with ai and bi being the eigenvectors corresponding to the 
eigenvalue p i. Notice that the eigenvalues are ordered as such 
that Im(p 1)  ⩽  Im(p 2)  ⩽  …  ⩽  Im(p 5)  ⩽  Im(p 6). Actually, the 
first three have a negative imaginary part and the last three 
have a positive imaginary part.

Similar to the static case discussed above, based on the 
general solution in each layer, we can derive the layer matrix 
and then the recursive relation between the adjacent layers. 
If there is a concentrated time-harmonic source (force or 
dislocation type) within a given layer, we then need to sub-
divide it into two sublayers and propagate the solutions by 
making use of the jump conditions (or the source functions) 
at the source level. These source functions can be easily 
derived as below.

We first define, similar to equation  (4.24), the following 
source functions for the time-harmonic wave problem as

ikũs = ikũ(zs + 0)− ikũ(zs − 0)
t̃s = t̃(zs + 0)− t̃(zs − 0).

� (4.49)
We assume that the general time-harmonic concentrated force 
as (proportional to e−iωt)

fj(z, xα) = δ(x1)δ(x2)δ(z − zs)fj(ω) ≡ δ(x)δ(y)δ(z − zs)fj(ω).�
(4.50)

After applying the 2D space Fourier transforms, we have

f̃j(z, kα) = δ(z − zs)fj(ω).� (4.51)
The source functions at z  =  zs corresponding to the concen-
trated time-harmonic force are therefore

ikũs = 0
t̃s = f(ω).

�
(4.52)

For a concentrated dislocation source, its equivalent body 
force in time-harmonic deformation can be expressed as

fl(z, xα;ω) = −∆u(ω)dAcijlpnjνi
∂
∂xp

[δ(x)δ(y)δ(z − zs)]

= −∆u(ω)dAcijl1njνi
d
dx [δ(x)]δ(y)δ(z − zs)

−∆u(ω)dAcijl2njνi
d
dy [δ(y)]δ(x)δ(z − zs)

−∆u(ω)dAcijl3njνiδ(x)δ(y) d
dz [δ(z − zs)].�

(4.53)

Applying the 2D Fourier transforms over xα, we have

−f̃l(z, kα;ω) = ∆u(ω)dAcmjlαikαnjνmδ(z − zs)

+ ∆u(ω)dAcmjl3njνm
d
dz

[δ(z − zs)].
�

(4.54)

Substituting the inhomogeneous term (4.54) to the first-order 
differential equation system (4.44), the corresponding discon-
tinuities can be found (i.e. Kennett (1983)). The total discon-
tinuity can be expressed as

ñ
ũ
t̃

ô

zs+

−
ñ

ũ
t̃

ô

zs−
=

ñ
0
f δ

ô
+

ñ
T−1f d

−ikRT−1f d

ô

� (4.55)
where

f δ ≡
[

f δl
]
≡ ∆u(ω)dAcmjlαikαnjνm

f d ≡
[

f d
l

]
≡ ∆u(ω)dAcmjl3njνm.

� (4.56)
Therefore, the source functions of the time-harmonic disloca-
tion applied at (0, 0, zs) are

ikũs = ikT−1f d

t̃s = f δ − ikRT−1f d.� (4.57)
Similar to the static case, we can propagate the solution coef-
ficients from the top surface to the upper level of the source 
and then from the lower level of the source to the last interface 
in the bottom. Making use of the given boundary conditions, 
source functions and the conditions on the last layer interface, 
the involved unknowns can be solved for the source-induced 
wave deformation. Should the top and bottom boundaries are 
traction-free and further without any source, we then arrive at 
the important dispersion equation, which can be solved numer
ically by a very efficient and accurate method (Zhu et al 2018).

Remark 4.7.   If ω  =  0, we then reduce the time-harmonic 
wave problem to the static deformation in a general aniso-
tropic and elastic layered half-space. This reduced problem 
was also solved for the general magnetoelectroelastic layered 
structure by Li and Pan (2016) with the purely elastic case as 
one of the special cases.

4.5.  Poroelastic and electromagnetic (EM) coupling

Besides gravity, poroelastic coupling would also influence 
the post-seismic deformation and stress fields (Booker 1974, 
Jonsson et al 2003, Segall 2010) and even induce aftershock 
(Nur and Booker 1972, Miller et al 2004). In general, under-
ground or the near-surface layer is not dry (or purely elastic), 
but filled with water. It was Biot (1956) who developed the 
poroelastic coupling theory so that the coupling between the 
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solid skeleton and the pore pressure could be properly ana-
lyzed. The Biot’s poroelasticity theory has many applications, 
as reviewed by Rice and Cleary (1976) for the general elas-
tic porous media with dislocations, by Detournay and Cheng 
(1993) in rock mechanics, and by Rudnicki (2001) for both 
faulting and failure of geomaterials. Notable monographies 
are those by Wang (2000), Selvadurai (2007), Selvadurai and 
Suvorov (2016) and Cheng (2016).

In analyzing earthquake activity, it was noticed that the 
aftershock frequency decays like a diffusive process. Pore fluid 
diffusion was first proposed by Nur and Booker (1972) as the 
time-dependent process responsible for aftershocks. Booker 
(1974) showed that in the case of a simple edge dislocation, 
shear stresses along a fault may be strongly coupled to pore 
pressure and could change appreciably over time due to fluid 
diffusion. When analyzing data of the Landers 1992 earth-
quake, Peltzer et  al (1998) argued that poroelastic rebound 
caused by pore fluid flow may also occur over greater distance 
from the fault, compensating the vertical ground shift produced 
by fault afterslip. Bosl and Nur (2002) tested the importance of 
pore fluid flow in producing aftershocks, and noticed that rising 
fluid pressure due to pore fluid flow and the resulting Coulomb 
stress change were strongly correlated with the time and loca-
tion of aftershock events. InSAR data spanning a period of 
seven years between Lander and Hector Mine earthquakes also 
revealed the poroelastic deformation due to fluid-filled upper 
crust (Fialko 2004). Analysis of afterslip distribution following 
the 2007 September 12 southern Sumatra earthquake also indi-
cated the significant correlation to the poroelastic deformation 
(Lubis et  al 2013). The short-time post-seismic deformation 
of the 2001 Kunlun earthquake was found to be correlated to 
the poroelastic rebound (Shao et al 2010). The 2011 Tohoku 
earthquake further induced the groundwater level change (Yan 
et al 2014) and poroelastic rebound (Hu et al 2014).

In analyzing earthquake-induced deformation and after-
shock, the fault plane permeability needs to be carefully exam-
ined. Rudnicki (1987) considered the shear dislocatoin on an 
impermeable plane in which the fluid mass flux vanishes. A 
shear propagating crack in a poroelastic solid was analyzed by 
Rice and Simons (1976) and Simons (1977) for the permeable 
plane and by Rudnicki and Koutsibelas (1991) for the imper-
meable plane. However, in practice, the glide plane is likely to 
be neither completely permeable nor impermeable, as consid-
ered by Song and Rudnicki (2017) in the case of a suddenly 
introduced shear dislocations on a leaky plane.

The interaction between the pore pressure and solid skeleton 
needs to be studied using the fully coupled poroelastic model 
with further consideration of layering in the earth medium. 
Wang and Kumpel (2003) derived the formulation and designed 
the corresponding code based on the propagator matrix method 
whilst Barbot and Fialko (2010b) developed a semi-analytical 
method based on the Fourier transformation method. The reci-
procity relation in poroelasticity was presented by Pan (1991) 
for the transient case, and by Wang et al (2015) for the time-
harmonic case. Concentrated dislocations in poroelastic media 
were also considered by Cheng and Detournay (1998) and Wang 
and Hu (2016). The fully coupled model with the source func-
tions (including the fluid dilation contribution) was presented in 

Pan (1999) for the layered poroelastic half-space. An interest-
ing and related extension is the work by Song et al (2016) on 
the Eshelby inclusion in fluid-filled porous media. It is further 
noticed that dislocation in poroelastic media is analogue to that 
in diffusive materials, which has been an active research topic 
in recent years (i.e. Song et al (2019)).

In a fluid-saturated porous elastic medium, besides the 
coupling between the fluid and solid phases, EM fields could 
be further coupled due to the well-known electrokinetic 
effect, which arises from the existence of the electric double 
layer formed at the boundary of the solid and fluid phases 
(Pride 1994, Revil et al 1999a, 1999b). This multi-coupling 
among solid, fluid and EM fields substantially complicates 
the problem. It was Pride (1994) who first derived the com-
plete boundary-value formulation, which can be reduced to 
the Biot’s poroelastic system and the Maxwell system under 
the decoupled conditions. Gao and Hu (2010) derived the full-
space analytic solution of the EM field generated by a moment 
tensor source. The electrokinetic coupled system has been 
analyzed by many for the purpose of (1) detecting and charac-
terizing the underground materials by using the coupled seis-
moelectric or electroseismic signals and (2) interpreting the 
earthquake-associated EM phenomena (i.e. Gao et al (2013a, 
2013b)). Haartsen and Pride (1997) applied the combined 
Fourier–Hankel transforms and solved the electroseismic 
waves induced by point sources in layered media, using the 
global matrix method. The generalized reflection and trans-
mission method in purely elastic media was extended to the 
porous, EM and layered system with point sources (Garambois 
and Dietrich 2002, Ren et al 2010) and with finite faults (Hu 
and Gao 2011, Ren et al 2012). More recent progress can be 
found in Ren et al (2016a, 2016b) and Gao et al (2017), and in 
the review by Jounianux and Zyerman (2016).

4.6.  Summary of section 4

Due to the inhomogeneity in the layering direction, static 
deformation and wave propagation in layered half-spaces 
(including layered half-planes, and layered plates) are best 
analyzed via integral transforms, such as the Fourier and 
Hankel transforms. While Fourier transform can be applied 
to general material anisotropy, Hankel transform is best for 
isotropic or TI media. The Cartesian and cylindrical systems 
of vector functions are easy to be applied and possess certain 
advantages over the direct scalar transforms. Once the bound-
ary-value problem is converted to the transformed domain, the 
DVP method can be applied to propagate the solution from 
one layer to the other, without having any numerical insta-
bility issue. We end this section by highlighting the follow-
ing references with published computer software codes (in 
FORTRAN or MATLAB).

Okada (1992) solved the response of a rectangular fault 
in a homogeneous and isotropic elastic half-space. Pan et al 
(2014) extended the solution to a general polygonal fault in a 
homogeneous and TI elastic half-space. The time-dependent 
displacement and stress fields due to shear and tensile faults in 
a TI viscoelastic half-space were solved by Molavi Tabrizi and 
Pan (2015). Pan et al (2015a) derived the displacements and 
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stresses due to finite faults and opening-mode fractures in a 
general anisotropic elastic half-space. Wang et al (2003b) and 
Wang et  al (2006b) obtained the fault-induced deformation 
in isotropic elastic and layered half-spaces and in the corre
sponding elastic half-space with gravity and viscoelasticity. 
Kausel and Peek (1982) studied the dynamic loading in the 
interior of an isotropic elastic and layered half-space using the 
thin-layer method. This GF part of the program was used as 
kernel functions in civil engineering, related to the dynamic 
response of soil-structure interaction in the computer program 
named SASSI developed at Berkeley (i.e. Celebi and Schmid 
(2005)). A PC program on SAW (surface acoustic wave) prop-
agation in anisotropic multilayers was written by Adler et al 
(1990). The DISPERSE software for waves in layered plates 
and cylinders was published by Lowe and colleagues (Lowe 
1992, Lowe and Pavlakovic 2013). Some programs for cal-
culating synthetic seismograms in horizontally layered media 
were discussed in Cormier (2007). Under static deformation, 
a BEM program, called Poly3D, was derived by Maerten et al 
(2005) where the analytical dislocation solution is used as the 
Green’s kernel function.

5.  GFs in the layered spherical earth

In this section, we review and present various GF solutions in 
a layered sphere. Besides their obvious applications to Earth 
science, these solutions can be also applied to problems in 
other layered planetary bodies (i.e. Zhang (1992), Dehant et al 
(2000) and Batov et al (2016)). Both elastostatic deformation 
and time-harmonic vibration are considered. As for the elastic 
and self-gravitational layered earth, the following two types 
of solutions will be reviewed in more details: (1) the solutions 
under concentrated surface loading, which are related to the 
famous elastic load Love number and the corresponding load 
GFs, and (2) the solutions to the concentrated internal dislo-
cation, which related to the dislocation Love number and the 
corresponding dislocation GFs. The corresponding viscoelas-
tic and time-harmonic solutions will be also discussed. In most 
cases, the given problem will be solved in each layer (as for 
the horizontally layered case) in terms of the spherical system 
of vector functions. The constitutive relation will be assumed 
to be isotropic or at most TI (or spherical isotropy), except 
for otherwise indicated. The solutions for the corresponding 
layered system will be solved via the propagating matrix 
method, preferably the one we introduced in section 4, i.e. the 
DVP method. This section  is similar to section 4: however, 
instead of applying the integral transform in terms of either 
Cartesian or cylindrical system of vector functions there, here 
we express the solutions in terms of the spherical system of 
vector functions, which require series summation, instead of 
integration. A good reference on the systems of vector func-
tions with particular applications in layered spherical Earth is 
the classic book by Ben-Menahem and Singh (1981). A com-
prehensive and advanced treatment on global seismology can 

be found in (Dahlen and Tromp 1998). A brief review on the 
basic relations in different coordinate systems and the corre
sponding systems of vector functions are presented in appen-
dix for easy reference.

5.1.  Basic equations and general solutions with gravity

The linearized governing equation  for the elastic and self-
gravitational spherical Earth is similar to equation (4.1), but 
with gravity in r-direction. Namely, we have

σji,j − (ρgur),i − ρψ,i + g(ρuj),jδir + fi + cinerui = 0
� (5.1a)

ψ,jj + 4πG(ρuj),j = 0.
� (5.1b)
In equation  (5.1), repeated indices take the summation over 
the spherical coordinates (r, θ, ϕ) (appendix) and an index 
following the subscript comma indicates the derivative in the 
coordinate direction, G is the universal gravitational constant, 
δir the Kronecker delta, σji the stresses, ρ and g are the den-
sity and gravity, f i the body forces (per unit volume), ui the 
displacements, and ψ is the perturbed gravitational poten-
tial (which may include the tidal body-force, surface load, 
and deformation potentials) with its negative gradient being 
the perturbed gravity. This sign convention is the same as in 
Farrell (1972) and Wu and Peltier (1982), but opposite to that 
in Takeuchi and Saito (1972) and Sun (1992a, 1992b).

In terms of the spherical coordinates, the strain (tensor εij) 
and displacement relations, as well as the ‘flux’ in r-direction, 
qr, can be written as

εrr = ur,r; εθθ = uθ,θ+ur
r ; εϕϕ =

uϕ,ϕ
r sin θ + uθ cot θ+ur

r

2εrθ = uθ,r +
ur,θ−uθ

r ; 2εrϕ = uϕ,r +
ur,ϕ

r sin θ − uϕ
r

2εθϕ =
uϕ,θ−uϕ cot θ

r +
uθ,ϕ

r sin θ� (5.2a)

qr = ψ,r + 4πGρur +
n + 1

r
ψ

�
(5.2b)

where n is the degree in the spherical system of vector func-
tions as defined in appendix.

The Hooke’s law for each of the spherical mantle layer, 
which is TI with r-direction being its material axis of symme-
try, is (Anderson (1961) and Chen et al (2015))

σrr = c33εrr + c13εθθ + c13εϕϕ

σθθ = c13εrr + c11εθθ + c12εϕϕ

σϕϕ = c13εrr + c12εθθ + c11εϕϕ

σθr = 2c44εθr;σϕr = 2c44εϕr;σθϕ = 2c66εθϕ� (5.3a)

where c66  =  (c11–c12)/2. For the isotropic elastic material, we 
have (as in equation (2.4))

c11 = c33 = λe + 2µe

c12 = c13 = λe; c44 = c66 = µe

λv = λ(s);µv = µ(s)�
(5.3b)

where λ and µ are the two Lamé elastic constants, and the 
subscripts e and v are for the elastic and viscoelastic (with 

Rep. Prog. Phys. 82 (2019) 106801



Review

25

s being the Laplace variable) cases. Notice that TI for the 
spherical geometry means equally the spherically isotropic 
material.

We solve the problem in terms of the spherical system of 
vector functions or the vector spherical harmonics (VSHs), as 
defined in appendix. In other words, we expand the solutions 
as

u(r, θ,ϕ) ≡ urer + uθeθ + uϕeϕ

=
∞∑

n=0

n∑
m=−n

[UL(r)L(θ,ϕ) + UM(r)M(θ,ϕ) + UN(r)N(θ,ϕ)]

t(r, θ,ϕ) ≡ σrrer + σrθeθ + σrϕeϕ

=
∞∑

n=0

n∑
m=−n

[TL(r)L(θ,ϕ) + TM(r)M(θ,ϕ) + TN(r)N(θ,ϕ)]
� (5.4a)
and

φ(r, θ,ϕ) =
∞∑

n=0

n∑
m=−n

Φ(r)S(θ,ϕ; n, m)

qr(r, θ,ϕ) =
∞∑

n=0

n∑
m=−n

Q(r)S(θ,ϕ; n, m).
�

(5.4b)

The body force is also expanded as

f(r, θ,ϕ) =
∞∑

n=0

n∑
m=−n

[FL(r)L(θ,ϕ) + FM(r)M(θ,ϕ) + FN(r)N(θ,ϕ)].

� (5.4c)

Notice that for n  =  0, the problem is reduced to a spherically 
symmetric case where the solution depends only on r and that 
there is no N-type solution.

It can be shown that the N-type solution is purely elastic, 
independent of the gravity effect. This deformation is toroidal 
and it is governed by the following equation

d
dr

ñ
UN(r)
TN(r)

ô
= [AN(r)]

ñ
UN(r)
TN(r)

ô
−
ñ

0
FN(r)

ô

�

(5.5)

where

[AN(r)] =

ñ
1/r 1/c44

(N − 2)c66/r2 − ciner −3/r

ô

�

(5.6)

and N  =  n(n  +  1). Under elastostatic (or viscoelastic) defor-
mation and if the material properties are independent of the 
radial variable r, this equation can be solved by introducing a 
variable transformation (Pan et al 2015b), similar to the LM-
type deformation discussed below.

For the LM-type deformation, we introduce

U =
î
UL UM Φ

ót
; T =

î
TL TM Q

ót
; F =

î
FL FM 0

ót
.

�
(5.7)

Then, the governing equation can be converted into the fol-
lowing first-order differential equations  with r-dependent 
coefficients as

d
dr

ñ
U(r)
T(r)

ô
= [A(r)]

ñ
U(r)
T(r)

ô
−
ñ

0
F(r)

ô
� (5.8)

where the coefficient matrix [A(r)] is defined as

[A(r)] =




−2c13/(c33r) Nc13/(c33r) 0 1/c33 0 0
−1/r 1/r 0 0 1/c44 0
−4πGρ 0 −(n + 1)/r 0 0 1

− 4ρg
r +

2[c33(c11+c12)−2c2
13]

c33r2 − ciner
Nρg

r +
[2c2

13−c33(c11+c12)]N
c33r2 − (n+1)ρ

r
2(c13/c33−1)

r
N
r ρ

ρg
r +

[2c2
13−c33(c11+c12)]

c33r2 − (c11−c12)
r2 + N c11c33−c2

13
c33r2 − ciner

ρ
r − c13

c33r − 3
r 0

−4πGρ(n + 1)/r 4πGρN/r 0 0 0 (n − 1)/r




.

� (5.9)

For the isotropic case, making use of equation (5.3b), equations (5.6) and (5.9) become

[AN(r)] =

ñ
1/r 1/µe

(N − 2)µe/r2 − ciner −3/r

ô
� (5.10)

[A(r)] =




−2λe/[(λe + 2µe)r] Nλe/[(λe + 2µe)r] 0 1/(λe + 2µe) 0 0
−1/r 1/r 0 0 1/µe 0
−4πGρ 0 −(n + 1)/r 0 0 1

− 4ρg
r + 4µe(3λe+2µe)

(λe+2µe)r2 − ciner
Nρg

r − 2µe(3λe+2µe)NUM
(λe+2µe)r2 − (n+1)ρ

r − 4µe
(λe+2µe)r

N
r ρ

ρg
r − 2µe(3λe+2µe)

(λe+2µe)r2
2µe[2N(λe+µe)−(λe+2µe)]

(λe+2µe)r2 − ciner
ρ
r − λe

(λe+2µe)r − 3
r 0

−4πGρ(n + 1)/r 4πGρN/r 0 0 0 (n − 1)/r




.

� (5.11)
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Since the density, gravity, and elastic properties are func-
tions of radius r, equations (5.5) and (5.8) can only be solved 
numerically. It is usually done using the Runge–Kutta numer
ical integration (i.e. Longman (1963) and Farrell (1972) for 
the elastostatic deformation with gravity).

However, if we assume that the Earth is made of multilay-
ers (p  layers in its mantle and m layers in its core, as shown in 
figure 5), then one can solve the elastostatic and viscoelastic 
deformations of the earth analytically. By looking closely at 
the data and curves in the preliminary reference Earth model 
(PREM) (Dziewonski and Anderson 1981), and consider-
ing further the possibility of an analytical solution, Pan et al 
(2015b) came up perhaps with the best and yet more realistic 
Earth model which can be solved analytically. In this spheri-
cal and radially heterogeneous Earth model made of multi-
ple layers, the density is constant and gravity varies linearly 
with radius in each core layer, whilst the density variation is 
inversely linear with the radius and gravity is constant in each 
mantle layer. With only 56 mantle layers and 26 core layers, 
the material properties in the entire radial direction of Earth 
(in both core and mantle) overlap with the original PREM 
model (Dziewonski and Anderson 1981). Thus, by dividing 
the mantle into certain thin layers and assuming that in each 

layer its density varies as ρ(r)  =  ρe/r, whilst its gravity and 
(visco)elastic coefficients are uniform, a general analytical 
solution in each mantle layer can be derived. This is achieved 
by further introducing, for a given layer j  with interfaces at 
r  =  rj −1 and rj  (>rj −1), the following variable transformation 
as in Pan et al (2015b)

r = rj−1eξ

0 � ξ � ξj; ξj = ln(rj/rj−1).� (5.12)
Under this transformation, equations (5.5) and (5.8) are con-
verted to the following sets with constant coefficients (except 
for the inertia term)

d
dξ

ñ
UN(ξ)

rTN(ξ)

ô
= [CN ]

ñ
UN(ξ)

rTN(ξ)

ô
−
ñ

0
r2FN(r)

ô

�
(5.13a)

d
dξ

ñ
U(ξ)

rT(ξ)

ô
= [C]

ñ
U(ξ)

rT(ξ)

ô
−
ñ

0
r2F(r)

ô

�
(5.13b)

where the involved coefficient matrices are

[CN ] =

ñ
1 1/c44

(N − 2)c66 − r2ciner −2

ô

� (5.14a)

Figure 5.  A layered spherical Earth made of p  layers in its mantle with a (layered) inner liquid core of radius r1  =  rc (from the mantle side) 
The outer surface of the Earth is located at rp + 1  =  a. A general concentrated force is applied on the surface and a concentrated dislocation 
is located at (rs, θs, ϕs) within the mantle layer j . The Earth core is made of m layers over a homogeneous inner core of radius r  =  r0, which 
can be solid or liquid. The outer surface of the core is the core-mantle boundary at rm  =  rc (from the core side).

[C] =




−2c13/c33 Nc13/c33 0 1/c33 0 0
−1 1 0 0 1/c44 0

−4πGρe 0 −(n + 1) 0 0 1

−4ρeg +
2[c33(c11+c12)−2c2

13]
c33

− r2ciner Nρeg +
[2c2

13−c33(c11+c12)]N
c33

−(n + 1)ρe 2c13/c33 − 1 N ρe

ρeg +
[2c2

13−c33(c11+c12)]
c33

−(c11 − c12) + N c11c33−c2
13

c33
− r2ciner ρe − c13

c33
−2 0

−4πGρe(n + 1) 4πGρeN 0 0 0 n




.

�
(5.14b)
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Similar procedure can be applied to find the analytical solu-
tion in the core. Namely, one can divide the core into certain 
thin layers and assume that in each core layer, the density is 
constant but gravity is a linear function of r (Pan et al 2015b).

Therefore, under the elastostatic (or viscoelastic) defor-
mation without the inertia term (i.e. ciner  =  0), we can derive 
analytically the general solutions of equation (5.13) (without 
body force), and thus the recursive relations between the lay-
ers based on the DVP method, similar to those in section 4. 
Making use of the recursive relation repeatedly from the core-
mantle boundary r  =  rc (r1) to the surface of the Earth at r  =  a 
(r  =  rp + 1), we finally obtain the following two sets of rela-
tions (i.e. for both LM- and N-types)

ñ
U(rc))

aT(a)

ô
=

ñ
S1:p

11 S1:p
12

S1:p
21 S1:p

22

ô ñ
U(a)

rcT(rc)

ô

�
(5.15a)

ñ
UN(rc))

aTN(a)

ô
=

ñ
N1:p

11 N1:p
12

N1:p
21 N1:p

22

ô ñ
UN(a)

rcTN(rc)

ô

�
(5.15b)

where the superscripts ‘1:p ’ indicate the combined recursive 
relations between the core-mantle boundary (the lower inter-
face of the first mantle layer, i.e. the mantle side of the core-
mantle boundary) and the surface (the upper interface of the 
last or top-mantle layer p ), and the subscripts ‘ij’ (i, j   =1, 2) 
are the indices of the submatrix or elements of the matrix.

Equations (5.15a) and (5.15b) need to be solved using the 
core-mantle boundary conditions. First, for the N-type, since 
the outer core is liquid, we have TN(rc)  =  0 so that equa-
tion (5.15b) can be solved for the given boundary conditions 
on the surface of the Earth at r  =  a. As for the LM-type defor-
mation, for the given layered (or homogeneous) core model, 
we can propagate from the most inner homogeneous core to 
the core-mantle boundary to obtain the relation between the 
expansion coefficients on the core-mantle boundary (on the 
core side) and the three coefficients (ci below) in the most 
inner homogeneous (solid or liquid) core as

ñ
U (rc)

rcT (rc)

ô
= [Bcm]




c1

c2

c3


 ≡ [Bcm] [c]

�

(5.16)

where [Bcm] is the known core-mantle boundary matrix (with 
subscripts ‘cm’ for core-mantle) for the given core model 
(Pan et al 2015b). Combining equations  (5.16) and (5.15a), 
we can then solve the involved unknown coefficients for the 
given boundary condition on the surface of the Earth r  =  a.  
This solves the surface loading deformation and thus the 
corresponding loading Love numbers and GFs.

It is noted that the core models and core-mantle bound-
ary used here are similar to those in Saito (1974) and Wu and 
Peltier (1982). Some detailed discussions on this topic can be 
found in Chinnery (1975) and Crossley and Gubbins (1975).

If there is a given concentrated source, force or disloca-
tion, located at rs in the mantle layer j  (figure 5), then we just 
need to subdivide this layer into two sublayers j 1 (j s1) and j 2 
(j s2). In terms of the expansion coefficients in the spherical 
system of vector functions, the source functions Us, Ts, UNs, 

and TNs are defined in terms of the following discontinuities at 
the source level r  =  rs as (with rj 2  =  rs  +  0, and rj 1  =  rs  −  0) 
(again, there is no discontinuity or jump for the gravity related 
coefficients Φ and Q)

Us = U(rj2)− U(rj1) ≡ U(rs + 0)− U(rs − 0)
Ts = T(rj2)− T(rj1) ≡ T(rs + 0)− T(zs − 0)

UNs = UN(rj2)− UN(rj1) ≡ UN(rs + 0)− UN(rs − 0)
TNs = TN(rj2)− TN(rj1) ≡ TN(rs + 0)− TN(rs − 0).

�

(5.17)

Now in the mantle, we propagate the recursive relation from 
the surface to the upper side of the source and then from the 
lower side of the source to the core-mantle boundary to arrive 
at the following two sets of equations as

ñ
U(rj2)

aT(a)

ô
=

ñ
S j2:p

11 S j2:p
12

S j2:p
21 S j2:p

22

ô ñ
U(a)

rj2T(rj2)

ô
� (5.18a)

ñ
UN(rj2)

aTN(a)

ô
=

ñ
N j2:p

11 N j2:p
12

N j2:p
21 N j2:p

22

ô ñ
UN(a)

rj2TN(rj2)

ô
� (5.18b)

and
ñ

U(rc)

rj1T(rj1)

ô
=

ñ
S1:j1

11 S1:j1
12

S1:j1
21 S1:j1

22

ô ñ
U(rj1)

rcT(rc)

ô
� (5.18c)

ñ
UN(rc)

rj1TN(rj1)

ô
=

ñ
N1:j1

11 N1:j1
12

N1:j1
21 N1:j1

22

ô ñ
UN(rj1)

rcTN(rc)

ô
.� (5.18d)

Similarly, combining equations  (5.16)–(5.18), the involved 
unknowns can be solved.

In summary, for the surface loading case, one solves the 
involved unknowns from equations  (5.15) and (5.16), and 
the solved expansion coefficients U(a) and UN(a) will give 
us the elastic loading Love numbers (ELLNs). For the given 
internal dislocation case, one can solve the involved knowns 
from equations  (5.16) to (5.18), and the solved expansion 
coefficients U(a) and UN(a) will give us the dislocation Love 
numbers (DLNs).

Remark 5.1.   Another type of important analytical solution 
was provided by Gilbert and Backus (1968). They derived the 
analytical solutions for time-harmonic vibration of (isotropic) 
elastic-gravitational and layered sphere in terms of spherical 
Bessel functions. They assumed that all the material properties 
as well as the density were uniform in each layer whilst the 
gravity in each layer varied as g(r)  =  kr, a linear function of ra-
dius r. This solution contains many special cases including the 
corresponding elastostatic deformation and the elastic waves 
in layered sphere (without gravity) as special solutions.

5.2.  Source functions of concentrated forces  
and dislocations

Without loss of generality, we assume that there is a point 
force or point dislocation of unit magnitude applied at  
(r, θ, ϕ)  =  (rs, 0, 0) in layer j  of the layered Earth (in a man-
tle layer). Thus, in terms of the expansion coefficients in the 
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spherical system of vector functions, the source functions Us, 
Ts, UNs, and TNs defined in equation (5.17) can be derived and 
they are listed below.

For a concentrated force at (r, θ, ϕ)  =  (rs, 0, 0), we have

fj(r, θ,ϕ) =
δ(r − rs)δ(θ)δ(ϕ)

r2 sin θ
nj.� (5.19)

Then the expansion coefficients of the concentrated force is

FL = 1
r2

s

»
(2n+1)

4π nzδ(r − rs); m = 0

FM = − 1
2r2

s

√
(2n+1)

4πn(n+1) (∓nx + iny)δ(r − rs); m = ±1

FN = − 1
2r2

s

√
(2n+1)

4πn(n+1) (inx ± ny)δ(r − rs); m = ±1.
� (5.20)
Therefore the source functions of the concentrated force are 
(only the nonzero components)

TLs = − 1
r2

s

»
(2n+1)

4π nz; m = 0

TMs =
1

2r2
s

√
(2n+1)

4πn(n+1) (∓nx + iny); m = ±1

TNs =
1

2r2
s

√
(2n+1)

4πn(n+1) (inx ± ny); m = ±1.

�

(5.21)

Once we have the GF solution due to a concentrated force, the 
Betti’s reciprocity in section 2 can be applied to find the GF 
solution due to a concentrated dislocation. On the other hand, 
the source functions for a point dislocation in a TI medium can 
be also derived directly as commonly applied in geophysics. 
We first express the dislocation as an equivalent body-force, 
and then expand the latter in terms of the spherical system of 
vector functions. In other words, to find the source functions 
of the point dislocation, we rely on the equivalent body-force 
expression of a general dislocation over the internal area A with 
normal ni (equation (2.31) and also Aki and Richards (1980)) as

fp(r) = −
ˆ

A
cijpqbj(rs)ni(rs)

∂

∂rq
δ(r − rs)dA(rs)� (5.22)

where ∂rq (q  =  1, 2, 3) stands for (∂r, r∂θ, rsinθ∂ϕ). For a 
concentrated dislocation source, we have bj   =  Δuνj  (where νj  
is the unit vector of the dislocation, or the Burgers vector). By 
also assuming that the source is fixed at rs  =  (rs, 0, 0), we have

fp(r, θ,ϕ) = −∆udAniνjcijpq
∂

∂rq

ï
δ(r − rs)

r2

δ(θ)

sin θ
δ(ϕ)

ò
.

� (5.23)
Then, expanding the equivalent force (5.23) in terms of the 
spherical system of vector functions, it can be shown that  
the expansion coefficients can be separated into two parts as 
(similar to those in section 4)



FL(r)
FM(r)
FN(r)


 =




Fδ
L

Fδ
M

Fδ
N


 δ(r − rs)

r3
s

+




Fd
L

Fd
M

Fd
N


 δ′(r − rs)

r2
s

.� (5.24)

While the first term on the right-hand side induces the 
discontinuity of the traction expansion coefficients, the sec-
ond term causes discontinuities in both the displacement and 
traction expansion coefficients. Making use of the coefficient 
matrix and jump conditions related to the derivative of the 
delta function (Kennett 1983), the following results (omitting 

the common factor of the dislocation ΔudA) can be found 
(Takeuchi and Saito 1972, Kennett 1983)

UNs =
1

2r2
s

»
2n+1

4πn(n+1) [∓(nyνz + nzνy)− i(nzνx + nxνz)]; m = ±1

rsTNs =
c66
2r2

s

√
(2n+1)(n+2)(n−1)

4πn(n+1) [(nxνy + nyνx)± i(nxνx − nyνy)]; m = ±2

� (5.25)

ULs =
1
r2

s

»
2n+1

4π [nzνz + (nxνx + nyνy)c13/c33]; m = 0

rsTLs =
1
r2

s

»
2n+1
π

[
2(c2

13/c33 − c11 + c66)(nxνx + nyνy)
]

; m = 0

UMs =
1

2r2
s

»
2n+1

4πn(n+1) [±(nzνx + nxνz)− i(nyνz + nzνy)]; m = ±1

rsTMs =
1
r2

s

»
2n+1

4π (c11 − c66 − c2
13/c33)(nxνx + nyνy); m = 0

= c66
2r2

s

√
(2n+1)(n+2)(n−1)

4πn(n+1) [(−nxνx + nyνy)± i(nxνy + nyνx)]; m = ±2.
� (5.26)
We point out that there are slight differences on the factors 
related to n between equation  (5.26) and those in Takeuchi 
and Saito (1972). This is due to the different definitions of 
the spherical functions. Also, there is a typo in sign for the 
source function expression of the N-type in Takeuchi and 
Saito (1972), which has been corrected here. Source func-
tions of other types (i.e. single couple, double couple, etc) 
can be found in Takeuchi and Saito (1972) and Kagan (1987a, 
1987b).

5.3.  Solutions in purely elastic and layered spheres

5.3.1.  Elastostatic homogeneous or layered spheres.  Static 
deformation of an isotropic or TI sphere can be analytically 
solved by neglecting the density- (thus the gravity) and ciner-
related terms in equations (5.13) and (5.14). For deformation 
in spherical domains, a good reference from the mathematical 
point of view is the book by Lure (1964) where the spheri-
cal system of vector functions were used and some general 
solutions were presented. We discuss the surface and internal 
loading cases below.

		 Case 1. Under surface loading. For a uniform isotropic 
sphere under non-symmetric loading, the general solu-
tions in terms of the spherical system of vector functions 
were derived by McClung (1989). Caputo (1961, 1962) 
derived the analytical solution and presented numerical 
examples for a layered isotropic elastic sphere under an 
axially symmetric surface mass distribution. Based on the 
state-space method and variables separation techniques, 
Chen and Ding (2001b) and Chen et  al (2001) investi-
gated, respectively, the static deformation of multilayered 
elastic and piezoelectric spheres. Heyliger and Wu (1999) 
derived an analytical solution for the radial deformation 
of a layered piezoelectric sphere, and most recently by 
Chen et  al (2015) for the static deformation of layered 
magnetoelectroelastic spheres. We mention that most 
analytical solutions are for the spherically isotropic or 
TI materials. However, since the method in Heyliger 
and Wu (1999) is based on the discrete-layer method, 
their approach can be applied to the general anisotropic 
material, including the TI elastic and also the isotropic 
elastic as special cases. Notice that besides its important 
application in geophysics, the surface GFs in an elastic 

Rep. Prog. Phys. 82 (2019) 106801



Review

29

sphere can be applied to the important contact problem in 
mechanics (Titovich and Norris 2012).

		 Case 2. Under internal loading. More specifically under 
internal dislocations, the deformation of the elastic 
(layered) sphere was also investigated. This includes the 
dislocation loop and screw dislocation in an elastic sphere 
(Willis et al 1983, Polonsky et al 1991) and circular dis-
location loop in an elastic sphere and a spherical shell 
(Bondarenko and Litoshenko 1997, Kolesnikova and 
Romanov 2010, Kolesnikova et al 2013). For a static dis-
location in a homogeneous and isotropic spherical earth, 
Ben-Menahem et al (1969, 1970) derived the analytical 
solution for both concentrated and finite dislocations. The 
latter paper by Ben-Menahem et al (1970) is particularly 
important since it solved and presented numerical results 
within a homogeneous and purely elastic isotropic 
sphere by finite strike-slip fault and dip-slip fault. This 
analytical solution is analogous to Okada (1992) for a 
homogeneous half-space with finite fault, and as such, it 
is extremely important. Unfortunately, there is no comp
uter code available for such an important contribution. 
For the corresponding isotropic and layered earth, Singh 
(1972) derived the analytical static deformation caused 
by a concentrated internal dislocation and Pollitz (1996) 
superposed the point-dislocation GFs to find the finite-
fault induced co-seismic deformation. Pollitz (1992) also 
analyzed the post-seismic relaxation in layered earth with 
a linear Maxwell rheology by finite fault based on the 
NME method (Schapery 1962), and studied the gravity 
anomaly from faulting in a layered spherical earth using 
the decoupled model between elastic and gravitational 
deformations (Pollitz 1997a). A FORTRAN code, named 
STATIC1D, was also developed by Pollitz.

Based on the analytical solution of the static deformation 
in a homogeneous and isotropic spherical Earth, Tang and Sun 
(2018a) recently derived the closed-form expressions of the 
viscoelastic dislocation Love number and the corresponding 
GFs due to concentrated dislocations within a homogeneous 
Maxwell Earth model. While the solution neglects the cou-
pling between the elastic and gravitational fields, it serves as 
important benchmark for analyzing viscoelastic deformation 
in the real Earth. Based on the derived formulation, the sur-
face loading Love number and the corresponding GFs can be 
also derived.

5.3.2. Time-harmonic deformation and waves in homoge-
neous or layered elastic sphere.  Two good references on 
waves and vibrations in a homogeneous sphere are the books 
by Lure (1964) and Eringen and Suhubi (1974) where the 
solutions were expressed in terms of the spherical system of 
vector functions with the coefficients being spherical Bessel 
functions of the first and second kind, or a linear combination 
of them.

While free vibration of a given finite body (and further the 
corresponding dispersion curve) is not a GF problem, it is 
important and very fundamental from the following point of 
view: (1) it helps to invert the material property of the body, 

as in the classical work by Lamb (1882) for the elastic sphere, 
and many works followed on various basic issues of vibration 
of an elastic sphere, i.e. the series work by Sato and colleagues 
(Sato and Usami 1962a, 1962b, Sato et al 1962, 1963); (2) 
the eigenvalues (i.e. the eigen-frequency or natural frequency) 
and eigen-modes of the free vibration can be superposed to 
solve the corresponding forced (time-harmonic) vibration or 
deformation, i.e. the GFs induced by the concentrated unit 
time-harmonic source. In physics and material engineering, 
the vibration features of a given finite body (spherical or rec-
tangular shapes) derived and observed can be correlated to 
determine the effective properties of the medium, particularly 
the anisotropic elasticity coefficients of the body (Ohno 1976, 
Ohno et al 1986, Visscher et al 1991). This further has par
ticular applications to the nanoscale objects, like nanoparti-
cles (Saviot et al 2004, Saviot and Murray 2005, 2009).

In geophysics, Bhattacharya (1976, 2005) studies the 
waves and calculated the synthetic seismograms induced by 
general discontinuities in layered spheres by assuming that in 
each layer the density as well as the compressional and shear 
wave velocities were certain functions of the radial coordinate 
r. Bhattacharya (1978) also solved the Rayleigh waves from 
a point source in the layered sphere using the analytical solu-
tion in each layer in terms of the spherical Bessel functions, 
i.e. the one similar to Gilbert and Backus (1968) and McClung 
(1991). Complete synthetic seismograms for a TI earth were 
also numerically computed by Friederich and Dalkolmo 
(1995) with the corresponding program code called GEMINI.

In mechanics community, McClung (1991) derive the solu-
tion for the general (or asymmetric) vibration of a homogene-
ous and isotropic elastic sphere. Chen and colleagues (Chen 
2000, 2001, Chen and Ding 2001a, Chen et al 2002) proposed 
the state-space method and the Taylor’s expansion theorem 
for the free vibration of multi-layered TI hollow piezoelectric 
spheres, which contain the purely elastic solutions as special 
cases. Radial vibration of piezoelectric and magnetic hollow 
spheres was also solved by Wang and Ding (2007). Norris 
and Shuvalov (2012) studied the time-harmonic vibration in 
radially inhomogeneous TI sphere using the Stroh formalism. 
Qiao et al (2016a, 2016b) analytically derived the solutions 
for the coated elastic spherical shell or the functionally graded 
spherical shell. It is noted that the analytical approach applies 
only to the TI material. For the general material anisotropy, 
other semi-analytical methods need to be applied, such as 
the discrete-layer model developed by Heyliger et al (1994), 
which has been applied to layered, functionally graded and 
piezoelectric spheres by Heyliger and Wu (1999) and Wu 
and Heyliger (2001) and to the magnetoelectroelastic lay-
ered spheres by Heyliger and Pan (2016). This discrete-layer 
model requires discretization in r-direction only, whilst in the 
other two directions, known shape functions are used so that it 
is more accurate and efficient than the direct FEM.

5.4.  Surface loading Love numbers and GFs in elastostatic 
and viscoelastic self-gravitational and layered Earth

Earth deformation in response to external (surface) mass 
loading has been an exciting and fundamental research topic 
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in geophysics since Love (e.g. Love (1911), Farrell (1972), 
Spada et al (2011), Wang et al (2012), and references therein). 
GFs to concentrated surface loading can be applied to broad 
areas of Earth science, including atmospheric loading (i.e. 
Merriam (1992), Guo et  al (2004), Petrov and Boy (2004), 
Tregoning and van Dam (2005), Gitlein et al (2013), Mikolaj 
et al (2016)), tidal ocean loading (i.e. Agnew (1996, 1997), 
Yuan et al (2013) and Martens et al (2016)), non-tidal ocean 
loading (i.e. Williams and Penna (2011)), continental water 
storage (i.e. Bevis et al (2005), Fu et al (2012), Wahr et al 
(2013) and Argus et  al (2014b)) and ice mass loading (i.e. 
Khan et  al (2007), Marzeion et  al (2012) and Pfeffer et  al 
(2014)). The 2002 review on the IERS workshop by Plag and 
van Dam (2002) summarized the statues and remaining scien-
tific issues related to surface loading on the Earth where the 
ELLNs are the key elements. A recent review on the important 
applications of GFs can be found in the EOS report by Melini 
et al (2015).

Besides the elastic deformation, time-dependent response 
(viscoelastic deformation) of the Earth is also important for us 
to understand the history of the Earth. For instance, the gla-
cial isostatic adjustment (GIA) information could be applied 
to different fields related to Earth: oceanography as related to 
relative sea level change, space gravity as mass redistribution 
and balance, and geodynamics as related to Earth rheology. 
We review the elastostatic and viscoelastic surface loading 
Love numbers and GFs below separately.

5.4.1.  Elastostatic loading Love numbers and GFs.  Since 
Love (1911), other earlier contributions on surface loading 
on the Earth were by Stoneley (1926), Takeuchi (1950) and 
Slichter and Caputo (1960). For the elastic earth with gravity 
under surface load, Love (1911) induced the dimensionless 
quantities (or numbers) h and k to describe the earth tide, and 
Shida (1912) added the number l. Together, they are some-
times called Love and Shida numbers (Krásná et al 2013), or 
most commonly just called Love numbers. One needs to keep 
in mind that besides the surface loading Love numbers, there 
are also the tidal Love numbers which relate to the deforma-
tion of the sphere by luni-solar tidal force (Wahr 1981) and 
the DLNs to be discussed below. Besides the existing rela-
tions between the tidal and surface-loading Love numbers 
(Molodensky 1977, Pan and Ding 1986), the tidal Love num-
ber is further physically significant in astronomical systems 
(Yip and Leung 2017), particularly the I-Love-Q relation 
(Yagi and Yunes 2013, 2014, 2017) which can be applied to 
astrophysics, fundamental physics, and gravitational waves 
(Abbott et al 2016). The relation between the surface loading 
Love number and the dislocation Love number has been also 
useful as to be discussed later.

For elastic, self-gravitational and layered Earth, Longman 
(1962, 1963) derived the GFs for the first time where the 
radius-dependent coefficients in the first-order differential 
equation  system (i.e. the matrix [A(r)] in equation  (5.11)) 
were solved numerically. Farrell (1972) provided a well-
written review where the singularity issue at the source point 
and thus the convergence issue with large degree n were also 

discussed. Two important approaches were suggested to cal-
culate the ELLNs and to speed up the convergence of the 
series summation in the GF expression: The disc factor instead 
of the concentrated delta function loading and the Euler’s 
transformation on the summation of an alternating series. 
Furthermore, Farrell (1972) derived the analytical expressions 
for the ELLNs at infinity and proposed the Kummer’s trans-
formation for the series summation. In terms of this transfor-
mation, each term of the series is subtracted by the ELLNs at 
infinity and then added back. For instance, the series terms 
containing hn will be replaced by two series with (hn  −  h∞) 
and h∞, where the first series related to (hn  −  h∞) behaves 
well and the second one related to h∞ has exact closed-form 
expression. Published in the same year as Farrell’s review 
paper, the paper by Takeuchi and Saito (1972) is an equally 
important reference where, while it concentrated on seismic 
waves, solutions in both layered half-space and layered sphere 
were presented including further various source functions.

So far the surface loading problem in a layered elastic (or 
viscoelastic) and self-gravitating Earth has been solved analyt-
ically only for the case of an incompressible Earth, while the 
compressible case is usually solved numerically (e.g. Farrell 
(1972), Guo et al (2004)), except for the work by Gilbert and 
Backus (1968) where the gravity in each layer of the Earth 
was characterized as a linear function of the radial coordinate 
r. While the analytical solutions based on the Gilbert–Backus 
formulation can be extended to the layered spherical Earth, 
such an approximation would be unsatisfactory at low har-
monic degrees and if the contribution of the internal buoyancy 
modes could not be neglected (Cambiotti et al 2009).

Pan et al (2015b) proposed an analytical approach for solv-
ing the layered earth problem with gravity and under concen-
trated surface loading. In their paper, a simple and reasonable 
assumption was made on the density and gravity in the layer 
which guarantees an analytical solution. Furthermore, the 
effect of material anisotropy was first analyzed in that paper. 
In a more recent paper, based on the analytical solution of 
Pan et al (2015b), Chen et al (2018b) introduced the stiffness 
matrix method (SMM), and by doing so, they can basically 
calculate the ELLNs to any degree one wishes. Thus, with this 
new analytical solution and the corresponding MATLAB code 
ELLNs.m, one can calculate all the ELLNs and thus the corre
sponding GFs under surface loading.

5.4.2.  Viscoelastic loading Love numbers and GFs.  To under-
stand the history of the Earth, the viscoelastic response of the 
Earth under time-dependent surface loading is required (i.e. 
Mitrovica and Peltier (1991), Peltier (2004), Purcell et al (2011, 
2016), Argus et al (2014a and 2014b) and Peltier et al (2015)).  
It was discussed in section  2 that the viscoelastic response 
can be solved by applying the correspondence principle if the 
involved problem is linear. When time is involved, the point 
force (or mass) on the surface would depend not only on the 
space location on the surface but also on time. In studying 
the viscoelastic surface GFs, the time-dependence of the 
point force can be either impulsive, i.e. proportional to δ(t) or 
Heaviside, i.e. proportional to H(t).
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Assuming that the earth’s time-dependence can be described 
by a Maxwell body, Peltier (1974) first solved the impulsive 
response of the layered earth (i.e. the concentrated force on 
the surface is proportional to δ(t)). The Laplace-domain (i.e. 
the s-domain) solutions were derived by the correspond-
ence principle and the time-domain solutions were obtained 
using the simple NME method as proposed by Schapery 
(1962). This NME method was refined later by Wu and Peltier 
(1982), Sabadini et al (1982), and Peltier (1985). Besides the 
Maxwell model, other linear viscoelastic models of the Earth 
were also studied, i.e. Han and Wahr (1997) for anisotropic 
viscosity and Spada (2008) for many other linear rheological 
laws. Spada (2008) has also developed a FORTRAN program, 
called ALMA, for these different rheological models.

While the NME method is analytical and provides an 
analytical solution directly in terms of time t, its application 
to multilayered and/or compressible earth is not feasible as 
investigated in details, say by Tanaka et al (2006) and Spada 
and Boschi (2006). To overcome the numerical difficulties, 
Tanaka et al (2006) proposed to evaluate the inverse Laplace 
integration numerically by changing the integration path in 
the complex plane so that it includes all the poles. Spada and 
Boschi (2006), on the other hand, proposed the Post–Widder–
Gaver (PWG) approach.

Just like any integral transform, a better method needs to 
be explored for carrying out the inverse Laplace transform. As 
is well known, besides the NME method of Schapery (1962), 
several numerical algorithms have been already proposed to 
carry out the inverse Laplace transform (Weeks 1966, Dubner 
and Abate 1968, Stehfest 1970, Durbin 1974, Talbot 1979, De 
Hoog et al 1982, Honig and Hirdes 1984). Furthermore, com-
parisons among different algorithms can be found in Bellman 
et al (1966), Davies and Martin (1979), Duffy (1993), Cohen 
(2007), and Kuhlman (2013), Naeeni et al (2015) and Wang 
and Zhan (2015). It seems that the Fourier series method 
works for the most common time behaviors and is more robust 
than others, whilst the involved free parameters can be found 
optimally as in Honig and Hirdes (1984). Furthermore, Honig 
and Hirdes (1984) adopted three different algorithms to accel-
erate the convergence of the Fourier series and published the 
LAPIN code in FORTRAN. The code was recently converted 
into MATLAB and applied to post-seismic deformation by a 
fault (Molavi Tabrizi and Pan 2015). The Fourier series expan-
sion method was made automatic by D’Amore et al (1999a, 
1999b) and again coded in FORTRAN as INVLTF. This 
automatic routine code was claimed to be faster than LAPIN 
by factors of 6 to 7. All these indicate that the Fourier series 
based method could be adopted and applied to the viscoelas-
tic response of the spherically (and flatly) layered earth under 
surface loading and by internal dislocation.

5.5.  DLNs and GFs in elastostatic and viscoelastic  
self-gravitational and layered Earth

Besides the surface loading on the Earth surface, another 
important type of loading is due to the internal earthquake or 
internal dislocation (fault). Thus, both elastic and viscoelastic 

response of the layered Earth to the dislocation has important 
applications in geophysics.

To solve the internal loading response of the Earth, the 
following two approaches can be applied: (1) making use of 
the surface load GFs derived in previous sub-section 5.4 via 
Betti’s reciprocity or (2) directly deriving the new dislocation-
induced GFs. For approach one, they can be related by using 
equation (2.28), which relates the force-induced stress to the 
dislocation-induced displacement. Equation  (2.28) indicates 
that in order to find the surface displacement induced by an 
internal dislocation, one needs only to solve the surface force-
induced stress at the location where the internal dislocation is 
located (at r  =  rs). The reciprocity theorem in spherical earths 
can be also found in Boschi (1973) and Pan and Ding (1986). 
We point out that it was Okubo (1993) who derived the impor-
tant relations between point dislocation and the force (tidal 
and surface loading), which was further investigated by Sun 
and Dong (2013). More specifically, the spherical coefficients 
(say for the LM-type) U and T on the surface r  =  a due to a 
point dislocation buried at r  =  rs can be expressed in terms of 
the tidal/surface load induced coefficients U and T at r  =  rs. 
This gives the relation between the ELLNs and DLNs via 
reciprocity. The second approach is to derive directly the dis-
location solution induced by the dislocation source function. 
We review the main contributions in terms of elastostatic and 
viscoelastic deformation separately below.

5.5.1.  Elastostatic DLNs and GFs.  While Takeuchi and Saito 
(1972) presented the general formulation, the detailed deriva-
tion and solution for the point-dislocation GFs within an elas-
tic, gravitational and layered spherical earth was first derived 
by Sun (1992a, 1992b). More specifically, Sun (1992a, 1992b) 
defined and derived the DLNs and the corresponding GFs in 
terms of four independent point-dislocation sources in such an 
earth model. Sun (1992a, 1992b) further proposed a truncation 
criterion for the infinite DLNs series in order to accurately and 
efficiently calculate the GFs via superposition. Sun’s solution 
has been analyzed and applied extensively to various prob-
lems. First, the point-dislocation GFs was presented by Sun 
and Okubo (1993, 1994, 1995) for layered spherical earth 
with isotropic elasticity in each layer. These studies contain 
two parts: The DLNs and the corresponding GFs where the 
DLNs are the expansion coefficients and GFs are the point-
dislocation-induced elastic displacement, gravity change, etc 
within the earth (Sun et al 1996). These GF solutions were 
then extended to the finite fault case (by superposition) by Sun 
and Okubo (1998). Applications can be found for co-seismic 
deformations and/or gravity changes induced by the earth-
quakes in Alaska and Hokkaido (Sun and Okubo 2004), the 
Chi–Chi and Kunlun earthquakes (Fu and Sun, 2004), Suma-
tra–Andaman earthquake (Fu and Sun 2006), Wenchuan earth-
quake (Wang et  al 2010), Tohoku–Oki earthquake (Sun and 
Zhou 2012, Zhou et al 2012, 2014), and L’Aquila earthquake 
(Cambiotti et  al 2017). The possibility of determining the 
DLNs using GRACE satellite mission gravity data was inves-
tigated by Yang et al (2015). The changes in Earth rotation, 
Earth volume, and coseismic gravitational potential energy 
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due to dislocations were studied, respectively, by Xu and Chao 
(2017), Xu and Sun (2014) and Xu et al (2014).

In order to apply the point-dislocation GFs, one needs 
their accurate analytical expressions. Unfortunately, since 
these GFs contain infinite series in degree n (of the spherical 
harmonics), summation to infinity is impossible in general. 
For the surface loading case, one can derive the exact-closed 
form ELLNs at infinity (Farrell 1972). For the problem with 
internal loading, it is different. Starting from Okubo (1988), 
who first presented six sets of independent asymptotic solu-
tions, various efforts have been made to derive the asymp-
totic and closed-form GFs (Sun 2003, 2004a, 2004b, Tang and 
Sun 2017). Takagi and Okubo (2017) proposed further a new 
method to calculate all the GFs (displacements, strain, etc) in 
a uniform sphere with better convergence.

The effect of Earth layering, gravity and curvature on the co-
seismic (or post-seismic) deformation has been actively stud-
ied (Sun and Okubo 2002, Dong et al 2014, 2016). Through 
numerical examples, Dong et al (2014) showed that, for a typi-
cal earthquake located at a depth less than 100 km, the larg-
est effect on the dislocation-induced deformation is the Earth 
layering, followed by gravity, with the curvature effect being 
the least. However the curvature effect can be as large as 30% 
if the fault source location is deep (i.e. around 400 km), and 
it is the largest in the far-field deformation (Dong et al 2016).

The relative contribution from different coupling terms 
was first investigated qualitatively by Segall (2010) who 
normalized the elastic-gravitational governing equation  by 
introducing the so-called ‘big G’ term (proportional to G and 
distance squared as Gd2) and ‘little g’ (proportional to g and 
distance as gd). Regarding d as the distance from the source to 
the observation station, it was found that for most co-seismic 
applications where the observation is at tens of km to at most 
a few hundred km from the source, the big G terms can be 
safely neglected, and even the little g effect is small (Pollitz 
1997b, Segall 2010, Gomez et al 2017). However, for a very 
large earthquake, its effect can be thousand km away, and 
consequently, the little g and even the big G may need to be 
included (Gomez et al 2017).

It should be mentioned that very recently, Zhou et al (2019) 
derived analytical expressions of the DLNs for a layered, 
spherical, TI and self-gravitating Earth. This solution is based 
on the spherical system of vector functions (or the VSHs) and 
the new DVP method presented above, instead of the SMM 
used in Chen et al (2018b). The DLNs can be obtained with 
high accuracy to an arbitrarily high degree, thereby allowing 
a wide range of applications based on high resolution Earth 
models. Compared to the traditional numerical integration 
approach, the analytical solution by Zhou et al (2019) is at 
least three orders of magnitude faster. An MATLAB code for 
computing the analytical DLNs is also provided, along with a 
user manual.

5.5.2.  Viscoelastic DLNs and GFs.  Pollitz (1997b) derived 
the dislocation GF solutions and studied the gravitational and 
viscoelastic post-seismic relation in layered spherical Earth. 
Since there was only one viscoelastic layer, the time-domain 

solution can be expressed in terms of the NME method 
(Schapery 1962). To overcome the numerical instabilities, the 
method of second-order minors was used (Gilbert and Backus 
1966, Takeuchi and Saito 1972). Once the viscoelastic GFs 
were derived (due to a concentrated point dislocation), visco-
elastic response to a finite fault can be superposed by numer
ical integration over the fault. A FORTRAN program called 
VISCO1D-v3 was developed and it can be applied to analyze 
large earthquake-induced post-seismic deformation of the 
global Earth (i.e. Pollitz et al 2006).

Making use of the reciprocity relation (Okubo 1993, Sun 
and Dong 2013), Tang and Sun (2018b) derived the asymp-
totic GF solutions of the co- and post-seismic displacements 
in a homogeneous Maxwell and gravitational sphere. Since 
the asymptotic solutions are analytical in terms of source/field 
positions and time, they are good benchmarks for various 
numerical methods proposed for Earth deformation modeling 
(involving series summation truncation and/or numerical 
inverse Laplace transform).

5.6. Time-harmonic waves and seismograms in elastic,  
self-gravitational and layered Earth

For this general case, i.e. in equation (5.1), we keep the iner-
tia term (ciner). We mention that Gilbert and Backus (1968), 
Smylie and Mansinha (1971) and Dahlen (1972) have con-
tributed to the formulation. Furthermore, Gilbert and Backus 
(1968) derived the analytical solutions under the assumptions 
of constant density and linear gravity (as g(r)  =  gir) in each 
isotropic layers (with constant density and elastic moduli). 
Saito (1967) presented a theory on calculating the amplitudes 
of the free oscillations caused by a point source in a spherically 
symmetric earth model, as also the classic paper by Takeuchi 
and Saito (1972) on seismic surface waves in layered earth.

Qureshi and Bhattacharya (2008) derived the solutions for 
Rayleigh wave (LM-type) with gravity in a radially hetero-
geneous isotropic and spherical Earth where the heterogene-
ity for the density, gravity and two Lamé coefficients were 
assumed to be special functions of r so that an analytical solu-
tion of the time-harmonic wave can be obtained. Al-Attar and 
Woodhouse (2008) calculated the seismic displacement fields 
in self-gravitating earth models by applying the minors vectors 
and symplectic structure method. The solution is stable and it 
can be applied to the TI PREM earth model (Woodhouse and 
Deuss 2007). More recently, Wang et al (2017) presented the 
complete formulation and further published the FORTRAN 
code QSSP for seismic waves in layered and gravitational 
Earth.

5.7.  Future GFs and analytical solutions

This section contains a large and important topic and so many 
earth scientists have contributed to the development of the 
GFs and analytical solutions. Yet GFs or analyticaly solutions 
in the new horizons are waiting for us to explore, as briefly 
discussed in the following three key areas.

It is well-known that the upper mantle of the earth is elas-
tically anisotropic (Dziewonski and Anderson 1981, Marone 

Rep. Prog. Phys. 82 (2019) 106801



Review

33

and Romanowicz 2007, Lebedev and van der Hilst 2008, 
Kustowski et al 2008, Long and Becker 2010). The question is: 
would the upper mantle be viscously anisotropic? McNamara 
et al (2002) reported the development of anisotropic structures 
even in the Earth’s lower mantle by solid-state convection. 
Hansen et al (2012) measured the viscous anisotropy of upper 
mantle materials olivine aggregates in their laboratory, which 
were consistent with previous reports (Durham and Goetze 
1977, Durham et  al 1977, Honda 1986, Christensen 1987, 
Lev and Hager 2008a). Hansen et al (2016a, 2016b) further 
studied the viscous anisotropy of textured olivine aggregates, 
both experimentally and analytically. These new anisotropic 
viscosity models include both normal and shearing viscosi-
ties, and it was further reported that the normal viscosity 
value could be much larger than the shear, 10–15 times large 
(Hansen et al 2012)! Therefore, it would be very appealing to 
develop a consistent anisotropic viscoelastic model so that it 
can simulate the correct mantle behavior and thus predict the 
accurate GIA observed on the surface of the Earth. However, 
since a consistent anisotropic viscoelastic model has to sat-
isfy certain conditions as discussed by Carcione (1990), so 
far, there is still no available reliable anisotropic viscoelastic 
model for the Earth’s long-term response, such as the GIA, not 
to mention the corresponding GFs. Also in Earth’s mantle, the 
deformation mechanism of the olivine-rich rocks there could 
be further associated with disclinations (Cordier et al 2014). 
This would require us to apply the GFs of the disclinations 
which relates to the relative rotational displacements, instead 
of the translational displacements (as in the dislocation case) 
of the two surfaces of the fault. Fundamental theories and the 
corresponding solutions in deWit (1973a, 1973b, 1973c) and 
Romanov and Vladimirov (1992) would be the starting point 
to explore the possible GFs and analytical solutions.

Closely related to the Earth gravitational elasticity and 
viscoelasticity is on the gravitational instability. It was Love 
(1911) who first derived analytically the gravitational instabil-
ity condition for a homogeneous, hydrostatically pre-stressed 
and self-gravitating elastic sphere. When analyzing the corre
sponding viscoelastic spherical Earth, the instability condi-
tion is termed as Rayleigh–Taylor stability (Plag and Juttner 
1995). Vermeersen and Mitrovica (2000) revisited Love’s 
elasticity instability condition, and extended it to both homo-
geneous and layered Earth with Maxwell viscoelastic model. 
For a homogeneous viscoelastic sphere, they concluded that 
the instability condition is independent of viscosity and only 
occurs when the corresponding elastic sphere is already unsta-
ble (Vermeersen and Mitrovica 2000). In terms of the NME 
method, Han and Wahr (1995) and Fang and Hager (1995) 
were able to distinguish two types of important modes: The 
advection or the viscosity mode due to the viscosity jump 
between adjacent layers, and the buoyancy mode due to the 
density jump between adjacent layers. It was shown that due 
to the existence of infinite (or continuous) modes in layered 
viscoelastic and gravitational Earth, the NME method would 
be no longer valid (Fang and Hager 1995, Han and Wahr 
1995). By assuming that the Earth is made of a homogene-
ous and compressible viscoelastic half-space under initial 
stress (i.e. the gravity), Klemann et  al (2003) were able to 

carry out detailed analyses by distinguishing various different 
forces associated with different sources (viscous, initial stress, 
density discontinuity, etc). Based on a Maxwell Earth model 
and in terms of also the NME method, Cambiotti et al (2009) 
analyzed the relative role and importance of the advection and 
buoyancy force using both the analytical solution of Gilbert 
and Backus (1968) and the numerical Runge–Kutta scheme. 
For the layered Maxwell earth models, Cambiotti and Sabadini 
(2010) further studied the effect of compressional and com-
positional stratifications on the viscoelastic relaxation modes 
and identified a new class, called the compositional C-modes. 
More recently, Mondal and Korenaga (2018a, 2018b) investi-
gated the Rayleigh–Taylor instability for both a two-layered 
self-gravitating viscous sphere and the corresponding multi-
layered sphere. The growth rate of this instability is important 
to understand the formation and dynamics of the Earth and 
other planets. While Earth anisotropic viscosity is important, 
only Lev and Hager (2008b) considered its effect on stability 
by building a 2D FEM model. They concluded that, for inves-
tigating lithospheric instability and other possible processes 
in the mantle, the isotropic viscosity model, like the Maxwell 
model, may not be adequate, and thus an anisotropic viscous 
model needs to be included (Lev and Hager 2008b). Again, 
this calls for the GFs in the corresponding anisotropic viscoe-
lastic, self-gravitating, and layered spherical Earth.

The third topic is on GFs and analytical solutions in 3D 
heterogeneous Earth. It is well known that, besides layering in 
the radial direction, our Earth is actually in an ellipsoidal shape 
and it is further laterally inhomogeneous (or laterially hetero-
geneous) in general. When the scale of heterogneiety is small 
compared to the Earth’s radius (i.e. the difference between the 
ellipsoidal and spherical Earth is about 1/300), the perturbation 
method as described well in Dahlen and Tromp (1998) can be 
applied to derive semi-analytical solutions. Wahr (1981) stud-
ied the effect of ellipsoid on the body tide. D’Agostino et al 
(1997) presented the relation between postglacial rebound and 
lateral viscosity variations. Metivier et al (2005, 2006) inves-
tigated, respectively, the effect of ellipticity on the surface 
loading induced field and the atmospheric loading induced 
field. The effect of large mantel density heterogeneity on body 
tides was also carried out by Metivier et al (2007). Based on 
the eccentrically nested spherical model, Martinec and Wolf 
(1999) derived analytically the gravtiatioanl viscoelastic relax-
ation. Based on the first-order perturbation, Fu and Sun (2007) 
studied the effect of the ellipticity on the earth tide, and Fu 
and Sun (2008) and Fu et al (2010) presented, respectively, the 
semi-analytical dislocation solution of the coseismic gravity 
and displacement changes. However, if the heterogeneity scale 
is relatively large, one has to apply the numerical method to 
solve the corresponding boundary-value problem of the Earth, 
by either the FEM as in Cheng et al (2019) or the spectral ele-
ment method as in Langer et al (2019).

5.8.  Summary of section 5

In this section, we have reviewed all the GF solutions in 
spherical and layered earth, with and without gravity. Both 
the static and time-harmonic (vibrational) deformations are 
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discussed, and so is the viscoelastic GF via the correspon-
dence principle. The concentrated source could be force and 
dislocation, either as Heaviside or impulsive in time. The 
solutions are expressed in terms of the spherical system of 
vector functions, and for layered sphere, in terms of the DVP 
method. The key application of GFs in layered spherical earth 
is to investigate the effect of the Earth sphericity and radial 
structure, which are particularly important on global deforma-
tion of the entire earth. For instance, a large earthquake would 
induce deformation in the far-field which cannot be simulated 
by the corresponding flat Earth model.

We end this section by listing several codes related to lay-
ered and spherical Earth, which have been developed for cal-
culating both elastic and viscoelastic Love numbers and the 
corresponding GFs. Some of the loading Love numbers were 
discussed in Spada et al (2011), including the TABOO, PMTF, 
ALMA, FastLove-HiDeg, MHPLove, and VEENT (based on 
the numerical integration and spherical expansion), along 
with those using the purely numerical methods (i.e. the FEM). 
Recently, the analytical code ELLNs in MATLAB was pub-
lished by Chen et al (2018a). It is based on the analytical solu-
tion by Pan et al (2015b) combined with the SMM (i.e. Wang 
and Rokhlin (2001) and Rokhlin and Wang (2002)) so that 
it can be applied to calculate the ELLNs to any high degree 
n. Pollitz published a FORTRAN code called STATIC1D for 
the static response induced by an internal fault (Pollitz 1996, 
1997a). The corresponding viscoelastic deformation was also 
coded by him, named VISCO1D-v3, for calculating the post-
seismic deformation caused by an internal fault (Pollitz 1997b, 
Pollitz et al 2006) with applications (Pollitz et al 2011). Wang 
et al (2017) published the FORTRAN code QSSP for comput-
ing the complete synthetic seismograms, with the Earth model 
being a very general spherically layered one which contains 
self-gravity with atmosphere, ocean, mantle and core inter-
actions. Some previous existing codes were also briefly dis-
cussed in Wang et al (2017). Very recently, Zhou et al (2019) 
published the analytical MATLAB code DLN.m for the elas-
togravitational DLNs in spherically layered Earth, based on 
the DVP method as discussed above.

6.  GF singularity in layered systems

In this section, we discuss the GF singularity and associ-
ated infinity issues in layered systems. We concentrate only 
on the flatly layered half-space and spherically layered earth 
structures. To study the singularity in GFs in a layered sys-
tem, we first present the layer matrix methods involved in 
deriving the GFs and then analyze the associated singularity 
in the GF expression. Singularity can be either very pleasant 
or very unfriendly, in geophysics, as well as its allied fields. 
Therefore, mastering singularity is a must!

6.1.  Various propagating matrix methods

Flatly layered half-spaces (or plates) and spherically layered 
structures (or particles) can be found everywhere, and as such, 
researchers from different engineering and science fields have 

contributed to their modeling and simulation. In general, by 
applying the proper transformation, namely, the cylindrical 
system of vector functions in terms of infinite integration for 
flatly layered structure as in section 4 or the spherical system 
of vector functions in terms of infinite series summation for 
spherically layered structure as in section 5, one can reduce 
the problem to a set of ordinary differential equations for the 
expansion coefficients. We take the LM-type deformation in 
the elastostatic and flatly layered half-space as an example. 
From section  4, in each layer, the general solutions for the 
expansion (or transformed) displacement and traction vec-
tors U and T as in equation (4.15a), are listed below for easy 
discussion
ñ

U(z)
T(z)

ô
=

ñ
E11 E12

E21 E22

ô ñ〈
eλp∗12(z−zj)

〉
0

0
〈
eλp∗34(z−zj−1)

〉
ô ñ

c+
c−

ô

� (6.1)
where zj −1 and zj  are the upper and lower interfaces of layer j , 
λ the transform variable (or the integral variable, which var-
ies from 0 to  +∞. p∗

ij are the eigenvalues (four of them) and 
[Eij] the corresponding eigenvectors. Both the eigenvalues and 
eigenvectors are functions of the frequency (for time-harmonic 
deformation) as well as material properties in the layer. Also, c+ 
and c− are the two coefficient vectors to be determined. Notice 
that in the corresponding spherically layered system, the degrees 
n(n  +  1) in the spherical functions (in section 5) would corre-
spond to the transform variable λ.

Since within the four eigenvalues, two of them have posi-
tive real parts and the other two negative real parts, the gen-
eral solution (6.1) is well behaved. For a given layered system 
with a given point dislocation source, we can subdivide the 
source layer into two sublayers. By applying equation  (6.1) 
to each layer and making use of the conditions at each inter-
face (including those on the surfaces and source level), we can 
assemble a global system of equations for solving all the coef-
ficients in each layer. The global matrix thus formed is stable 
since in each layer, there is no growing exponential term in the 
elements of the matrix.

However, for handling a multilayered system more effi-
ciently and conveniently, the propagator matrix-related methods 
are preferable. While various methods were proposed, we only 
briefly review the key ones and their connections, as well as 
the main features among them, as further illustrated in figure 6.

The traditional propagator matrix method (PMM), which 
is also called the Thomson–Haskell matrix method, was 
proposed by Thomson (1950) and Haskell (1953). Directly 
applying equation (6.1) to the upper (zj −1) and lower (zj ) inter-
faces of layer j  and eliminating the involved coefficients, one 
obtains the following propagating relation between the two 
interfaces of the layer with thickness hj 

ñ
U(zj)

T(zj)

ô
=

[
P j]
ñ

U(zj−1)

T(zj−1)

ô
� (6.2)

where

[
P j] =

ñ
E11 E12

E21 E22

ô

〈
eλp∗12hj

〉
0

0
〈
eλp∗34hj

〉


ñ

E11 E12

E21 E22

ô−1

.

� (6.3)
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Furthermore, assuming that the interfaces between different 
layers are continuous (except for the surfaces and those at the 
source level), we can easily propagate equation (6.3) from one 
layer to the next to obtain the following propagating relation
ñ

U(zj+1)

T(zj+1)

ô
=

[
P j+1] [P j]

ñ
U(zj−1)

T(zj−1)

ô
≡

[
P j+1:j]

ñ
U(zj−1)

T(zj−1)

ô
.

� (6.4)
While relation (6.4) is very simple and easy in applying to 
the multilayered system, there is a very major issue: Noticing 
that since p∗

ij have both positive and negative real parts, this 
PMM relation (6.2) contains the exponentially growing term. 
Therefore, an overflow could occur if the integral variable λ 
is very large, or the layer thickness hj  is very large, or the 
eigenvalues p∗

ij (as functions of the layer material properties 
and also of the frequency for the time-harmonic deformation) 
are very large.

To overcome this problem, many methods have been pro-
posed, with perhaps the delta matrix or minor matrix method 
(Dunkin 1965, Gilbert and Backus 1968) being the earliest 
one. In geophysics, Spencer (1960) first introduced the gener-
alized reflection and transmission coefficients when analyzing 
waves in layered half-space. The detailed formulation using 
the reflection and transmission matrices was developed by 
Kennett (1974) and Kennett and Kerry (1979) for isotropic 
and layered media. This can be achieved by eliminating the 
displacement and traction vectors in the layer and express-
ing the reflection and transmission coefficients (similar to the 
coefficients c+ and c− in equation  (6.1)) on both interfaces 
in terms of the reflections and transmission matrices. Fryer 
and Frazer (1984, 1987) extended the formulation to the gen-
eral anisotropic layered media. Wang (1999) proposed a sim-
ple orthonormalization method and Ma et  al (2012) further 

compared this method with the minor matrix method and the 
reflection-transmission matrix method.

In mechanics, the SMM was developed by Wang and 
Rokhlin (2001) and Rokhlin and Wang (2002), inspired from 
the FEM formulation. The precise integration method (PIM) 
was developed by Zhong et al (2004), Gao et al (2006) and Ai 
and Cheng (2014). The method of reverberation-ray matrix 
(MRRM) was proposed by Pao et al (2007), and its detailed 
theory/formulation was presented by Chen et  al (2011). 
Cai and Pan (2018) proposed the dual-boundary strategy 
for enhancing the solution in any layer matrix method, and 
compared the three common methods (i.e. PMM, SMM, and 
PIM). Notice that the reflection-transmission matrix method 
is more commonly called the generalized reflection-transmis-
sion matrix method since other components, such as the con-
versions of different wave types on the interface, would also 
contribute to the reflection and transmission coefficients (i.e. 
Apsel and Luco (1983), Luco and Apsel (1983) and Guzina 
and Pak (2001)).

Below, we briefly present the SMM and DVP methods as 
they are unfamiliar to geophysics and yet are very powerful 
approaches to avoid the exponentially growing terms in the 
multilayer solutions. Again, the SMM is perhaps inspired by 
the FEM where the forces at different locations are related to 
the displacements at these locations by the stiffness matrix. 
Similar to FEM, based on SMM, the layer matrix is expressed 
as

ñ
T(zj−1)

T(zj)

ô
=

[
K j]
ñ

U(zj−1)

U(zj)

ô

�

(6.5)

where the submatrices of [Kj ] can be obtained from equa-
tion (6.1) by eliminating the coefficients in the layer

Figure 6.  Various layer matrix methods and their relations. The layer geometry with the four coefficient vectors (displacement U and 
traction T) in (a), relation between PMM and SMM in (b), relation between PMM and DVP in (c), and a new layer matrix (which is similar 
to DVP in terms of their limiting behaviors) obtained via two steps switches among the four coefficient vectors in (d).
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[K j] ≡
ñ

K j
11 K j

12

K j
21 K j

22

ô
=

ñ
E22 E21

〈
e−λp∗12hj

〉
E22

〈
eλp∗34hj

〉
E21

ô
×

ñ
E12 E11

〈
e−λp∗12hj

〉
E12

〈
eλp∗34hj

〉
E11

ô−1

.
�

(6.6)

It can be observed that all the submatrices in [Kj ] are regular 
without exponentially growing terms.

To propagate the coefficients from one layer to the next 
(i.e. from interface zj −1 to interface zj +1), the following recur-
sive relation (instead of the propagating relation (6.4)) can be 
derived by assuming that on their common interface zj  both 
displacement and traction vectors are continuous (i.e. Chen 
et al (2018a))

ñ
T(zj−1)

T(zj+1)

ô
=

[
K j:j+1]

ñ
U(zj−1)

U(zj+1)

ô

�

(6.7)

where

[K j:j+1] =


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
 .

�
(6.8)

The DVP method as introduced in this review is inspired by 
the PIM (Zhong et al 2004). The layer matrix and recursive 
relations have been already derived in section 4.

We point out again that the layer matrix [P] in PMM, [K] 
in SMM, and [S] in DVP can all be connected with each other 
(see figure 6 for their relations). Actually, besides the SMM 
and DVP methods, there are also other methods which can 
be utilized to avoid the exponentially growing terms in the 
layer matrix (as illustrated in figure 6). The SMM and other 
two methods (minor matrices and orthonormalization) can be 
further connected to the generalized reflection and transmis-
sion matrices as shown by Wang and Rokhlin (2001) and Ma 
et al (2012)). The SMM is further unconditionally stable when 
the exponential factor λhp∗ is very large (Wang and Rokhlin 
2001). However, the low limit is also important. We discuss 
both limits below using the SMM and DVP as examples.

From equation (6.6), it can be shown that if the exponential 
factor λhp∗ approaches zero (corresponding to static defor-
mation, lower-frequency response, or very thin layer, etc), 
the layer matrix of SMM becomes singular whilst that of the 
DVP approaches an identity matrix (from equations  (4.18) 
and (4.19)). As such, the SMM could be problematic near this 
limit, whilst the layer matrix in the DVP is perfectly well!

When the exponential factor λhp∗ approaches infinity, the 
limits for both SMM and DVP are
ñ

K j
11 K j

12

K j
21 K j

22

ô
=

ñ
E22 0
0 E21

ô ñ
E12 0
0 E11

ô−1

=

ñ
E22E−1

12 0
0 E21E−1

11

ô

� (6.9a)

ñ
S j

11 S j
12

S j
21 S j

22

ô
=

ñ
0 E12

E21 0

ô ñ
E11 0
0 E22

ô−1

=

ñ
0 E12E−1

22

E21E−1
11 0

ô
.

� (6.9b)

As such, both SMM and DVP are equally well at this limit 
(corresponding to a very large λ, very large layer thickness, 

vary large eigenvalues due to high frequency, or their com-
bination)! Furthermore, the recursive relations based on both 
SMM and DVP will be also perfectly fine with the result-
ing matrix structure similar to the layer matrix structure in 
equation (6.9).

In summary, the DVP method seems to be a very reliable 
one in handling layered structures; no matter if it is for the 
static deformation or vibration, for a flatly layered half-space 
or a spherically layered earth. This DVP method has been fur-
ther demonstrated recently by applying it to various engineer-
ing and earth science problems (Moshtagh et al 2017, 2018, 
Liu and Pan 2018, Liu et al 2018, Pan et al 2018, Zhang and 
Pan 2019a, 2019b, Vattre and Pan 2019, Zhou et al 2019).

6.2.  Singularity of GFs in layered system

Even after taking care of the exponentially growing terms, 
the integration (for flat layering) or series summation (for 
spherical layering) involved in the GF solution cannot go 
all the way to infinity and we have to truncate the integral or 
summation at a prescribed error criterion. It is obvious that 
for the same given error criterion, the truncation (the largest 
integral or summation limit) will depend on the behavior 
of the integrand or each series term, which in turn depends 
on the relative position of the source and field points in the 
GFs. Since the physical-domain GF is singular at the source 
point (see section 1), numerical difficulty would occur when 
the field point (or observation point) is near the source 
point. For the layered system, we face one extra difficulty 
on calculating the physical-domain GF: This is when the 
field point is on the same z-(or r-) level (or depth) of the 
source point.

For layered spherical Earth under surface loading, Farrell 
(1972) proposed two approaches to accelerate the slowly con-
verging series of the Legendre polynomials in the GF solution: 
One is the Kummer’s transformation already discussed in sec-
tion 5, and the disc factor (method) instead of the concentrated 
surface loading. Wang and Wang (2007) proposed the differ
ential transform method which can be applied to both flatly 
layered and spherically layered structures (associated with 
infinite integration and summation, respectively). The method 
proposed by Wang and Wang (2007) is more efficient, except 
for the extremely near-source region.

It should be pointed out that the singularity in the GF is a local 
feature. In other words, the singularity in GF is related to the 
local material property only. For instance, for the half-space (or 
half-plane) GFs derived in section 2, one can observe that when 
the field point approaches the internal source point in a half-
space (or half-plane), the GF variation or behavior is the same 
as that in the corresponding full-space (or full-plane). As such, 
perhaps the best and most efficient method would be to subtract 
out the singularity under the integration (within the summation) 
and then add it back after the integration (summation), similar to 
those in Pan et al (2001). Taking the flatly layered case as exam-
ple, and using the vertical displacement uz in (4.4) as example. 
For instance, for the source located at (0, 0, zs) and the field point 
(r, θ, z) in the same layer as the source, we have,
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uz(r, θ, z; zs) =
∑

m

ˆ +∞

0
UL(z)S(r, θ;λ, m)λdλ.

� (6.10)

Making use of the analytical full-space GF solution, equa-
tion (6.10) can be modified to

uz(r, θ, z; zs) =
∑

m

ˆ +∞

0
[UL(z)− U∞

L (z)] S(r, θ;λ, m)λdλ+ u∞z (r, θ, z; zs)

� (6.11)
where

u∞z (r, θ, z; zs) =
∑

m

ˆ +∞

0
U∞

L (z)S(r, θ;λ, m)λdλ
� (6.12)
is the full-space GF displacement component in the physical-
domain, which is expressed in terms of its transformed comp
onents. This GF (6.12) in both physical and transformed domains 
is in general available in exact-closed forms (i.e. for the point-force 
and point dislocation GFs, see Song et al (2019)). Since near the 
source location, the modified integrand within the square bracket [] 
in equation (6.11) becomes regular, its integration converges fast. 
A similar approach could be applied to the case where the source 
is located on the interface or surface. For this case, instead of the 
analytical GFs in the full-space (or full-plane), one needs to use 
the corresponding analytical bimaterial or half-space (half-plane) 
GFs in equation (6.11), which are also mostly available (Pan and 
Chen 2015). As for the homogeneous sphere case, Ben-Menahem 
and Singh (1968) derived the GF solutions in the physical domain 
and also in terms of the spherical system of vector functions. These 
expressions could be directly applied to take care of the singular-
ity and thus to accelerate the convergence of the series summa-
tion. Alternatively, the recent approach by Zhou et al (2019) can 
be directly applied to calculate analytically the limit values of the 
DLNs (and also the ELLNs) so that combing with the Kummer’s 
transformation, one can take care of the singularity in the GF 
expression.

6.3.  Summary of section 6

Due to the inherent singularity in GF (when field point 
approaches source point), GF solution in layered systems 
has been always a challenge. For the flatly layered half-space 
and spherically layered earth structure, the GF is expressed, 
respectively, in terms of infinite integral (say via the cylin-
drical system of vector functions) or infinite series summa-
tion (via the spherical system of vector functions). When the 
field point is close to the source, the integral or series summa-
tion needs to be carried out all the way to a very large value. 
Besides this, both the integrand function and series term are 
oscillatory and slowly convergent. As such, the first step in 
dealing with the GF in a layered system is to make sure that 
the layer matrix and its recursive relation are very stable 
everywhere, with some of these matrices being discussed in 
section 6.1. The second step, if possible, is to subtract out the 
singularity (which is local) so that the involved integrand or 
series term becomes regular, thus converges fast, as studied in 
section 6.2.
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Appendix.  Basic mathematical operators  
and systems of vector functions

Two important references on different systems of vector func-
tions are the books by Ben-Menahem and Singh (1968) and 
Ulitko (1979). Many useful mathematical expressions in dif-
ferent systems of vector functions can be also found in Morse 
and Feshbach (1953). Here we just list the most important and 
commonly used relations.

A.1. Three systems of coordinates

The definitions for the Cartesian, cylindrical and spherical 
coordinate systems are shown, respectively, in figures A1–A3 
for easy reference.

A.2.  Basic mathematical operators (vector gradient, cross 
product, Laplace, divergent)

A.2.1.  Gradient of a scalar function f  in Cartesian, cylindrical, 
and spherical coordinates

∇f =
∂f
∂x

ex +
∂f
∂y

ey +
∂f
∂z

ez

∇f =
∂f
∂r

er +
∂f
r∂θ

eθ +
∂f
∂z

ez

∇f =
∂f
∂r

er +
∂f
r∂θ

eθ +
∂f

r sin θ∂ϕ
eϕ.

�
(A.1)

A.2.2.  Divergence of a vector function u in Cartesian, cylindri-
cal, and spherical coordinates

∇ · u = ∂ux
∂x +

∂uy

∂y + ∂uz
∂z

∇ · u = ∂(rur)
r∂r + ∂uθ

r∂θ + ∂uz
∂z

∇ · u = 1
r2

∂(r2ur)
∂r + 1

r sin θ
∂(sin θuθ)

∂θ + 1
r sin θ

∂uϕ
∂ϕ .

�
(A.2)
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A.2.3.  Cross-product of gradient operator vector and a vector 
function u in Cartesian, cylindrical, and spherical coordinates

∇× u =
î
∂uz
∂y − ∂uy

∂z

ó
ex +

î
∂ux
∂z − ∂uz

∂x

ó
ey +

î
∂uy

∂x − ∂ux
∂y

ó
ez

∇× u =
î
∂uz
r∂θ − ∂uθ

∂z

ó
er +

î
∂ur
∂z − ∂uz

∂r

ó
eθ +

î
∂(ruθ)

r∂r − ∂ur
r∂θ

ó
ez

∇× u = 1
r sin θ

î
∂(sin θuϕ)

∂θ − ∂uθ
∂ϕ

ó
er

+
î

1
r sin θ

∂ur
∂ϕ − 1

r
∂(ruϕ)

∂r

ó
eθ +

î
∂(ruθ)

r∂r − ∂ur
r∂θ

ó
eϕ.

� (A.3)

A.2.4.  Laplacian of any scalar function f  in Cartesian,  
cylindrical, and spherical coordinates

∇2f = ∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2

∇2f = ∂
r∂r

Ä
r ∂f
∂r

ä
+ ∂2f

r2∂θ2 +
∂2f
∂z2

∇2f = ∂
r2∂r

Ä
r2 ∂f

∂r

ä
+ 1

r sin θ
∂
∂θ

Ä
sin θ ∂f

r∂θ

ä
+ 1

r2sin2θ
∂2f
∂ϕ2

�
(A.4)

A.3.  Cartesian system of vector functions and basic relations

A.3.1.  Strain and displacement relations

εxx = ux,x, εyy = uy,y, εzz = uz,z

εyz = 0.5(uy,z + uz,y)

εxz = 0.5(ux,z + uz,x)

εxy = 0.5(ux,y + uy,x).�
(A.5)

A.3.2.  Cartesian system of vector functions  First, we introduce 
the following Cartesian system of vector functions L, M, and N:

L(x, y;α,β) = ezS(x, y;α,β)
M(x, y;α,β) = ∇S ≡ (ex∂x + ey∂y)S(x, y;α,β)

N(x, y;α,β) = ∇× (ezS) ≡ (ex∂y − ey∂x)S(x, y;α,β)� (A.6)

where ∂x and ∂y  are the derivatives with respect to variables x 
and y , and the scalar function S is defined as

S(x, y;α,β) = e−i(αx+βy)/(2π)� (A.7)
and ex, ey , and ez are the unit vectors along the x-, y -, and z-axes, 
respectively. For applications to layered structures, the coor-
dinates x and y  are the horizontal axes, while z axis points to 
the problem domain; α and β are the transformation variables 
corresponding to the two horizontal physical variables x and y .

It can be easily shown that the scalar function S satisfied 
the following Helmholtz equation

(∂2
xx + ∂2

yy + λ2)S = 0, λ2 = α2 + β2.
� (A.8)

The system of vector functions introduced in equation (A.6) 
satisfies the orthonormal relations below

´ ´ +∞
−∞ L(x, y;α,β) · L∗(x, y;α′,β′)dxdy = δ (α− α′) δ (β − β′)´ ´ +∞

−∞ M(x, y;α,β) · M∗(x, y;α′,β′)dxdy = (αα′ + ββ′) δ (α− α′) δ (β − β′)´ ´ +∞
−∞ N(x, y;α,β) · N∗(x, y;α′,β′)dxdy = (αα′ + ββ′) δ (α− α′) δ (β − β′)�

(A.9)

where the dot between two vectors indicate scalar product and 
the star indicates conjugate of the function or variable.

Due to these orthonormal relations, any square-integrable 
scalar function and vector function can be expanded in terms 
of this vector system. For instance, for the scalar function g 
and the vector function f   ≡  f xex  +  f y ey   +  f zez, we can expand 
them in terms of Cartesian system of vector functions as

g(x, y, z) =
´ ´ +∞

−∞ G(z)S(x, y;α,β)dαdβ

f(x, y, z) =
´ ´ +∞

−∞ [FL(z)L(x, y) + FM(z)M(x, y) + FN(z)N(x, y)]dαdβ

=
´ ´ +∞

−∞ {ex[FM(z)∂x + FN(z)∂y] + ey[FM(z)∂y − FN(z)∂x] + ezFL(z)}S(x, y)dαdβ.�
(A.10)

Remark A1:   If the scalar function or the vector function 
depend only on the their horizontal coordinates (x, y ), as 
for the loading prescribed on the horizontal surfaces of the 
structures, or the internal source located on a horizontal plane 
within the layered structures, the expansion coefficients G for 
g, and FL, FM, FN for f  will be independent of the vertical 
coordinate z.

Due to the orthonormal relations (A.9), the expansion coef-
ficients in equation (A.10) can be found as

G(z) =
´ ´ +∞

−∞ g(x, y, z)S∗(x, y;α,β)dxdy

FL(z) =
´ ´ +∞

−∞ f(x, y, z) · L∗(x, y)dxdy

FM(z) = λ−2
´ ´ +∞

−∞ f(x, y, z) · M∗(x, y)dxdy

FN(z) = λ−2
´ ´ +∞

−∞ f(x, y, z) · N∗(x, y)dxdy.
�

(A.11)

Figure A2.  Cylindrical coordinates (r, θ, z), with 0  ⩽  r  <  ∞, 
0  ⩽  θ  <  2π, −∞<z  <  ∞.

Figure A1.  Cartesian coordinates (x, y , z), with  −∞ < x, y , z  <  ∞. Figure A3.  Spherical coordinates (r, θ, ϕ), with 0  ⩽  r  <  ∞, 
0  ⩽  θ  ⩽  π, 0  ⩽  ϕ  <  2π.
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It is noted that: (1) the expansion coefficients are functions 
of z as well as the transformation variables (α, β), and (2) the 
solutions based on this system of vector functions contain the 
2D (x, z)-plane and (y , z)-plane deformations as special cases.

A.4.  Cylindrical system of vector functions and basic  
relations

A.4.1.  Strain and displacement relations in cylindrical 
coordinates

εrr = ur,r, εθθ = r−1uθ,θ + r−1ur, εzz = uz,z

εθz = 0.5(uθ,z + r−1uz,θ)

εrz = 0.5(uz,r + ur,z)

εrθ = 0.5(r−1ur,θ + uθ,r − r−1uθ).�
(A.12)

A.4.2.  Cylindrical system of vector functions  It is defined as

L(r, θ;λ, m) = ezS(r, θ;λ, m)

M(r, θ;λ, m) = ∇S ≡ (er∂r + eθr−1∂θ)S(r, θ;λ, m)

N(r, θ;λ, m) = ∇× (ezS) ≡ (err−1∂θ − eθ∂r)S(r, θ;λ, m)�
(A.13)with

S(r, θ;λ, m) = Jm(λr)eimθ/
√

2π�
(A.14)

where Jm(λr) is the Bessel function of order m with m  =  0 
corresponding to the axial symmetric deformation. Similarly, S 
satisfies the Helmholtz equation in the cylindrical coordinates

∂2S
∂r2 +

∂S
r∂r

+
∂2S

r2∂θ2 + λ2S = 0.
� (A.15)
Orthonormal relations among these vectors are:

´ 2π
0

´ +∞
0 L(r, θ;λ, m) · L∗(x, y;λ′, m′)rdrdθ = δ(λ−λ′)√

λλ′ δmm′

´ 2π
0

´ +∞
0 M(r, θ;λ, m) · M∗(x, y;λ′, m′)rdrdθ = δ(λ− λ′)

√
λλ′δmm′´ 2π

0

´ +∞
0 N(r, θ;λ, m) · N∗(x, y;λ′, m′)rdrdθ = δ(λ− λ′)

√
λλ′δmm′ .

�
(A.16)

Expansion of any square-integrable scalar function g and vec-
tor function f   ≡  f rer  +  f θeθ  +  f zez in terms of it as

g(r, θ, z) =
∑
m

´ +∞
0 G(z)S(r, θ;λ, m)λdλ

f(r, θ, z) =
∑
m

´ +∞
0 [FL(z)L(r, θ) + FM(z)M(r, θ) + FN(z)N(r, θ)]λdλ

=
∑
m

´ +∞
0 {er[FM(z)∂r + FN(z)r−1∂θ]

+ eθ[FM(z)r−1∂θ − FN(z)∂r] + ezFL(z)}S(r, θ)λdλ.� (A.17)
The expansion coefficients of the scalar function g and the 
vector function f  are

G(z) =
´ 2π

0

´ +∞
0 g(r, θ, z)S∗(r, θ;λ, m)rdrdθ

FL(z) =
´ 2π

0

´ +∞
0 f(r, θ, z)·L∗(r, θ)rdrdθ

FM(z) = λ−2
´ 2π

0

´ +∞
0 f(r, θ, z)·M∗(r, θ)rdrdθ

FN(z) = λ−2
´ 2π

0

´ +∞
0 f(r, θ, z)·N∗(r, θ)rdrdθ.

�
(A.18)

It is noted that the expansion coefficients are functions of z 
and (λ, m).

Remark A2.   The solutions based on the cylindrical system 
of vector functions contain the axisymmetric deformation as 

their special case. It is corresponding to the case where m  =  0.

A.5.  Spherical system of vector functions (or vector spherical 
harmonics) and basic relations

A.5.1.  Strain and displacement relations in spherical coordinates.

εrr = ur,r, εθθ = r−1uθ,θ + r−1ur, εϕϕ = r−1sin−1θuϕ,ϕ + r−1ur + r−1uθ cot θ
εrθ = 0.5(uθ,r + r−1ur,θ − r−1uθ)

εrϕ = 0.5(uϕ,r + r−1sin−1θur,ϕ − r−1uϕ)

εθϕ = 0.5(r−1uϕ,θ + r−1sin−1θuθ,ϕ − r−1uϕ cot θ).�
(A.19)

A.5.2.  Spherical system of vector functions.  We point out 
that Appendices B and C in Dahlen and Tromp (1998) contain 
detailed discussion on spherical harmonic functions and their 
various properties.

It is defined as

L(θ,ϕ; n, m) = erS(θ,ϕ; n, m)

M(θ,ϕ; n, m) = r∇S ≡
Ä

eθ∂θ + eϕ
∂ϕ

sin θ

ä
S (θ,ϕ; n, m)

N(θ,ϕ; n, m) = r∇× (erS) ≡
Ä

eθ
∂ϕ

sin θ − eϕ∂θ
ä

S (θ,ϕ; n, m)
�

(A.20)

where er, eθ, and eϕ are the unit vectors, respectively, along 
r-, θ- and ϕ-directions, and the scalar function S is the nor
malized surface spherical function defined by

S(θ,ϕ; n, m) =
√

(2n+1)(n−m)!
4π(n+m)! Pm

n (cos θ)e
imϕ

|m| � n; n = 0, 1, 2, ....�
(A.21)

The associated Legendre function Pm
n  in equation  (5.2) is 

defined as

Pm
n (x) = (−1)m

(1 − x2)
m/2 dm

dxm Pn(x) (m � 0)� (A.22)

where Pn is the Legendre function of nth degree.
It should be noted that equation (A.22) is for positive m. 

When this index is negative, the associated function is defined 
in terms of its positive one as

P−m
n (cos θ) = (−1)m (n − m)!

(n + m)!
Pm

n (cos θ) (m � 0).�

(A.23)
In so doing, we can define

S(θ,ϕ; n,−m) = (−1)mS∗(θ,ϕ; n, m)� (A.24)

where the superscript star denotes complex conjugate, giving 
as

S∗(θ,ϕ; n, m) =
√

(2n+1)(n−m)!
4π(n+m)! Pm

n (cos θ)e
−imϕ

|m| � n; n = 0, 1, 2, ...
�

(A.25)

It is noted that function S satisfies the following Helmholtz 
equation

Ç
∂θ(sin θ∂θ)

sin θ
+

∂2
ϕ

sin2θ
+ λ2

å
S = 0� (A.26)

where λ2 = n(n + 1). It should be noted that N  =  n(n  +  1) is 
also used in the text when analyzing the deformation in spher-
ical earth.
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Equation (A.26) can be also written as

∂2S
∂θ2 + cot θ

∂S
∂θ

+
1

sin2θ

∂2S
∂ϕ2 + λ2S = 0.� (A.27)

The spherical system of vector functions (A.20) is complete 
and orthogonal in the following sense.
´ 2π

0 dϕ
´ π

0 L(θ,ϕ; n, m)·L∗(θ,ϕ; n′, m′) sin θdθ = δnn′δmm′´ 2π
0 dϕ

´ π
0 M(θ,ϕ; n, m)·M∗(θ,ϕ; n′, m′) sin θdθ = λ2δnn′δmm′´ 2π

0 dϕ
´ π

0 N(θ,ϕ; n, m)·N∗(θ,ϕ; n′, m′) sin θdθ = λ2δnn′δmm′
�

(A.28)

where dot means scalar product.
Expansion of any square-integrable scalar function g and 

vector function f   ≡  Frer  +  Fθeθ  +  Fzeϕ in terms of it is

g(r, θ,ϕ) =
∞∑

n=0

n∑
m=−n

G(r)S(θ,ϕ; n, m)

f(r, θ,ϕ) =
∞∑

n=0

n∑
m=−n

[FL(r)L(θ,ϕ) + FM(r)M(θ,ϕ) + FN(r)N(θ,ϕ)]

=
∞∑

n=0

n∑
m=−n

î
eθ
¶

FM(r)∂θ + FN(r)
∂ϕ

sin θ

©

+ eϕ
¶

FM(r)
∂ϕ

sin θ − FN(r)∂θ
©
+ erFL(r)

ó
S(θ,ϕ).

�
(A.29)

The expansion coefficients can be found, for instance, for the 
scalar function g and the vector function f, as

G(r) =
´ 2π

0 dϕ
´ π

0 sin θdθ [g(r, θ,ϕ)S∗(θ,ϕ; n, m)]

FL(r) =
´ 2π

0 dϕ
´ π

0 sin θdθ [f(r, θ,ϕ) · L∗(θ,ϕ)]

FM(r) = 1
λ2

´ 2π
0 dϕ

´ π
0 sin θdθ [f(r, θ,ϕ) · M∗(θ,ϕ)]

FN(r) = 1
λ2

´ 2π
0 dϕ

´ π
0 sin θdθ [f(r, θ,ϕ) · N∗(θ,ϕ)]

�
(A.30)

Remark A3.   (1) The expansion coefficients are functions 
of (n, m) as well as r; (2) Equation (A.20) is not needed for the 
solution depending only upon r corresponding to the special 
case of n  =  0 (and m  =  0). This is the uniform deformation 
case; (3) For the spherically axisymmetric deformation we 
have m  =  0; (4) For the deformation associated with n  =  1, 
there is a rigid-body motion involved (i.e. Farrell 1972).

Remark A4.   For the scalar g and vector f  in terms of the 
three systems of vector functions (equations (A.10), (A.17), 
and (A.29), respectively, for the Cartesian, cylindrical, and 
spherical systems), the following important divergence and 
Laplacian relations exist. In terms of either Cartesian or cylin-
drical system of vector functions, we have

∇2g = (G′′ − λ2G)S
∇ · f = (F′

L − λ2FM)S�
(A.31)

where the prime indicates derivative with respect to the verti-
cal coordinate z. In terms of the spherical system of vector 
functions, we have

∇2g =
1
r2

ï
d
dr

Å
r2 d

dr

ã
− λ2
ò

GS

∇ · f =

ï
1
r2

d
dr

(r2FL)−
λ2

r
FM

ò
S

�
(A.32)
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