
Plasma Physics and Controlled
Fusion

     

PAPER • OPEN ACCESS

Intrinsic rotation modulation by diffusive neutral
particles in tokamaks
To cite this article: R W Brzozowski III and T Stoltzfus-Dueck 2024 Plasma Phys. Control. Fusion 66
065011

 

View the article online for updates and enhancements.

You may also like
Temporal and spatial responses of
temperature, density and rotation to
electron cyclotron heating in JT-60U
M. Yoshida, S. Ide, H. Takenaga et al.

-

Physics of intrinsic rotation in flux-driven
ITG turbulence
S. Ku, J. Abiteboul, P.H. Diamond et al.

-

Predicting the rotation profile in ITER
C. Chrystal, B.A. Grierson, S.R. Haskey et
al.

-

This content was downloaded from IP address 18.117.142.248 on 05/05/2024 at 15:30

https://doi.org/10.1088/1361-6587/ad3e2b
https://iopscience.iop.org/article/10.1088/0029-5515/53/8/083022
https://iopscience.iop.org/article/10.1088/0029-5515/53/8/083022
https://iopscience.iop.org/article/10.1088/0029-5515/53/8/083022
https://iopscience.iop.org/article/10.1088/0029-5515/52/6/063013
https://iopscience.iop.org/article/10.1088/0029-5515/52/6/063013
https://iopscience.iop.org/article/10.1088/1741-4326/ab6434


Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 66 (2024) 065011 (14pp) https://doi.org/10.1088/1361-6587/ad3e2b

Intrinsic rotation modulation by diffusive
neutral particles in tokamaks

R W Brzozowski III∗ and T Stoltzfus-Dueck

Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America

E-mail: rbrzozow@pppl.gov

Received 11 January 2024, revised 19 March 2024
Accepted for publication 12 April 2024
Published 26 April 2024

Abstract
The modulated transport model, a model kinetic ion transport equation for the pedestal and
scrape-off layer (SOL), is generalized to self-consistently include effects of a single neutral
particle species. The neutrals contribute additional transport terms, modifying the v∥-dependent
orbit-averaged ion diffusivities of the original work and the resulting predicted intrinsic rotation
of the ions. After making simplifying assumptions of the neutral transport, in particular taking
the continuous transport limit via a short charge-exchange step expansion, we derive relatively
simple analytic expressions that capture the diffusive neutral physics. Within the scope of the
model’s validity, the neutral-driven intrinsic rotation can compete with the turbulence-driven
intrinsic rotation. However, for physically motivated parameters, the neutral-driven intrinsic
rotation appears negligible, either on a term-by-term basis or due to a strong cancellation
between the neutral-driven momentum diffusion and pinch terms. It appears that a treatment
containing finite charge-exchange steps is necessary to capture neutral transport of strong flow
momentum into the confined region from the SOL.

Keywords: tokamaks, intrinsic rotation, neutrals

1. Introduction

A significant open question for tokamak research concerns the
stabilization of instabilities that can both impact performance
and damage plasma facing components. The toroidal rotation
is one parameter known to be essential for mitigating instabil-
ities like resistive wall modes [1]. Typically, the largest source
of toroidal momentum comes from heating the plasma via
neutral-beam injection. However, future fusion reactors will
primarily rely on self heating via their internal fusion reac-
tions, processes that deposit no net momentum. Fortunately,
experiments report the spontaneous toroidal rotation of torque-
less plasmas [2–7]. This intrinsic rotation is caused by stresses
inherent to the confined plasma, which can be considered
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intrinsic sources of torque. An understanding of these stresses
could pave the way for controlling the toroidal rotation with
minimal torque input. A motivating case is ITER, where neut-
ral beam injection will be unable to apply a significant torque.
To avoid the aforementioned resistive wall modes found at
low-rotation states, first-principles understanding and control
of the intrinsic rotation will likely be necessary.

The modulated transport model (MTM) has reproduced the
basic experimentally observed features of the intrinsic rotation
[6, 8]. Essentially, the model predicts the rotation caused by an
imbalanced turbulent diffusivity experienced by thermal ions
on co- and counter-passing orbits. The transport of oppositely
directed ions differs due to the synergy between the turbulent-
diffusivity asymmetry, often outboard ballooning transport,
and the drift-orbit asymmetry. Counter-current (co-current)
passing orbits drift radially inward (outward) with increasing
major radial coordinate R. Therefore, counter-current passing
ions on-average experience greater turbulent diffusion on the
‘bad-curvature’ portions of their orbits. The imbalanced trans-
port of the counter-current ions results in a co-current rota-
tion of the core plasma, in line with typical observations in
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https://doi.org/10.1088/1361-6587/ad3e2b
https://orcid.org/0000-0001-7602-2634
https://orcid.org/0000-0003-2587-6298
mailto:rbrzozow@pppl.gov
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6587/ad3e2b&domain=pdf&date_stamp=2024-4-26
https://creativecommons.org/licenses/by/4.0/


Plasma Phys. Control. Fusion 66 (2024) 065011 R W Brzozowski III and T Stoltzfus-Dueck

low-torque plasmas [3–7]. Thismechanism has also been iden-
tified by the full-function gyrokinetic code XGC1 as a key
source of intrinsic momentum generation in the plasma edge
[9]. Additionally, the MTM has seen success in interpreting
changes reported in the intrinsic rotation in TCV as a function
of the X-point location, even correctly predicting a rotation
reversal for an outboard X-point [6].

A recent reformulation of the MTM allows for a two-
dimensional turbulent diffusivityDt(x,y)with arbitrary spatial
dependence (written simply as D(x,y) in the original work)
[10]. The generalization relies on the assumption that the nor-
malized Dt ≪ 1, where the normalization is L2xBθvti

∣∣
pt
/aB0.

Here, Lx is generically a radial length scale of the pedestal
and serves as the radial normalization. Practically, Lx ∼ LTe ,
the electron temperature decay length, a short length scale in
the edge [8]. The other quantities are the poloidal field com-
ponent Bθ, the thermal velocity at the pedestal top vti

∣∣
pt
≡√

Ti
∣∣
pt
/mi (the ion temperature Ti and the ion mass mi), the

minor radius a, and the magnitude of the magnetic field B0.
Physically, this normalization relates the typically long ion
transport time ∼ L2x/D

dim
t to a comparatively fast ion transit

time∼ aBϕ/Bθvti
∣∣
pt
, resulting in theDt ≪ 1 assumption being

true under most relevant experimental conditions for both L-
and H-mode plasmas. Note that the superscript ‘dim’ specifies
the dimensional form of a quantity that is otherwise presented
in its normalized form.

The small Dt MTM calculation is mechanically simpler
than the original formulation. This quality derives from the
fact that for a small normalized turbulent diffusivity, only
a radially thin loss layer (∆x∼

√
Dt), where the turbulence

mixes particles on open and closed orbits, meaningfully lies
between the outer boundaries and the core confined region. In
other words, poloidal variation is only significant in the thin
loss layer. Further radially inward, the ion distribution func-
tion is nearly constant on drift surfaces. On the other hand,
the radial dependence of the transport is simplified in the loss
layer, being neglected at leading order since ∆x∼

√
Dt ≪

1. This simplified boundary-layer calculation naturally eases
extension to more generalized systems. The error bounds of
the simplified method are detailed rigorously in [10]. The
small Dt caluclation qualitatively reproduces the results of [8]
in that limit.

We present one such generalization to the MTM by way
of introducing a species of neutral particles, with a partic-
ular interest in the intrinsic rotation. In addition to the tur-
bulence and drift-orbit asymmetries that drive the intrinsic
rotation in the standard MTM, the asymmetry of the neut-
ral particles also contributes to the rotation drive. In con-
trast to the turbulent diffusion drive, neutrals originate in the
edge and can drag strongly-directed edge momentum inward
towards the core and have been theoretically predicted to
impact the edge rotation [11–19]. Since the MTM is con-
cerned with the intrinsic rotation of the thermal ion popula-
tion, we exclude neutral beams and other fast ions and only
consider recycled neutrals and those introduced from gas puff-
ing via external valves. Such neutrals are often poloidally

localized, making them promising candidates for an imbal-
anced momentum transport due to the poloidal dependence of
the strongly-directed transport-driven scrape-off layer (SOL)
flows [8, 20, 21]. There is experimental evidence that neutrals
impact the rotation in JET [22] and the closely related L-H
transition power threshold in COMPASS-D [23], MAST [24],
and NSTX [25], although divertor closure does not appear to
affect the intrinsic rotation in DIII-D [26], establishing room
for further interaction between theory and experiment.

Themechanismwhich theoretically allows neutral particles
to deposit SOL momentum into the confined plasma is charge
exchange. In a charge-exchange event in the SOL, a neutral
atom donates an electron to a local ion, creating a new neut-
ral with toroidal momentum characteristic of the local SOL
plasma. This newly born neutral particle travels ballistically
for a finite step until it either ionizes or charge exchanges
with another ion, essentially depositing its momentum to the
ions. Since the neutral particles move freely across the mag-
netic field, they are good prospects for cross-field transport.
The gyrophase of any ion undergoing a charge-exchange col-
lision approximately randomizes the perpendicular trajectory
for any such neutral. Thus, one can treat the problem as a ran-
dom walk of neutral particles in the edge, where any thermal
neutral’s velocity is characteristic of the local ions.

In this manuscript, we model this random walk as a dif-
fusive process. We realize this ansatz by making an effect-
ive short charge-exchange step expansion, similarly to works
in the literature [11, 17–19]. The neutrals are thus treated
as charge-exchange dominated; any neutral particle is taken
to charge exchange many times before transiting the ped-
estal and/or ionizing. The expansion procedure essentially
smooths the finite-step random walk of a thermal neutral.
Unfortunately, this assumption is often tenuous in the edge
where Ti ∼ Te ∼ 100eV and finite-step effects could be sig-
nificant; the charge exchange, νx, pedestal transit, vti/Lx,
and ionization, νz, frequencies are typically of the same
order here [17, 27]. Nonetheless, similarly to other trans-
port problems, one may choose experimental values for the
transport coefficients to capture realistic levels of transport,
even though finite-step effects are neglected. The true nov-
elty here is the analytic exploration of the modulation of
the intrinsic rotation by neutral particles in a self-consistent
non-Maxwellian ion distribution function that is sensitive to
edge effects, such as drift orbits and transport-driven flows.
Contrasting the results of this paper with the literature where
simpler edge fi were used, [11–13, 15–17, 19], highlights the
importance of a realistic edge non-Maxwellian ion distribution
function.

The layout of the article is as follows: section 2 presents a
short derivation of the MTM with small Dt and discusses the
predicted intrinsic rotation. In section 3, we develop the neutral
particle theory and prepare the leading-order terms for integ-
ration into the MTM.We then present the extended model and
its general solution in section 4. Section 5 explores the results
of the neutrals within theMTM for specified transport profiles.
The text concludes in section 6 with a discussion of the model
and the finite charge-exchange step, motivating future work.
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2. MTM with small Dt

Throughout this section, we present an abbreviated derivation
of the Dt ≪ 1 formulation of the MTM as derived in [10],
setting the stage for the neutrals’ inclusion in section 4. In
the solution procedure the parallel velocity is parametric, and
the model is solved for each parallel velocity separately. The
MTM determines a self-consistent solution for the edge fi that
respects both the periodic nature of the confined region and the
explicitly aperiodic nature of the SOL. In short, when Dt ≪ 1,
the leading-order fi for a given v∥ is constant on any closed drift
surface and the radial loss region where fi significantly varies
poloidally becomes narrow. Each of these features simplifies
the formulation. A more detailed derivation of the generalized
MTM is found in section 4 and acts as a supplement for this
condensed section. Additionally, one can refer to [10] for the
rigorous derivation of the simplified boundary-layer problem’s
error bounds or to [8] for the full derivation of the original
solution.

The model solves a reduced ensemble average of Hahm’s
collisionless, electrostatic gyrokinetic formulation omitting
trapped particles [8, 10, 28]:

∂t fi + bϕ v∥∂yfi − bϕ δv
2
∥ sin(y)∂x fi − ∂x[Dt (x,y)∂x fi] = 0.

(1)

Refer to [8] appendix A for the derivation of (1). The magnetic
field is simple-circular and shearless B= Bϕ bϕ ϕ̂+Bθbθ ŷ,
where the constants Bϕ and Bθ specify the magnitude of the
field components and bϕ and bθ the sign. Physical space is
described using a polar coordinate system in the poloidal
plane, with x acting as the radial coordinate (increasing out-
ward with x= 0 corresponding to the separatrix) and y the
poloidal coordinate (increasing anticlockwise in a standard
poloidal cross section with y= 0 corresponding to the out-
board midplane). The distribution function Fi has been integ-
rated over the gyroangle and perpendicular velocity, leaving
the parallel ion distribution function fi. Thus ni =

´
fi dv∥ is

the self-consistent ion density where v∥ is the parallel velo-
city with respect to the local magnetic field (note that in [8,
10] the parallel velocity is written as v). The dimensionless
parameter δ ≡ qρi

∣∣
pt
/Lx is the normalized drift-orbit width and

denotes the scale of radial separation for oppositely-directed
drift orbits. The safety factor q and the ion gyroradius ρi fol-
low the standard definitions. (1) has been normalized as fol-
lows:Dt to L2xBθvti

∣∣
pt
/aB0, x to Lx, y to a, fi to ni

∣∣
pt
/vti
∣∣
pt
, v∥ to

vti
∣∣
pt
, and t to aB0/Bθvti

∣∣
pt
, where

∣∣
pt
again signifies evaluation

at the pedestal top.
The boundary conditions for (1) are

fi (x⩽ 0,y0) = fi (x⩽ 0,y0 + 2π) , (2)

fi (x> 0,y0,bϕ v∥ > 0) = 0, (3)

fi (x> 0,y0 + 2π,bϕ v∥ < 0) = 0, (4)

fi (x→∞,y)→ 0, (5)

and

fi (x→−∞,y)→ fi0
(
v∥
)
. (6)

In the above, y0 specifies the poloidal angle at which ions in
the SOL leave the domain and are lost to the wall. In addi-
tion to defining a loss condition, this angle allows for differing
boundaries on approach from either side. Mathematically, the
boundary conditions correspond to an ideal (perfectly absorb-
ing) limiter at y0. Physically, they can be considered a crude
mock-up of plasma outflow to the divertor legs. As such, y0
can be thought of as the poloidal angle of the X-point. In
order, the boundary conditions specify periodicity in the con-
fined region, purely outward SOLflows to the divertor legs ((3)
and (4)), decay toward the first wall, and independence from
poloidal angle at the inner boundary, which is trivially satisfied
by a canonical Maxwellian fi0 about the pedestal top. Note that
the boundary flow conditions naturally model transport-driven
SOL flows [8]. Generally, the MTM takes the interior bound-
ary (6) to be on a closed drift surface near the pedestal top,
which is v∥-dependent; however, for tractability of the neutral
calculation, we relax the finite location of the interior boundary
to be taken at negative infinity. This condition physically cor-
responds to the assumption of a strong core diffusivity inside
the inner boundary.

It is helpful to recast the MTM using a drift surface label
natural to the problem

x̄≡ x− δv∥ [cos(y)− cos(y0)] , (7)

in terms of which (1) becomes

bϕ v∥∂y
∣∣
x̄,t
fi = ∂x̄

∣∣
y,t

[
Dt (x(x̄,y) ,y)∂x̄

∣∣
y,t
fi
]

(8)

in the steady-state. Note that the boundary conditions main-
tain equivalent form with x→ x̄ since both the last closed
flux surface (LCFS) and any last closed drift surface (LCDS)
always intersect at the X-point (y= y0). (8) can be rewritten in
standard steady-state flux conservation form, that is∇·Γ= 0,
which leads to the definition of the steady-state normalized
particle flux density across a closed drift surface S

Γ
(
v∥
)
≡
˛

S

Γ · dS=−
ˆ y0+2π

y0

Dt (x(x̄,y) ,y)∂x̄
∣∣
y,t
fi dy. (9)

It can be seen that Γ, and thus the true particle flux Γp =´
Γdv∥, through any closed drift surface is spatially constant.

Note that a similarly defined flux for x̄> 0 will indeed have a
nonzero radial derivative due to the loss of poloidal periodicity.

Solving the MTM with Dt ≪ 1 continues by first solv-
ing (8) in the pedestal bulk, defined as the region of order unity
radial variation for x̄< 0. Here the poloidally varying part of
the distribution function f̃i is an O(Dt) correction to its pol-
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oidal average. This can be seen by inspecting (8). The RHS
∼O(Dtfi) while the LHS ∼O(∂ỹfi). Additionally, ∂ỹfi ∼ f̃i
since fi is periodic in the confined region as noted by (2). Thus,
the size of the poloidally varying part of fi is proportional to
Dt in the confined region. We can then express the poloidal
integral of the leading order version of (8) by

0≈ ∂x̄
∣∣
y,t

(
D̄t∂x̄

∣∣
y,t
f̄i
)
. (10)

Note that the LHS is zero due to the periodicity condition.
In (10), f̄(x̄)≡

¸
f(x̄,y)/(2π)dy is the poloidal average of the

distribution function and D̄(x̄)≡
¸
D(x̄,y)dy is the poloidal

integration of any transport coefficient on a drift surface. The
perturbative nature of f̃i ∼O(Dtfi) provides a one dimensional
equation for the leading-order parallel ion distribution f̄i in
the bulk. Note that (10) indicates that the leading-order flux
defined in (9) can be written as

Γ
(
v∥
)
≈−D̄t∂x̄

∣∣
y,t
f̄i. (11)

The bulk solution for f̄i can be solved up to its unknown value
at the LCDS, which can be determined by solving (8) in the
thin loss layer. In this loss layer, the poloidal variation of fi is
no longer a perturbation but the radial variation of Dt can be
neglected at leading order due the layer’s thinness. This can be
seen by inspecting (8) in the loss layer where radial variations
no longer necessarily occur on order unity length scales. Keep
in mind that that the LCDS explicitly depends on both the sign
and magnitude of v∥. For a given v∥, fi strongly changes across
this boundary due to the transition to the SOL boundary condi-
tions. Conversely, Dt(x,y) depends purely on spatial coordin-
ates and is insensitive to any one ion’s LCDS.What this means
is that in the loss layer about any LCDS, Dt(x,y) still varies
on an order unity scale while fi varies strongly about this sur-
face. In the SOL, ∂yfi ∼ fi due to the loss boundary conditions.
Therefore the LHS of (8) ∼ fi while the RHS ∼ Dt∂

2
x̄ fi, which

implies that ∂x̄fi ∼ D−1/2
t fi. In the model, the SOL is entirely

sourced by turbulent diffusion, and the SOLwidth∼O(
√
Dt).

It is found that approaching the LCDS

f̄i (x̄→ 0)→ c0 + c1

√
|v∥|
D̄t0

x̄, (12)

where c0/c1 = ζ(1/2)/
√
π and ζ is the well-known Riemann

zeta function [29]. Furthermore, in (12),

D̄t0
(
v∥
)
≡ D̄t (x̄= 0) (13)

is the poloidally integrated turbulent diffusivity on the LCDS
and is thus v∥ dependent.

Matching the bulk and the layer at their overlap completes
the bulk solution. Finally, we can write the leading-order Γ for
x̄< 0 as

Γ
(
v∥
)
=

fi0´ 0
−∞ D̄−1

t dx̄+ |ζ(1/2)|√
π

1√
|v∥|D̄t0

. (14)

The form of Γ seen in (14) follows from its appearance in (10),
which has errors ofO(D2

t fi0), a relativeO(Dt) above the lead-
ing terms. For consistency, terms of O(Dt) or higher relative
to leading order should therefore be neglected. The terms in
the denominator of (14) respectively come from the bulk tur-
bulent diffusion and the match with the layer. In the MTM, the
particle flux is entirely sourced by the turbulence, which can
be seen with the sanity check Γ→ 0 as D̄t → 0. For a finite
diffusivity, there is a sign-dependent v∥ dependence in (14)
hidden within the poloidal averages over drift surfaces. It is
exactly this feature which drives the intrinsic rotation.

2.1. Intrinsic rotation

The MTM estimates the intrinsic rotation resulting from the
interplay of an inhomogeneous turbulent diffusivity and v∥-
dependent asymmetric drift orbits. This manifests as a v∥-sign-
dependent Γ, with implicit dependence in the drift-surface
integrated turbulent diffusivity. The steady-state momentum
balance in a torque-free plasma sets the intrinsic rotation [8];

τ = vtorΓ
p+Π −→ vint =− Π

Γp
, (15)

with the particle flux Γp ≡
´
Γdv∥, the momentum flux Π ≡´

v∥Γdv∥, τ is the applied torque, and vtor is the bulk tor-
oidal rotation. In (15), the toroidal rotation is determined by a
balance between the viscous portion of the momentum trans-
port vtorΓp and the non-diffusive portion of the momentum Π,
which is strongly dependent on v∥-dependent flux differences.
Due to the sign conventions in the model, positive rotation cor-
responds to the co-current direction.

To facilitate comparison with previous works [6, 8, 10],
we explore the rotation with specified transport profiles.
Specifically, the turbulent diffusivity is taken to radially decay,
similarly to experimental observations near the separatrix [8,
30–33]. For simplicity, the diffusivity is taken as separable
with the form

Dt (x,y) = Dty (y)e
−µtx, (16)

with normalized length scale µ−1
t . The poloidal variation is

allowed to remain general at this point. Note that although µt is
allowed to take different values, by construction Lx is approx-
imately the decay scale for turbulent eddies, so µt is approx-
imately unity. Integrating (16) over a closed drift orbit leads
to

D̄t
(
x̄,v∥

)
= D̄t0

(
v∥
)
e−µt x̄. (17)

Although the MTM allows for arbitrary normalized drift-
orbit width, it is informative to explore the realistic limit δ ∼
O(

√
Dt)≪ 1. We expand (14), first in smallDt to model order

and then consistently in small δ:

Γ
(
v∥
)
≈µtD̄tyfi0

[
1−µt

|ζ (1/2) |√
π

√
D̄ty

|v∥|
−µtδv∥ST

]
, (18)

4
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with synergy term

ST =
D̄tc

D̄ty
− cos(y0) , (19)

and where D̄ty ≡
¸
Dty dy and D̄tc ≡

¸
Dty cos(y)dy. The so-

called synergy term seen in (19)measures the synergy between
the turbulent and drift-orbit asymmetries, jointly driving the
rotation.

Finally, taking velocity moments of Γ for Maxwellian fi0
results in the intrinsic rotation

vint ≈ µtδST. (20)

Within the synergy term, the −1< D̄tc/D̄ty < 1 measures
the strength of an inboard-outboard turbulence asymmetry:
D̄tc/D̄ty = 1 for purely outboard transport (driving co-current
rotation), the opposite for purely inboard transport (driving
counter-current rotation), and values in-between as appropri-
ate. The cos(y0) measures the effect of the X-point’s poloidal
angle on the imbalanced transport. The physical interpretation
of this, as sketched in figure 1 of [8], is as follows. Consider
the effect of the X-point on the two drift orbits x̄, one co- and
the other counter-current directed, with the same |v∥|. Note
that each necessarily intersects the other and some flux sur-
face x at y= y0. If the entire diffusive ‘kick’ occurs at the
outboard midplane, say D̄tc/D̄ty = 1, the rotation is nullified
if the mentioned drift orbits intersect at the corresponding
angle, cos(y= 0) = 1. The imbalance in the diffusivity along
these opposed drift orbits is exactly what drives the rotation.
The X-point position more generally controls the difference
in radial domain for these drift orbits, even driving rotation
for a poloidally symmetric but radially varying turbulent dif-
fusivity. For example, in the extreme with D̄tc/D̄ty = 0 and
an inboard X-point, cos(y= π) = 1, the counter-current drift
orbit of the aforementioned pair is never radially exterior to
the co-current orbit. For the simple exponentially decaying
turbulent diffusivity, the former experiences a greater trans-
port and drives co-current rotation. All together, a larger dif-
fusivity at the outboard (inboard) drives co-current (counter-
current) rotationwhile amore outboard (inboard) X-point does
just the opposite. These details and more are discussed in [8]
and [10] while illustrations of the modeled asymmetries are
clearly shown in [8].

Our goal now is to introduce a neutral species coupled to
the ions and determine the resulting change to the ion distri-
bution function and thus to the intrinsic rotation. The relation-
ship between the neutral particle and ion distribution functions
will be derived in section 3, while the integration of the neut-
rals into the MTM will be explored in section 4.

3. Neutral distribution function

The MTM provides a realistic non-Maxwellian ion distribu-
tion for the edge with which the neutral particles can interact.
The MTM considers only a single ion species, and we intro-
duce a singular atomically identical neutral species as a gener-
alization. Since we are motivated by the coupling of the strong

SOL ion flows to the core rotation, we only consider edge
neutral sources: recycled or puffed neutrals. The neutral spe-
cies couples to the ions via charge exchange, ionization, and
recombination, potentially significantly altering the ion distri-
bution itself via the transport of ion density, momentum, and
energy as described in section 1. Since in each of these pro-
cesses any involved ion becomes a neutral and any involved
neutral becomes an ion, the total number of ions plus neut-
rals is conserved. We use this property to derive a form for
the neutral distribution function written in terms of the ion
distribution function. The velocity-space dependence of the
neutral distribution function is then entirely specified by the
boundary conditions and this coupling to the ion distribution
in the steady-state. This eventual form of Fn can be found in
the literature [11, 17, 19] although our presentation highlights
some subtleties worth noting. For consistency with the literat-
ure, (21)–(34) (barring (25)) are written in dimensional form;
the terms are only normalized before insertion into the MTM.
We do note that in sufficiently large numbers, cold neutral
particles are expected to reduce the SOL ion energy and dir-
ected momentum via interactions with the ions; however, we
will see in section 4 that to be compatible with the small Dt

MTM formalism, the neutrals minimally affect the SOL ions
at leading order. Thus, discussion of this effect is beyond the
scope of this article.

We start with the dimensional fully kinetic neutral
equation:

∂tFn+ v ·∇Fn = X(Fi,Fn)− νzFn, (21)

where νz is the ionization frequency and we assume recombin-
ation is negligible at typical edge temperatures [34]. Here, Fn
is the total neutral distribution function and

X(F)≡
ˆ
σx|v− v ′|[Fi (v)Fn (v ′)−Fi (v ′)Fn (v)]dv ′ (22)

is the charge-exchange operator with σx being the charge-
exchange cross section. For simplicity, we make an assump-
tion often seen in the literature [11, 17–19], namely that the
quantity σx|v− v ′| is assumed to be constant, vastly simplify-
ing the operator, which becomes

X(Fi,Fn)≈ νx

[
nn
ni
Fi (v)−Fn (v)

]
. (23)

In (23), νx ≡ σx|v− v ′|ni ≈ σx(vti)vtini. This assumption qual-
itatively matches the true behavior for σx while underestimat-
ing (overestimating) νx for large (small) |v− v ′| relative to vti.
In essence, we lose sensitivity to nuance in the center-of-mass
collision energy, with the error in νx roughly being linear in
|v− v ′| away from vti [13]. Note that this simplified charge-
exchange operator conserves particles,

´
X(Fi,Fn)dv= 0, as

long as n=
´
Fdv for both ions and neutrals.

Charge-exchange and ionization collisions are necessarily
equal and opposite between the single ion and single neutral
species, dictating that the RHS of (21) is equal and opposite to
the RHS of the dimensional fully kinetic ion equation

∂tFi + v ·∇Fi + a ·∇vFi =−X(Fi,Fn)+ νzFn, (24)
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neglecting Coulomb collisions and additional sources of ions.
Therefore in the steady state, the defining equation for the
MTM, (1), is generalized to

bϕ v∥∂yfi − bϕ δv
2
∥ sin(y)∂x fi − ∂x [Dt (x,y)∂x fi]

=

[
−
ˆ ∞

0
v⊥ dv⊥

ˆ 2π

0
v ·∇Fn dα

]
norm.

, (25)

where α is the gyroangle. Equation (25) is normalized as dis-
cussed in the previous section, and the brackets on the RHS
indicate such. We seek to find a self-consistent equation gov-
erning the ions with sensitivity to the neutrals by eliminating
Fn from (25) using its relationship with Fi in the steady state.
This is done by treating the randomwalk of neutrals in the edge
as a diffusive process, taking the continuous transport limit.

3.1. Continuous transport limit

We make a diffusive ansatz for the neutral particles by taking
the continuous limit of the finite-step charge-exchange pro-
cess. Essentially, we treat the transport as consisting of many
discrete steps that are approximated by a smooth trajectory.
The goal here is to determine local transport terms for the
charge exchange that capture essential features of the physics
while omitting details of the finite step size.

The continuous limit is realized via a short charge-
exchange expansion, relying on the assumption that the gradi-
ent length scale of a quantity along a neutral’s ballistic traject-
ory is much larger than a typical step length λmfp:

v̂ ·∇g
g

≪ νx+ νz
v

∼ 1
λmfp

, (26)

where g is some arbitrary function of space and time. This
ordering is commonly found in the literature and is often
advertised with the caveat that it is not strictly valid in the
presence of steep gradients where finite step effects become
important. Its use here is threefold: to take advantage of the
mathematical simplification, for comparison with previous
works with the same ordering, and to determine if diffusive
neutrals (short λmfp) can couple the core plasma to the SOL-
flow boundary condition.

This ordering is applied to the formal solution of (21) in the
steady state with approximate charge-exchange operator given
by (23), similarly to [18],

Fn (x,v)=
ˆ ∞

0

S(x ′,v)
v

exp

[
−1
v

ˆ r ′

0
νeff (x ′ ′) dr ′ ′

]
dr ′. (27)

(27) is found using standard Green’s function techniques on
the ODE for Fn(t), solvable on the characteristic curves of
Fn(x,v). The terms on the RHS of the kinetic neutral equation
have been grouped into a volumetric source term S≡ νx

nn
ni
Fi

and the effective sink frequency νeff ≡ νx+ νz. Here, r ′ is the
step length, which defines the source coordinate x ′ ≡ x− r ′v̂
with v̂≡ v/v. The coordinate x ′ ′ labels positions along the

line connecting x and x ′, being defined by x ′ ′ ≡ x− r ′ ′v. Even
though the integral is over all possible step lengths, the expan-
sion only needs to be considered for r ′ ≲ λmfp ∼ νeff/v, since
the exponential term in (27) diminishes contributions at large
r ′. For the same reason, the vessel wall has been approximated
as infinitely far away from position x.

Both the volumetric source and effective sink frequency are
expanded about position x, and the series are truncated, keep-
ing terms only up to first order:

Fn (x,v)≈
ˆ ∞

0

S(x,v)
v

1− v̂ ·∇x ′S
(
x ′,v

)∣∣∣
x ′=x

S(x,v)
r ′


× exp

[
−νeff (x)

v
r ′
]1+ v̂ ·∇x ′νeff

(
x ′
)∣∣∣

x ′=x
v

r ′2
2

dr ′
≈ S(x,v)

νeff
− 1

νeff
v ·∇x ′

S
(
x ′,v

)
νeff (x ′)

∣∣∣
x ′=x

. (28)

Rewriting the volumetric source and effective frequency using
their definitions results in the following form for the neutral
distribution function:

Fn (x,v)≈
νx

νx+ νz

nn
ni
Fi −

1
νx+ νz

v ·∇
[

νx
νx+ νz

nn
ni
Fi

]
,

(29)

where the functional dependencies on the RHS are implied.
Consider the consequences of the short charge-exchange

expansion by inserting (29) into (21) and integrating over velo-
city space to find the neutral steady-state continuity equation.
Within the framework of (26), the charge-exchange operator
acts as a leading-order particle source that exactly cancels
out the ionization sink. Instead, we require the physical con-
straint

´
X(Fi,Fn)dv= 0 and achieve self consistency by let-

ting νz ≪ νx such that

νz
vti/Lx

∼ vti/Lx
νx

≪ 1 (30)

and

Vix
vti

∼ vti/Lx
νx

≪ 1. (31)

The former aligns with the idea of a short mean free path
expansion, ensuring that the smoothed trajectories do not ion-
ize prematurely. The latter is a restriction on the radial ion
flow Vix and is trivially satisfied for any reasonably confined
plasma. We emphasize that the former is not a physical order-
ing but an approximation tool expected to capture the neutral
physics while omitting the details of finite steps.

The neutral distribution function is then recast to the appro-
priate order as

Fn (x,v)≈
nn (x)
ni (x)

Fi (x,v)−
v

νx (x)
·∇
[
nn (x)
ni (x)

Fi (x,v)
]
. (32)

6
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The local forms of Fn seen in (29) and (32) can be found in the
literature [11, 17, 19], typically after some ordering like (30)
is simply specified. On the other hand, non-local forms of Fn
maintaining finite charge-exchange steps have been numeric-
ally studied in the literature, as in [18] where the expansion
was only taken in the parallel direction. In either case, the neut-
ral momentum transport is usually studied for Maxwellian Fi.
We seek to advance the literature by obtaining an approxim-
ate analytic solution for the momentum transport of the neutral
particles interacting with a realistic non-Maxwellian edge ion
distribution function.

Before proceeding, we will make one more simplifying
approximation. The relationship between the ions and neut-
rals relies on the ratio nn/ni, which for consistency with
charge exchange vis-à-vis particle conservation should equal´
Fn dv/

´
Fi dv. However, the fully self-consistent problem

appears wholly intractable in its integro-differential equation
form. To progress, we treat nn/ni as a spatially dependent
input parameter with an eventual form guided by experimental
data, as is common in the literature [17, 19]. So, the spatial
dependence of the neutral distribution function is treated as
an input while the velocity-space dependence remains self-
consistently determined via coupling to the ions. We note that
deviation of the input parameter nn/ni from the self-consistent´
Fn dv/

´
Fi dv causes the charge exchange operator to behave

as a density source term on the RHS of (24), which would have
the same order as the explicit ionization source in our chosen
continuous transport limit. Nevertheless, note that the calcu-
lation of the intrinsic rotation, (15), is generally a measure of
the velocity-space asymmetry of Γ(v∥) contributing to Π, so
one does not expect a non-symmetry breaking inaccuracy like
an artificial density source to introduce large error.

With that in mind, we prepare the neutral advection term
for its appearance in (25) of the MTM. First, we must integ-
rate over the the gyroangle α and v⊥. It is simplest to work
with a local orthogonal coordinate system such that v≡ v∥b+
v⊥ cos(α)x+ v⊥ sin(α)y, with unit vectors satisfying x× y=
b for b the magnetic direction and x the radial direction. We
assume a perpendicular Maxwellian distribution

Fi (x,v)≡ fi
(
X,v∥

) exp[−v2⊥/2v2ti∣∣pt]
2π v2ti

∣∣
pt

, (33)

where the thermal velocity corresponds to the ion temperat-
ure at the pedestal top and is taken dominant to the curvature
drift vR, vti

∣∣
pt
≫ vR. In (33), x refers to the particle position and

X to the guiding center position. Thus, finite guiding-center
effects have been ignored with x∼ X. The leading-order neut-
rals’ advection term becomes

∇·

(ˆ ∞

0
v⊥ dv⊥

ˆ 2π

0
vFn dα

)
≈−∂x

[
1
νx
∂x

(
nn
ni
v2ti
∣∣
pt
fi

)]
.

(34)

Since Lx ≪ a≲ 2πR0 the radial derivatives are assumed to
dominate the neutral advection and the terms that order like
the parallel and poloidal gradients have been dropped.

Finally, the leading-order neutral term is ready to be
included in (25) following normalization:[

∂x

[
1
νx
∂x

(
nn
ni
v2ti
∣∣
pt
fi

)]]
norm.

= ∂x (Dn∂x fi −Vn fi) . (35)

The normalized transport coefficients take the following
forms:

Dn ≡
L2∥
νx

nn
ni

(36)

and

Vn ≡−
L2∥
νx

∂x

(
nn
ni

)
. (37)

Note that Dn is strictly positive and that we anticipate Vn < 0
following expectations that nn/ni radially increases. In the
above,

L∥ ≡
aB0

LxBθ
(38)

is a normalized parallel connection length. Note that the pinch
velocity does not arise in the usual way in a random walk as
a net drift, but as an effect of viewing the neutrals’ random
walk from the perspective of the ions. When inserted into the
MTM, (35) models the effects of continuous neutral transport
on the ion population via a modification of the diffusivity and
the presence of a new inward neutral pinch term.

4. MTM with small Dt and diffusive neutrals

The leading-order neutral transport terms derived in the previ-
ous section can now be introduced into the MTM by combin-
ing (25), (34), and (35). Doing so replaces the source terms
in the ion equation with the equivalent-in-magnitude diver-
gence of the neutral flux. These terms are written as transport
coefficients acting on the ion distribution function, and thus
model the effects of the neutral species on the ions. The result
is the normalized differential equation that governs the MTM
with small Dt and diffusive neutrals in the steady state written
purely in terms of fi:

bϕ v∥∂yfi − bϕ δv
2
∥ sin(y)∂x fi − ∂x [Dt∂x fi]

= ∂x [Dn∂x fi −Vn fi] . (39)

For an overview of the general details concerning the MTM,
refer to section 2; the coordinates, field geometry, boundary
conditions, and normalizations remain unchanged for the gen-
eralizedMTM.Additionally, we follow an expounded solution
procedure similar to the small Dt MTM model by again split-
ting the pedestal into its bulk and a radially thin loss layer [10].
Note that in order to againmake use of the simplifications valid
in these regions, we require Dt ≳ Dn ∼ Vn.

7
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First, change to the drift-surface coordinate x̄, see (7),
finding that

bϕ v∥∂y
∣∣
x̄,t
fi = ∂x̄

∣∣
y,t

[
D(x(x̄,y) ,y)∂x̄

∣∣
y,t
fi −Vn (x(x̄,y) ,y) fi

]
(40)

in the steady state, where the total diffusivity is simply

D(x,y)≡ Dt (x,y)+Dn (x,y) . (41)

Again, (40) can be written in standard steady-state flux con-
servation form, ∇·Γ= 0, which leads to the definition of the
particle flux density across any closed drift surface S in the
steady state:

Γ
(
v∥
)
≡
˛

S

Γ · dS=−
ˆ y0+2π

y0

(
D∂x̄

∣∣
y,t
fi −Vn fi

)
dy. (42)

(42) is simply the generalization of (9), reproducing it when
the neutral parameters tend to zero. Similarly to the standard
MTM, Γ retains spatial independence and is thus divergence-
less. And again, a similarly defined Γ for x̄> 0 would have a
nonzero radial derivative.

Here and throughout the text, we assume that the neutral
transport coefficients are no larger than the turbulent diffus-
ivity, Dn ∼ |Vn|≲ Dt ∼ D, since we do not anticipate a neut-
ral dominated transport. Within this framework, the presen-
ted generalization to the small Dt MTM model allows Dn ∼
|Vn| ∼ Dt to assess the maximal effects of the neutral paramet-
ers. With that in mind, we proceed with the bulk-layer solution
procedure.

4.1. Bulk solution

The bulk spans the closed drift orbits and covers the con-
fined pedestal (x̄< 0 and |x̄| ∼ O(1)). By construction, in the
bulk ∂x̄ ∼O(1), where it is assumed that the neutral length
scale is the same order as Lx. Consequently, (40) indicates
that ∂ỹfi ∼O(Dfi) where f̃i is the poloidally varying part of
the distribution function. Since y is a cyclic coordinate span-
ning O(1), then logically ∂ỹfi ∼ f̃i, and one can surmise that
f̃/fi ∼O(D) in the bulk. In other words, the leading-order bulk
distribution function can be represented by its poloidal average
f̄i when Dn ∼ Vn ≲ Dt ≪ 1, as discussed immediately preced-
ing (10).

The leading-order form of the poloidal integral of (40) in
the bulk is

0≈ ∂x̄
∣∣
y,t

(
D̄∂x̄

∣∣
y,t
f̄i − V̄n̄fi

)
, (43)

where the LHS is zero due to the core periodicity condi-
tion. Again, the overbar on fi signifies the poloidal average,
f̄i(x̄)≡

¸
fi(x̄,y)/(2π)dy, while it signifies poloidal integra-

tion for any transport term, D̄(x̄)≡
¸
D(x̄,y)dy. (43) tells us

that the leading-order ion distribution function in the bulk f̄i is

defined via a one dimensional transport equation. The leading-
order Γ at a given v∥ is evidently

Γ
(
v∥
)
≈−D̄∂x̄

∣∣
y,t
f̄i + V̄n̄fi. (44)

Our expectations indicate that the diffusivity contributes to an
outward flux while the pinch velocity contributes to an inward
flux. Note that Γ∼O(Dfi0) with errors at O(D2fi0).

(44) is an ODE and can be solved by introducing an integ-
rating factor

I(x̄)≡ exp

[
−
ˆ x̄

−∞

V̄n
D̄
dx̄ ′
]
. (45)

Multiplying (44) by I(x̄)/D̄(x̄) and radially integrating from
the inner boundary to the LCDS finds

Γ
(
v∥
)ˆ 0

−∞

I(x̄)
D̄(x̄)

dx̄= fi0 − I(x̄= 0) f̄i (x̄= 0) , (46)

where f̄i(x̄= 0) can again be deduced from the layer solution.
The diffusive neutrals play two roles in (46) when compared
to the standard bulk solution, where D̄→ D̄t and I→ 1. In the
bulk, the neutral diffusion simply adds to the turbulent diffu-
sion while a more intricate interplay between the diffusivities
and the pinch are housed in the integrating factor. Deviation
of I from unity, a measure of the integrated magnitude of the
pinch to the diffusion, acts to reduce the flux since the pinch
is directed inward.

4.2. Layer solution

The poloidal boundary conditions applicable for x̄> 0 pre-
clude treating the poloidally varying part of fi as a perturba-
tion in the layer. In fact, (3) and (4) along with (40) indicate
that ∂yfi ∼ fi → ∂x̄fi ∼ D̄−1/2fi in the loss layer. Thus |x̄| ∼
O(D1/2), and for D≪ 1, the loss layer is thin. In this limit,
we can neglect the radial variation of the transport coeffi-
cients about the LCDS to find the leading order layer solu-
tion. However, we do indeed maintain the sharp change in
fi that results from the change in boundary conditions across
the LCDS. Recall that (42) states that Γ is spatially constant
through closed drift surfaces, that is for x̄< 0. In other words,
Γ is equal in the bulk and the confined portion of the layer.
From the previous subsection, we have that Γ∼O(D) since
∂x̄fi ∼ fi ∼O(1) in the bulk. Therefore, since ∂x̄fi ∼ D̄−1/2fi
in the layer, fi ∼O(

√
D) in the layer.

The leading-order balance of (40) in the loss layer is

bϕ v∥∂y
∣∣
x̄,t
fi = D(x(x̄= 0,y) ,y)∂2

x̄

∣∣
y,t
fi. (47)

The omitted pinch term Vn(x(x̄= 0,y),y)∂x̄
∣∣
y,t
fi is anO(D1/2)

correction relative to the leading-order terms, the same size
as the first omitted term in the Taylor expansion of D,
again assuming that Dn ∼ |Vn| ∼ Dt. Since the layer solution
enters (46) at the bulk’s correction order, we neglect the layer
correction terms on account of being on the order of the bulk’s

8
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error. In theD≪ 1 regime with continuous transport, the layer
therefore only includes the modification of the diffusivity of
neutrals.

The layer solution follows exactly from the standardMTM,
since the form of (47) is equivalent to the standard MTM with
Dt → D. We first introduce the form of Γ in the confined layer
(x̄< 0):

Γ
(
v∥
)
=−
ˆ y0+2π

y0

D(x(x̄= 0,y) ,y)∂x̄
∣∣
y,t
fi dy. (48)

Next, we make several changes of variable. First, let

ȳ≡ 1
D̄0

ˆ y

y0

D(x(x̄= 0,y ′) ,y ′) dy ′, (49)

where D̄0 and similar transport terms are defined similarly
to (13). Then, we take ȳ→ 1− ȳ for all bϕ v∥ < 0. This step
reduces (3) and (4) into a single outflow boundary condition

fi (x̄> 0, ȳ= 0) = 0. (50)

Finally, we distend the radial coordinate:

u=

√
|v∥|
D̄0

x̄. (51)

(47) transforms into

∂ȳ
∣∣
u,t
fi = ∂2

u

∣∣
ȳ,t
fi, (52)

which has the same form for all v∥, while (48) transforms into

Γ
(
v∥
)
=−

√
|v∥|D̄0∂u

ˆ 1

0
fi dȳ. (53)

(52) implies that for u< 0,

ˆ 1

0
fi dȳ= c0 + c1u (54)

for some constants c0 and c1. Therefore,

Γ
(
v∥
)
=−

√
|v∥|D̄0c1 (55)

in the confined region. The solution to (52) with the appro-
priately transformed boundary conditions can be found in
the literature [29]. The result shows that c0/c1 = ζ(1/2)/

√
π,

where ζ is the well-known Riemann zeta function. Note that
in the large negative u limit, the layer distribution should
approach the leading-order bulk distribution f̄(x̄); in this limit,
(54) becomes f̄i(u) = c0 + c1u. Only the ratio of c0 to c1 is
determined here, since the interior boundary condition sets the
magnitude of fi.

4.3. Match

The solution procedure for the leading-order bulk Γ concludes
by equating it to Γ in the confined layer in the asymptotic
matching region. Specifically, we refer to the overlap of the
bulk near the LCDS such that f̄i(x̄) is linear in x̄ and the layer
where u is sufficiently large and negative such that f̃i ≪ f̄i
and consequently f̄i(u) = c0 + c1u. The asymptotic matching
region then implies that, f̄i(x̄= 0) = c0 and we eliminate this
unknown from (46) to complete the confined solution

Γ
(
v∥
)
=

fi0´ 0
−∞

I(x̄)
D̄(x̄) dx̄+

|ζ(1/2)|√
π

I(x̄=0)√
|v∥|D̄0

. (56)

Similar to section 2, this form of Γ stems from (43), which has
errors ofO(D2fi0), a relativeO(D) above the leading terms. To
respect this accuracy, (56) should only be expanded to terms
below a relativeO(D) above leading order. The generalized Γ
seen in (56) contains the neutral physics in the general diffus-
ivity D̄(x̄) and integrating factor I(x̄). In the limit of small neut-
ral transport coefficients, these terms respectively approach D̄t

and unity, reproducing (14). The diffusive neutrals add to the
turbulent diffusivity in a straightforward way, while the inter-
play between the pinch and the diffusion is contained within
the integrating factor. Deviation of the latter from unity, a
measure of magnitude of the pinch relative to the diffusion,
represents a reduction in Γ since the pinch is directed inward.
As mentioned when describing (14) in section 2, the first term
in the denominator results from the bulk transport while the
second term results from the match with the layer.

The rotation is driven by an imbalance in the signed-v∥
dependence of Γ. In the next section, we will expand Γ for
simple forms of the transport coefficients, such that the dir-
ect v∥ dependence can be seen. Since the signed v∥ depend-
ence lies within the D̄(x̄) and I(x̄) terms, the dependence on
the neutral transport coefficients will also become clear.

5. Intrinsic rotation with simple profiles

The balance between the momentum drive Π and the viscous
momentum loss Γpvtor sets the leading-order intrinsic rota-
tion of the bulk including diffusive neutrals, as in (15). Thus,
velocity-space moments of (56) determine the rotation. To
make clear the intrinsic rotation predicted by this model, spe-
cific forms for the transport coefficients Dt, Dn, and Vn are
chosen and the results will be expanded in small Dt and drift
orbit width δ.

Each transport coefficient is taken to be separable with
radial exponential decay for the turbulence and growth for the
neutral terms:

Dt (x,y) = Dty (y)e
−µtx, (57)

Dn (x,y) = Dny (y)e
µnx, (58)

and

Vn (x,y) = Vny (y)e
µnx. (59)
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The chosen radial behaviors capture the basic physics: the
absolute turbulent fluctuations typically decay with increas-
ing radius near the LCFS [8, 30–33] and neutral particles
grow in abundance toward the wall [35, 36]. The assumed
radial decay of the turbulence also allows for direct compar-
ison with section 2 and previous works [6, 8]. The turbulence-
and neutral-driven terms are allowed to vary on separate nor-
malized lengthscales µ−1

t and µ−1
n , both of which are defined

as positive. As discussed in section 2, µt is approximately
unity. On the other hand, assumptions made of the neutral
physics only require µ−1

n ∼O(1): the diffusive ansatz restricts
µ−1
n large and the bulk-layer solution procedure µ−1

n small.
The poloidal variation of each term is left general for the time
being. Thus, the poloidal integral of (57) as a function of the
drift-surface coordinate is

D̄t
(
x̄,v∥

)
= D̄t0

(
v∥
)
e−µt x̄, (60)

where

D̄t0
(
v∥
)
=

˛
Dty (y)e

−µtδv∥[cos(y)−cos(y0)] dy. (61)

The neutral terms are similarly defined, although radially
growing with length scale µ−1

n .
These definitions determine analytic forms for the

various terms seen in (56). First, the integrating factor
becomes

I(x̄) =

(
1+

D̄n0

D̄t0
e(µt+µn)x̄

)− 1
µt+µn

V̄n0
D̄n0

. (62)

Next, the radially integrated ratio of the integrating factor to
the total diffusivity across the bulk’s expanded domain is then

ˆ 0

−∞

I
D̄
dx̄=

2F1

(
1+ V̄n0/D̄n0

µt+µn
, µt

µt+µn
;1+ µt

µt+µn
;− D̄n0

D̄t0

)
µtD̄t0

.

(63)

The hypergeometric function 2F1(a,b;c;z) seen in (63) takes
special simplifying forms for special values of its parameters
a, b, and c and argument z [37]; however, none are particu-
larly instructive for the level of restriction necessitated on the
generality of the current problem. Instead, we maintain flex-
ibility and eventually explore realistic forms that have been
linearized in the argument. We do note the physical domain
of each, however: a< 1 corresponds to the physically expec-
ted inward pinch, 0< b< 1, 1< c= 1+ b< 2, and z< 0. For
conciseness, let

2F1,0 ≡ 2F1

(
1+

V̄n0/D̄n0

µt+µn
,

µt
µt+µn

;1+
µt

µt+µn
;− D̄n0

D̄t0

)
.

(64)

Thus, for our simple transport profiles (56) can be written
as

Γ
(
v∥
)
=

fi0
2F1,0

µtD̄t0
+ |ζ(1/2)|√

π
(1+D̄n0/D̄t0)

ξ

√
|v∥|D̄t0

, (65)

where

ξ ≡−1
2
− V̄n0/D̄n0

µt+µn
. (66)

The hypergeometric function and the term raised to ξ entirely
encapsulate the neutral physics. In the small neutral transport
limit, 2F1,0 goes to unity while ξ is ambiguous; however, for
any finite ξ, its appearance in (65) in the small neutrals limit
tends to the trivial 1ξ and the turbulence result is reproduced.

To clarify the dependence of Γ on parameters, we
expand (65) in small Dt, consistent with the standard MTM.
Again, the realistic and illustrative δ ≪ 1 assumption is also
made such that δ ∼O(

√
D);

D̄t0 ≈ D̄ty−µtδv∥ [D̄tc− D̄ty cos(y0)] (67)

with constants Ḡy ≡
¸
Gy(y)dy and Ḡc ≡

¸
Gy(y)cos(y)dy.

The neutral terms are naturally found by swapping in the cor-
rect transport term and letting µt →−µn.

We perform the iterative expansions and find that

Γ≈
µtD̄tyfi0
2F1,y

(
1−µt

|ζ (1/2) |√
π

(1+ D̄ny/D̄ty)
ξy

2F1,y

√
D̄ty

|v∥|

−µtδv∥

[
ST−

D̄ny

D̄ty

∂z 2F1,0|
2F1,0=2F1,y

2F1,y

(
ST+

µn
µt

SN
)

+
V̄ny/D̄ny

µt+µn

∂a 2F1,0|
2F1,0=2F1,y

2F1,y

µn
µt

(SV−SN)

])
. (68)

In (68),

2F1,y ≡ 2F1

(
1+

V̄ny/D̄ny

µt+µn
,

µt
µt+µn

;1+
µt

µt+µn
;−

D̄ny

D̄ty

)
,

(69)

the leading-order term of 2F1,0 expanded in small δ.
Furthermore, ∂a refers to derivatives of 2F1,0 with respect to
its first parameter while ∂z refers to its argument. These deriv-
atives arise from the Taylor expansion in small δ and naturally
are evaluated with a and z corresponding to 2F1,y. Also,

ξy ≡−1
2
−
V̄ny/D̄ny

µt+µn
, (70)

and the synergy terms are defined according to (19);
for example, SV ≡ V̄nc/V̄ny− cos(y0) measures the synergy
between the neutral-pinch-velocity asymmetry and the drift-
orbit asymmetry and can be understood in much the same way

10
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as ST described at the end of section 2. Terms ofO(δD3/2
t ) and

O(δ2Dt) have been dropped, sinceO(δ)∼O(
√
D) by choice.

Physical interpretation of the neutral terms in Γ can be sim-
plified by linearizing in D̄ny/D̄ty

1. Fortunately, these terms are
well approximated, even qualitatively for D̄ny/D̄ty up to unity.
That is, as long as the neutral particle transport is not dominant
the linearization scheme remains surprisingly accurate even
outside of its formal domain of validity Dt ≫ Dn ∼ Vn. When
linearized, the neutral-driven terms in the second line of (68)
intermix as the first has a linear part that ∼ D̄ny/D̄ty and a part
that ∼ V̄ny/D̄ty while the second term’s linear dependence is
entirely on V̄ny/D̄ty.

We follow (15) and take velocity space moments of (68)
to find the intrinsic rotation. We then linearize in ∼ D̄ny/D̄ty

to find a digestible form for the intrinsic rotation that captures
the dominant physics:

vint
µtδ

≈ ST−
1

2+ rµ

D̄ny

D̄ty
[ST+ rµSN]

− rµ
(2+ rµ)(1+ rµ)

Ṽny
D̄ty

[ST+ rµSV] . (71)

Variables have been recast to clarify the number of free para-
meters left to determine the intrinsic rotation:

rµ ≡ µn
µt

(72)

and

Ṽny ≡
V̄ny
µn

. (73)

The former measures the turbulent length scale relative
to the neutral length scale, while the latter is merely a
simplification.

The leading-order linearized intrinsic rotation per µtδ with
small δ, (71), now depends only on six quantities: the three
synergy terms, the ratio of the length scales, and the ratios
of poloidal averages of each neutral transport term to the pol-
oidally averaged turbulent transport. Realistically, one expects
SN ∼ SV, further reducing the number of free parameters. The
first term is simply the purely turbulence-driven intrinsic rota-
tion predicted by the standard MTM, that is vturb = µtδST. The
other two comprise the neutral-driven intrinsic rotation vneut.

1 The linearized forms of the terms in Γ are as follows:

2F
−1
1,y ≈ 1+µt

V̄ny/D̄ny +µt +µn

(2µt +µn)(µt +µn)

D̄ny

D̄ty
,

(1+ D̄ny/D̄ty)
ϵy

2F1,y
≈ 1+

[
1

2
−

µt +µn

2µt +µn

(
1+

V̄ny/D̄ny

µt +µn

)]
D̄ny

D̄ty
,

D̄ny

D̄ty

∂z 2F1,0|
2F1,0=2F1,y

2F1,y
≈

µt

2µt +µn

(
1+

V̄ny/D̄ny

µn +µt

)
D̄ny

D̄ty
,

and

V̄ny/D̄ny

µt +µn

∂a 2F1,0|
2F1,0=2F1,y

2F1,y
≈

µt

(2µt +µn)(µn +µt)

V̄ny
D̄ty

.

Only the third and fourth are present in vint.

Figure 1. The intrinsic rotation as a function of δ. Outboard
ballooning transport is modeled by Dty(y) = Dt0(1+ cos(y)) with
Dt0 = 0.033. The neutrals are treated as poloidally localized and are
modeled with a delta function with Dny(y) = D̄nyδ(y− yn), where
poloidal position yn can be chosen to model the location of either
recycled or puffed neutrals. Further specifications are as follows:
D̄ny/D̄ty = 0.25, Vny/Dny =−µn, yn = 0, and µt = µn = 1. Each
color represents a different X-point position y0. Solid lines are
numerically solved using (65) while dashed lines are numerical
solutions of the small δ approximation, (68).

Figure 2. The intrinsic rotation as a function of D̄ny/D̄ty. The
poloidal dependencies of Dty, Dny, and Vny remain unchanged from
figure 1. Now, only µt = 1, y0 =−π/2, and δ = 0.25. Each color
represents a different rµ and Ṽny/D̄ny combination. Solid lines are
evaluations of (68) while dashed lines represent the linear
approximation in (71). Note that D̄t0 need not be specified for these
plots.

Before continuing, we will discuss the error in both the
small δ approximation and the linearization in ∼ D̄ny/D̄ty. In
figure 1, the intrinsic rotation see in (71) is compared to the
rotation calculated from (15) evaluated by numerically integ-
rating the moments of (68) as a function of δ for a variety of
y0. It can be see the two solutions remain qualitatively sim-
ilar even for δ approaching unity. It should be noted that the
error also depends on the size of D̄t0, since the boundary-layer
solution procedure requires that Dt be a small parameter. We
look to figure 2 to compare the intrinsic rotation calculated
via (68) to the linearized form in (71). Similarly to the small-δ
expansion, the error in the linearization for D̄ny/D̄ty remains
tolerable even for values approaching unity. However, for the
linearized case, the error appears more consistent, likely due

11
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Figure 3. Contour plots that characterize neutral-driven rotation per µtδ see (71) and (74). The left subfigure plots h(rµ, Ṽny/Dny) and the
right rµh(rµ, Ṽny/Dny). When multiplied by STD̄ny/D̄ty, the left plot is the part driven by the tubulence-synergy, while the right multiplied
by SnD̄ny/D̄ty is the part driven by the neutral-synergy. The color map spans blue to red from −1 to 1.

to the ordering-out of the
√
Dty-correction term. The qualitat-

ive behavior of the linearized neutral-driven intrinsic rotation
is robust even for O(Dn)∼O(Dt).

Now, we continue with a discussion of (71). Recall that
the rotation is generically caused by imbalances in trans-
port on radial distances on the order of the orbit width δ.
Each neutral transport coefficient alters the particle flux across
closed drift surfaces, modifying the strength of the turbulent-
synergy-driven rotation, as well as drives rotation via the neut-
ral synergies. The parameter rµ controls the balance between
the synergy terms in the neutral-driven intrinsic rotation.
Therefore as expected, for δ/µ−1

t ≫ δ/µ−1
n , that is rµ small

in (72), the turbulent synergy dominates the flux imbalance.
Here, the neutral diffusion acts as the only correction term
to the purely turbulence-driven rotation. This further matches
expectation since Vn/Dn ≡−∂x ln [nn/ni] and thus the pinch
is relatively small in this limit. This correction dampens the
purely turbulence-driven rotation simply because the neutral
diffusion is assumed to radially grow near the LCDS while
the turbulence is assumed to decay. For δ/µ−1

t ≪ δ/µ−1
n , that

is rµ large in (72), the neutral synergies more prominently
lead to transport differences on the orbit width and domin-
ate within the neutral-driven rotation. Recall that the pinch-
driven rotation opposes the neutral-diffusion-driven rotation
since we expect ∂x(nn/ni)> 0. A quick sanity check shows
that these rotation directions agreewith our original bulk trans-
port equation (44);Dt andDn both lead to outward ion flux and
Vn inward. The turbulence is assumed to decay radially while
the neutrals grow; thus, turbulent diffusion favors the outward
transport of inwardly drifting ions, neutral diffusion favors the
outward transport of outwardly drifting ions, and the neutral
pinch favors the inward transport of outwardly drifting ions.
Unfortunately, it appears as though the neutral-driven rotation
will be small since the terms go like δD̄ny/D̄ty and δṼny/D̄ty,
products of likely small parameters. To ensure this is the case,
we briefly analyze (71) to assess the predicted rotation.

We analyze the neutral-driven intrinsic rotation for the
likely case where SN = SV by collecting like synergy terms:

vneut
µtδ

=
D̄ny

D̄ty
h
(
rµ, Ṽny/D̄ny

)
[ST+ rµSN] , (74)

where

h
(
rµ, Ṽny/D̄ny

)
≡− 1

2+ rµ

(
1+

rµ
1+ rµ

Ṽny
D̄ny

)
. (75)

The neutral driven rotation in the continuous transport limit
has two components: the first part modifies the rotation caused
by the synergy of turbulence and drift-orbits while the second
describes the rotation due to the new synergy of the neutrals
with the drift-orbits. Figure 3 plots these two pieces per µtδ
for unity D̄ny/D̄ty and the respective S. That is, the left sub-
figure plots h(rµ, Ṽny/D̄ny) while the right subfigure shows
rµh(rµ, Ṽny/D̄ny). Recall that the synergy terms are bounded
by below and above respectively by −2 and 2, so the sub-
plots roughly illustrate the rotation per µtδ when multiplied
by the true D̄ny/D̄ty. By comparing the subplots, one can visu-
alize that the turbulent synergy dominates at small rµ while the
neutral synergy dominates for large rµ, being diffusion domin-
ated for Ṽny/D̄ny >−1 and pinch dominated for Ṽny/D̄ny <−1
with significant cancellation for Ṽny/D̄ny ≈−1. The strongest
neutrals-driven rotation for each of these two terms occurs at
an extreme of rµ, at the boundaries of validity for the model.
Since the neutral-driven rotation states achieved for small rµ
share dependencies with the turbulence drive and only act as
slight corrections, they would be inherently difficult to meas-
ure experimentally. Therefore, we focus on the neutral-driven
rotation at large rµ.

To assess if the strong rotation states seen in the right plot
of figure 3 are of experimental interest, we attempt to bound
the possible values of Ṽny/D̄ny. Indeed, much like rµ, Ṽny/D̄ny

is a ratio of implied length scales. The implicit definition of the
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neutral length scale in the particular case of the simple radially
growing neutral profiles, (57)–(59), implies the following for
the general neutral transport terms, see (36) and (37):

µn = ∂x lnDn =−∂x lnνx+ ∂x ln
nn
ni

=−∂x lnνx−
Vn
Dn

. (76)

In the context of (36), (37), (58) and (59) implicitly assume the
separability of each νx and nn/ni. In fact,−D̄n/V̄n is implicitly
the length scale of variation for nn/ni. Therefore, one can mul-
tiply (76) by Dn, take the poloidal average, and then rearrange
to find

Ṽny
D̄ny

=−1+
µx
µn

, (77)

where µx ≡−∂x lnνx. Note that each µ is defined as positive
for any realistic case, and the sign convention for µx reflects
our expectation that the charge-exchange frequency typically
decays with increasing radius. The weak inverse scaling of the
change-exchange source rate with the ion temperature indic-
ates that νx likely varies on a length scale only slightly longer
than the decay of the ion density [13, 27]. Thus, µx ≈ µi and
µn ≈ 2µi +µnn , where µ

−1
i is the length scale characteristic of

changes in the ion density while µnn corresponds to the same
for the neutrals. In other words, 0< µx/µn < 1/2. Therefore,

−1⩽ Ṽny
D̄ny

⩽−1
2
, (78)

with the left equality corresponding to rapid radial neutral vari-
ation and the right equality to rapid radial ion density variation.
The neutral-driven intrinsic rotation is either in a diffusion-
dominant regime or more realistically in a regime where the
neutral diffusion nearly cancels the neutral pinch velocity vis-
à-vis the intrinsic rotation.

Therefore at large rµ, it is likely that the cancellation of
the neutral diffusion and neutral pinch-velocity terms result
in a slight rotation even for D̄ny/D̄ty ∼ 1. For some data sets,
a naive estimate suggests that the neutrals’ diffusivity can
be as large or even larger than the turbulent diffusivity [36],
but it appears that this happens for cases where the neutral
charge-exchange mean free path is several times larger than
µ−1
t . Here, the diffusive ansatz significantly overpredicts the

neutral transport and a finite-step approach appears necessary.
Therefore, we do not expect the ion transport to be dominated
by diffusive neutral physics for realistic cases.

One way, yet undiscussed, to drive significant rotation via
the neutrals is the case of an antisymmetric neutral diffusiv-
ity and pinch velocity, particularly an in-out asymmetry. In
this configuration, only the drift-orbit asymmetry portions of
the neutral synergy terms partially cancel while the diffusive
and pinch asymmetries support each other. Unfortunately, it
seems implausible for Dn and Vn to be poloidally antisymmet-
ric. A more general argument similar to that in (76) finds that
for separable nn/ni, Dny(y)∼ Vny(y) and the neutral diffusiv-
ity and pinch velocity have identical synergy terms. Since the

model assumes that the neutrals roughly decay across the ped-
estal, the prefactors are the same order which leads to a strong
cancellation.

We remark that our intrinsic rotation solution does not show
a sensitivity to the strong SOL flows within the MTM, neces-
sitated by the boundary flow conditions. In fact, we concluded
that the diffusive neutral model coupled to the MTM indicated
that the most experimentally interesting neutrals-driven rota-
tion occurred for large rµ, that is when the neutrals vary on a
smaller radial spatial scale than the turbulence. This runs con-
trary to our motivation that neutrals in the SOL can step their
strongly directed momentum into the core. It appears that an
explicit finite neutral step size is necessary for a model to cap-
ture neutral-driven momentum flows from the SOL into the
core.

6. Discussion

TheMTMhas been generalized to include a single neutral spe-
cies that is atomically identical to the ion species. The neutral
transport is treated as a smooth continuous process, allowing
for simple analytic results at the cost of finite-step effects. (56)
encapsulates the effect of the diffusive neutrals on the fluxes.
The intrinsic rotation is studied for simple transport profiles
following several simplifying approximations.Within the gen-
eralized MTM’s validity, the neutral-particle-driven intrinsic
rotation can be significant; however, this does not appear to be
the case for experimentallymotivated parameters. The neutral-
driven rotation is insignificant on either a term by term basis
or due to significant cancellation between the diffusion and
pinch-velocity terms. Diffusive neutrals appear unlikely to
drive a strong intrinsic rotationwhen coupled to a realistic non-
Maxwellian edge ion distribution function.

The diffusive result motivates exploration of regimes at sig-
nificant neutral transport but with λmfp comparable to the ped-
estal width. Experimental neutral measurements in the edge
often satisfy this regime: significant neutral transport with
finite neutral steps [36]. Furthermore, the modeled bulk seems
insensitive to the strong SOL flows present in the MTM, as
the neutrals only seem to interact with the turbulent diffusion
and the drift orbits. In other words, only synergies between the
turbulent, neutral, and the drift-orbit asymmetries are present
in the model and not between the neutrals and the SOL flows.
Although the model includes neutral-mediated transport act-
ing on the whole of fi, only the interaction between the neutrals
and the finite-ion-orbit width transports momentum within the
continuous transport limit. The diffusive neutrals are unable to
couple the core rotation solution to the transport-driven SOL
flows.

In order to capture the neutral transport of strong-SOL-
flowmomentum, we require a general solution for the strongly
flowing distribution function in the loss layer [10]. The neut-
ral treatment needs to be relaxed to allow for finite charge-
exchange steps on the order of Lx, allowing the neutrals to
transport momentum from the layer distribution function to
the confined region. Such a change would occur in (27) such
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that F(x,v) in the confined region is sensitive to S(x ′,v) in
the loss layer, that is for |x− x ′| ∼ Lx. Including such features
will be the aim of future work regarding the MTM coupled
with non-diffusive neutral particles.
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