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The terms containing r 2 y -· ( ) in equations (9a) and (9c)
had the wrong sign in the paper ‘Model for how an accretion
disk drives astrophysical jets and sheds angular momentum
(2018 Plasma Phys. Control. Fusion 60 014006)’. The cor-
rected form of equation (9) is
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Because the magnitude of the terms with the wrong sign was
shown to be negligible in the discussion of equation (12) this
incorrect sign has no impact on the discussion of the jet
velocity as presented in section 4.1. However, the incorrect
sign does have an impact on the jet collimation discussion
presented in section 4.2. The ultimate result remains the same
but the logical argument leading to this result needs to be
corrected and in particular the argument given in equations

(25)–(27) needs to be replaced. This can be done in three
equivalent and complimentary ways which will now be
presented.

The first way is to restate equation (25) as
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so equation (26) with corrected sign becomes
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Since zy¶ ¶ is negative, equation (3) provides a retarding
force for sufficiently large zk¶ ¶ and this retarding force will
overcome the accelerating force given in equation (27) if

z
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Thus retardation occurs if there is a sudden increase in κ

which corresponds to a sharp turning of the poloidal field
direction at the jet tip. Specifically, the poloidal field near the
z axis is nearly in the z direction in the jet main body but at
the jet tip turns abruptly to be in the r direction.

The second equivalent way is to note that there is a
bunching up and hence greater density of poloidal flux sur-
faces at the jet tip. This occurs because the bundle of poloidal
magnetic field lines that had been in the main jet body and
aligned nearly parallel to the z axis turns to go in the positive
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r direction and then at larger r turns again to go in the
negative z direction. This bunching up of poloidal field lines
at the tip occurs because the jet distends what were initially
dipole-like poloidal flux surfaces and stretches these flux
surfaces out to the length of the jet. Thus, for a given r the
poloidal flux is a slightly decreasing plateau going from z=0
to the instantaneous length of the jet, while at the tip of the jet
there is a cliff-like sudden fall-off of the poloidal flux from its
plateau value to a much lower value in the vacuum-like
region above the tip (i.e., region where z exceeds the jet
length). The sudden fall-off region is where the distended
poloidal field lines are bunched up. The greatly enhanced
poloidal flux density in the cliff-like region implies that at the
tip B2 has a sharp local maximum with respect to z. The
curvature term B R R2

0m- ˆ in equation (24) is large and points
in the z- direction at the hair-pin-like 180° turnaround of the
bundle of poloidal field lines near the tip. For z slightly less
than the location of maximum B2 the gradient term

B 22
0m-̂ ( ) is similarly large and also points in the z-

direction so the two terms on the right-hand side of equation
(24) are additive and give a net retardation force at the tip.
However, for z slightly larger than the location of maximum
B2, i.e., just above the tip, the B 22

0m-̂ ( ) now points in the
positive z direction whereas the curvature term B R R2

0m- ˆ
continues to point in the negative z direction so above the tip

the curvature and gradient terms cancel rather than add. This
is essentially a statement that the region above the tip has no
current so the left-hand side of equation (24) vanishes, i.e., the
curvature and gradient terms on the right-hand side of
equation (24) are equal in magnitude and have opposite signs.

The third equivalent, but less precise way is to note that
the squeezing together of the poloidal field lines in the main
body near the z axis implies there is a positive Jf while the
turning of these field lines at the jet tip to go in the positive r
direction implies that at the jet tip there is a positive B .r The
axial magnetic forcecomponent J Br- f is thus negative and, if
sufficiently large, will overcome the positive J Br f magnetic
force component and result in a retardation.

These arguments indicate that near the tip the jet slows
down as was assumed in the remainder of section 4.2 which
showed that such slowing down leads to a collimation of
the jet.
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Abstract
Clumps of ions and neutrals in the weakly ionized plasma in an accretion disk are shown to
follow trajectories analogous to those of fictitious ‘metaparticles’ having a charge to mass ratio
reduced from that of an ion by the ionization fraction. A certain class of meta-particles have
zero-canonical angular momentum and so spiral in towards the star. Accumulation of these
meta-particles establishes a radial electric field that drives the electric current that flows in
bidirectional astrophysical jets lying along the disk axis and provides forces that drive the jets.
The entire process converts gravitational potential energy into jet energy while absorbing
angular momentum from accreting material and shedding this angular momentum at near
infinite radius.

Keywords: accretion disk, astrophysical jet, angular momentum, Hall MHD, dynamo, weakly
ionized plasma, canonical angular momentum

(Some figures may appear in colour only in the online journal)

1. Introduction

This paper describes a model integrating the distinct physics
of an accretion disk and bidirectional astrophysical jets as
sketched in figure 1. The jets and disk form two physically
separated regions which are part of the same electrical circuit
and part of the same global magnetic field system. The disk
serves as a mass source for the jets and powers the jets via a
conversion of gravitational potential energy into an electro-
motive force (EMF) that drives a current flowing in a circuit
passing through both the disk and the jets. Angular momen-
tum is removed from the disk but not deposited in the jet.
Instead the jet acts as a conduit through which angular
momentum is transported to near infinite radius in the disk
plane where it is shed with negligible associated energy
exhaust. The first part of this paper describes the jet region

and while the second part describes the disk region and how
the two regions connect to each other. An earlier version of
this model containing quantitative estimates was provided in
[1] and a more detailed version is given in [2].

1.1. Brief review of relevant previous work

Observational evidence strongly suggests that accretion disks
and astrophysical jets are closely coupled and that disks act as
the driver for jets. There is a large, rich literature on the topic of
astrophysical jets and disks. We will not attempt to review this
literature here other than mentioning a few relevant papers; a
more extensive discussion of relevant literature is given in the
introductions of [1] and [3]. There exists a variety of astro-
physical jets which are distinguished by size and velocity. The
smaller jets, called protostellar or Herbig–Haro jets, have a size
of the order of the solar system, are non-relativistic and are
associated with the early life of a star and the formation of
planets. The larger jets are highly relativistic, have dimensions
many orders of magnitude greater than protostellar jets, and are
associated with black holes and neutron stars. A common feature
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of all jets is that the jet is associated with an accretion disk and
this feature suggests that existence of an accretion disk is a
necessary condition for existence of a jet.

Most of the astrophysical literature addresses either disks
or jets with relatively few papers discussing the coupling of
disks to jets. In one of the earliest jet papers Blandford and
Zjanek [4] proposed a model for the highly relativistic
situation of a jet coming from a black hole. They assumed that
magnetic flux was frozen into accreting material so that
accretion would concentrate flux and that the disk was force-
free. They noted the need for a radial electric potential drop in
the disk plane and suggested there must be an effective finite
resistivity to enable accreting material to cross magnetic field
lines (i.e., not be frozen to the magnetic field). Their mech-
anism involved extracting energy from the rotation of the
black hole to drive the jet.

The disk papers have primarily focussed on the magneto
rotational instability (MRI). The original version of the MRI was
presented by Balbus and Hawley [5] who assumed ideal MHD
(i.e., Ohm’s law given by E U B 0+ ´ = so there is zero
resistivity) and a 100% ionized plasma undergoing Kepler
rotation as the initial condition. Accreting particles contain
angular momentum which must be shed because otherwise
centrifugal force will reflect the particles at small radius. Classic
viscosity in principle could transport angular momentum from
small to large radius but the quantitative value of classical
viscosity is negligible and so there has been a search for some
non-viscous mechanism for transporting angular momentum
outwards. The MRI papers argue that MRI turbulence provides
the desired mechanism for outward transport of angular
momentum in an accretion disk but generally do not address
how disks drive jets. Blaes and Balbus [6] noted that protostellar
accretion disks are weakly ionized so that the interaction
between ions and neutrals would modify the MRI. Gammie [7]
argued that if the ionization is very small, the effective resistivity

can become so large as to suppress the MRI and denoted regions
where the ionization is negligible as ‘dead zones’. Sano and
Stone [8, 9] and Lesur [10] noted that the Hall term (which is
missing from the ideal MHD equations used in [5–7]) becomes
important when the disk is weakly ionized and affects the
behavior of the MRI instability. The MRI investigations of the
disk typically do not use the actual geometry but instead model a
small portion of the disk where this portion, known as a shearing
box, has an imposed velocity shear that mimics the radial
dependence of the Kepler orbital velocity.

Jet models typically use ideal MHD and use the disk region
as a boundary condition (this was done for example by Zhai et al
[3]). However, a few papers such as those by Zanni et al [11], by
Sheikhnezami et al [12], and by Stepanovs and Fendt [13]
present models that couple disks and jets with the aim of
showing how disks launch jets. These disk-jet coupling models
invoked the ideal MHD equations for the jet and resistive MHD
equations for the disk. The resistivity was made anomalously
large and this enhancement in magnetic diffusivity was pre-
sumed to result from MRI turbulence. The value of the invoked
anomalous resistivity was not calculated from first principles, but
rather was chosen to provide plausible numerical results in
numerical calculations. Furthermore, [11–13] did not take into
account weak ionization or Hall physics.

Pandey and Wardle [14] considered the effect of the Hall
term in a weakly ionized plasma from a more general point of
view and noted that the effective ion cyclotron frequency is
reduced by the fractional ionization which means that the
effective ion cyclotron frequency can become very small.
Since the cross-over from the MHD regime to the whistler
regime occurs in the vicinity of the ion cyclotron frequency,
they noted that weak ionization has the consequence of
greatly lowering the frequency at which whistler waves occur.

Because the MHD equations have no intrinsic scale, these
equations characterize situations ranging over many orders of
magnitude and, in particular, the same dimensionless equations
can characterize both a lab experiment and an astrophysical
situation. A system for scaling from lab experiments to astro-
physical situations was given by Remington et al [15] while
Staff et al [16] noted ‘the many similarities between laboratory
jets and astrophysical jets despite the immense difference in
scale speaks to the fundamental nature of the MHD jets’. This
similarity means that important insight into how jets work can
be gained from studies of laboratory jets since, in principle, all
aspects of laboratory jets can be controlled and all parameters
can be measured. Jet lab experiments have been reported by
Hsu and Bellan [17], You et al [18], Ciardi et al [19], Kumar
et al [20], Suzuki-Vidal et al [21], Moser and Bellan [22], and
Li et al [23].

1.2. Relation of the proposed model to previous models

The purpose of this paper is to present an integrated disk/jet
model in the context of protostellar jets. This model does not
depend on the MRI instability and so is fundamentally dif-
ferent from the MRI-based models because there is no invo-
cation of turbulence or anomalous magnetic diffusivity.
Furthermore, unlike the shearing box models typically used in

Figure 1. Bi-directional astrophysical jets originating from an
accetion disk.
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MRI models of disks, the geometry here is global and con-
tains both the disk and the jet regions extending to infinity.
The model depends on previously unrecognized particle
kinetics and involves the new concept that a select group of
particles have trajectories substantially different from Kepler
or cyclotron motion. These trajectories are at the cross-over
from Kepler to cyclotron orbits. A thought experiment indi-
cating that such orbits must exist consists of imagining that a
spacecraft slowly becomes electrically charged until its
charge-to-mass ratio becomes the same as that of an ion. The
spacecraft orbit would then have to change from being a
Kepler orbit to being a cyclotron orbit and at the change-over
there would have to be a trajectory that is neither Kepler nor
cyclotron. Analysis shows that these special trajectories result
from fundamental Hamiltonian orbit considerations missed
when using the much coarser ideal MHD description. The
existence of the group of particles having non-Kepler, non-
cyclotron trajectories can equivalently be derived from the
Hall MHD equations for a weakly ionized plasma.

2. Flux functions, fields, and currents

We assume axisymmetry and use a poloidal flux function y
and a poloidal current I to prescribe the magnetic field
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The poloidal flux, the poloidal current, the disk region, and
the jets are sketched in figure 2.

3. Motivation for the proposed model

The morphology of figures 1 and 2 consists of two regions:
inside the disk and outside the disk. The interface between
the two regions is indicated by the dotted ellipse in figure 2.
The region outside the disk corresponds to the jet region and
this region is what was modeled in Zhai et al [3] where the
3D MHD equations were solved numerically. The numerical
solution in Zhai et al described a lab jet experiment at
Caltech and also, by rescaling, an astrophysical jet. The
numerical model required a scheme for injecting toroidal
magnetic flux and this injection was accomplished in Zhai
et al [3] by adding a fictitious source term (see equation 1(d)
in Zhai et al) to the toroidal component of the induction

equation; this fictitious source term was defined to be finite
only near the base of the jet and so corresponded to injection
of toroidal flux at the base of the jet. Without this fictitious
source term toroidal flux would be conserved, but con-
servation of toroidal flux is contrary to what happens in a
lengthening jet.

To see that flux conservation is contrary to what happens,
consider that toroidal flux Φ in the jet scales as B aL tF ~ f ( )
where a is the jet radius, L(t) is the instantaneous jet length,
and Bf is the toroidal magnetic field in the jet. Although the
toroidal flux is increasing, the poloidal current flowing in the
jet and the associated Bf in the jet are constant. Toroidal flux
injection, i.e., non-conservation, is required because Φ

increases as the jet lengthens; i.e., t B a L td d d dF ~ f .
Faraday’s law mandates existence of a radial voltage drop
V td d= - F at the jet base, and so there must be a radial
electric field Er at the jet base such that V E rd

r
rò= - . The

electric field and associated voltage drop can be considered as
a battery-like EMF that drives the jet poloidal current with its
associated toroidal magnetic field; in lab jet experiments this
EMF is provided by an external power supply connected
across inner and outer electrodes at the jet base. Because ideal
MHD implies frozen-in magnetic flux, ideal MHD prohibits
creation/injection of new toroidal flux so any model pre-
scribing the EMF driving the jet current and its associated
toroidal flux must lie outside the scope of ideal MHD.

Figure 2. Jets are in z 0> and z 0< regions exterior to z=0 plane
while disk is in the z=0 plane. The jets are governed by ideal MHD
while the disk (inside dotted ellipse) is weakly ionized and is
governed by Hall MHD and contains metaparticles making inward
spiral trajectories. The black circle represents a toroidal current that
creates the poloidal magnetic field (black curved lines). The electric
circuit current is shown by the blue arrows. The poloidal magnetic
field points down at small radius and up at large radius. This figure is
reproduced with permission from [1].
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Thus, the question is: how can toroidal flux be injected
without resorting to insertion of a fictitious source term in the
induction equation as was done in Zhai et al [3]? The jet
interior and the jet dynamics are characterized by ideal MHD
and the radial electric field Er at the jet base is a boundary
condition imposed where the jet interfaces with an accretion
disk. Section 4 will describe the jet interior and jet dynamics.
The mechanism for providing the EMF that injects toroidal
flux at the base of the jet will then be presented in section 5
which describes behavior in the accretion disk.

4. Jets

4.1. Jet dynamics

The jet dynamics are governed by the ideal MHD equations
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on defining the total force PF J B= ´ -  , the MHD
equation of motion can be expressed as
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The MHD continuity equation is
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We now make the following simplifying, but realistic and
relevant assumptions:

1. As in the derivation of the Grad–Shafranov equation
[24, 25] we assume that I I y= ( ) in which case

I 0y ´  = so the current flows on and not across
poloidal flux surfaces. This means that the right hand
side of equation (9b) vanishes so there is no force in the
f direction. As discussed in [1] we assume U 0=f in
the jet initially and since there is no force in the f
direction in the jet, Uf will remain zero in the jet. The
simplest nontrivial dependence is to have

I 100m ly= ( )

which is closely related to force-free equilibria but not
exactly the same because there is no assumption that the
toroidal current is proportional to the toroidal flux.

2. We consider the geometry in figure 2 and in particular,
assume that near the z axis, toroidal field pressure has
stretched the poloidal magnetic field axially away from
its original vacuum profile. The flux function ψ is
assumed to be highly distended relative to its vacuum
state so poloidal field lines near the z axis are nearly
parallel to the z axis. The axial magnetic field
B r r2z

1p y= ¶ ¶-( ) is thus nearly uniform in the
vicinity of the z axis; this uniformity corresponds to
the requirement that near the z axis the poloidal flux
must scale as r2 to satisfy mathematical regularity.
Because the axial field is nearly uniform near the z axis,
if a z( ) is the assumed current channel radius, the
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poloidal flux for r a can be approximated as

r z
r

a z
, , 110

2

y y=
⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

where the dependence of a on z is weak so
z a 1¶ ¶ - . The poloidal field is assumed to have an

umbrella- or mushroom-like shape with equation (11)
describing the stalk only. At z=0 this stalk intercepts
what will be called the center electrode and so the center
electrode has radius a 0( ). At large distances the poloidal
field bends around to form the cap of the mushroom and
then returns back to the z=0 plane at radii much larger
than a 0( ). This large radius part of the z=0 plane will
be called the outer electrode.

3. We assume U Ur z and also that Ur is so small that it
can be neglected.

Equations (9a)–(9c) are an exact re-statement of
equation (3a) for an axisymmetric system. We seek a steady-
state solution, i.e., a solution where t 0¶ ¶ = . and first note
that for the poloidal flux specified by equation (11),

r r z a z

1 1
. 12

2
0
2

2

2

2

y
y

  =
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟·

( )
( )

This shows that r 2 y -· ( ) can be ignored compared to
other terms in equations (9a) and (9c) because z¶ ¶ is small
compared to other terms In equation (9c) the other terms are
first order in z¶ ¶ but the term involving r 2 y -· ( ) is
second order in z¶ ¶ and so still can be dropped. The system
is solved by considering the radial, azimuthal, and axial
components of the equation of motion separately and then
combining the results.

Radial component: Taking into account the assumptions
U 0,r  U 0,=f and using equation (10), equation (9a)
becomes

r r

P

r
0

1

4
13

2

2

0
2p

l y
m

y
= -

¶
¶

-
¶
¶

( )

which is essentially a balancing between the outward radial
force from the pressure and the inward radial magnetic pinch
force from J Bz- f since J r rz

1 y~ ¶ ¶- and B ry~f . Using
equation (11), equation (13) can be expressed as

a z
r

P

r2
0 14

2
0
2

2
0

4

l y
p m

+
¶
¶

=
( ( ))

( )

which can be integrated using the boundary condition P=0
at r=a to give

P r z
a z

r

a z
,

4
1 . 15

2
0
2

2
0

2

2

2

l y
p m

= -
⎛
⎝⎜

⎞
⎠⎟( )

( ( )) ( ( ))
( )

It should be noted here that the pressure given by
equation (15) at r=0 scales as a z1 2( ( )) and so is higher
when a(z) is smaller. This implies existence of an axial
pressure gradient that will tend to drive flows from regions of
small a(z) towards regions of large a z( ).

Azimuthal component: Equation (9b) is satisfied because
Uf is assumed zero and I I y= ( ) so I 0y ´  = .

Axial component:UsingU 0r  andU 0=f equation (9c)
becomes

z
U

I

r

I

z

P

z4
16z

2 0
2 2

r
m
p

¶
¶

= -
¶
¶

-
¶
¶

( ) ( )

which can be rearranged as a Bernoulli-like relation

z
U

r
P

8
0. 17z

2 0
2 2

2
0

2
r

m l y
p m

¶
¶

+ + =
⎛
⎝⎜

⎞
⎠⎟ ( )

On the z-axis r 02 2y = and so on on the z-axis equation (17)
can be integrated to give the conventional Bernoulli relation

U P const. 18z r
2

0r + ==( ) ( )

Evaluation of r z, ,r ( ) U r z,z ( ) and P r z,( ) on the z-axis axis at
the two positions z=0 and z=L gives

U P L U L P L0, 0 0, 0 0, 0 0, 0, 0, .

19
z z
2 2r r+ = +( ) ( ) ( ) ( ) ( ) ( )

( )

Next, assume that the axial position L is so large that
a L a 0( ) ( ) and also assume thatU 0, 0z ( ) is nearly zero. This
means that U P0, 0 0, 0 0, 0z

2r ( ) ( ) ( ) and, since P scales as
a ,2- that P L P0, 0, 0( ) ( ). Thus, equation (19) becomes

P L U L0, 0 0, 0, . 20z
2r=( ) ( ) ( ) ( )

From equation (15) it is seen that

P
a

I

a
0, 0

4 0 2 0
21

2
0
2

2
0

2
0

2

2

l y
p m

m
p

= =( )
( ( )) ( ( ))
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so equation (20) can be solved to give

U L
L

I

a
0,

1

0, 2 0
. 22z

0

0

m r
m
p

=( )
( ) ( )

( )

Equation (22) can also be expressed as

U L
B a

L
0,

0, 0

0,
23z

0m r
= f( )

( ( ))
( )

( )

which is formally like the velocity of an Alfvén wave, but
involves only Bf rather than the total magnetic field

B B Bz
2 2= +f and, furthermore, involves the magnetic field

and the mass density evaluated at different locations.
The middle term in equation (17) is finite off the z axis

and corresponds to the J B B zr
2~ -¶ ¶f f axial force since

J r zr
1 y~ ¶ ¶- and B r 1y~f

- . Equation (17) also shows
that the generation of axial kinetic energy ultimately comes
from a z¶ ¶ being finite. This is because if a were indepen-
dent of z then both 2y and P would be independent of z and so
there would be no axial force both on and off the z-axis.

Equation (22) has been verified experimentally at Caltech
by Kumar and Bellan [20] who measured the time of flight of
an MHD jet as a function of both current I and mass density
r. Zhai et al [3] solved the MHD equations numerically for
plasma parameters corresponding to the Caltech experiment
and observed jet behavior consistent with the model presented
here. The magnetically generalized Bernoulli relation given
by equation (17) has been verified in the 3D numerical

5

Plasma Phys. Control. Fusion 60 (2018) 014006 P M Bellan



simulation by Zhai et al [3] who observed that the local
values at r a z= ( ) of U B 2z

2 2
0r m+ f ( ) remain constant with

respect to change in z. The solutions in Zhai et al [3] were
shown to scale to astrophysical jet parameters.

4.2. Jet collimation

The jet velocity increases with distance from the electrode so
long as a(z) is a weak function of z as discussed above.
However, at the jet tip a(z) is no longer a weak function of z
because at the tip the poloidal magnetic field originating from
the inner electrode bends over and goes back to intercept the
outer electrode. Thus, the acceleration argument leading to
equation (17) is no longer applicable. The bending over of the
poloidal magnetic field results in a decelerating force that
slows down the jet at the jet tip. This slowing down at the tip
can be understood intuitively by recalling that the magnetic
force can be decomposed as

B B R

R
J B

2
. 24

2

0

2

0m m
´ = - -^

⎛
⎝⎜

⎞
⎠⎟

ˆ
( )

The first term, B 22
0m-̂ , behaves like a pressure in the

direction perpendicular to the magnetic field while the second
term, B R R,0

1 2m- - ˆ points in the direction opposite to the
radius of curvature vector R of the magnetic field and has
magnitude inversely proportional to the radius of curvature.
Suppose that the jet is extremely long and collimated in which
case the poloidal field has a near hair-pin shape at the jet tip.
Thus, a typical poloidal field line is approximately straight
going from the inner electrode up to the jet tip and then
reverses direction to return to the outer electrode. This
reversal of poloidal field direction near the jet tip means there
is a sharp 180° turn of the poloidal field at the jet tip. The
radius of curvature of the poloidal field will thus be small at
the jet tip but large elsewhere. Since the associated force
scales inversely with R 1- and is directed in the R- ˆ direction,
there will be a strong retarding force at the jet tip but not
elsewhere.

An equivalent way of looking at this development of a
retarding force at the jet tip is to revisit the argument that

r z0
1 2m y y~   ¶ ¶- -[ · ( )] can be dropped compared to

r I I z2
0m- ¶ ¶- in the axial force specified by the right hand

side of equation (9c). Let us assume temporarily that
a a z zexp d

z
0 0ò k= ¢ ¢( ( ) ) where zk( ) is small and nearly

independent of z for most of the jet length but then suddenly
becomes large at the jet tip so as to provide the flaring out of
the poloidal flux at the jet tip (the mushroom cap). With this
assumption we express

r r z a z

a r z
z z

r

1 1 1

exp 2 d
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By comparison, the term providing acceleration scales as

I

r

I

z r z
270

2

2

0
2

m l y
m

y
-

¶
¶

= -
¶
¶

( )

so the retardation given by equation (26)will overcome the
acceleration given by equation (27) when the flaring out of
the poloidal flux is such that z 2k l>( ) .

Being concentrated in the vicinity of the jet tip, the
retarding force slows down the jet in the vicinity of the jet tip.
An observer sitting in the jet frame near the tip would con-
sequently see a converging axial velocity, i.e., a negative

U · . The equation of continuity in the jet frame expressed
as t U Ur r r¶ ¶ + = - · · implies that the plasma
density seen by the observer in the jet frame increases where
this local slowing occurs, much like traffic on a highway
bunches up when a group of fast cars approaches a group of
slower cars traveling in front of the fast cars. The axial
compression of the jet plasma compresses the toroidal
magnetic flux embedded in the jet plasma and this compres-
sion corresponds to increasing Bf because Bf is the density of
toroidal flux. Since Bf is what causes the pinch force, the
bunching up of the fast jet approaching the slower jet at the
tip increases pinching and so the jet becomes collimated. The
radial pinching by axial deceleration can be seen quantita-
tively by first dotting the induction equation with f to
obtain

t

B
U B 28f f

¶
¶

=   ´ ´· · ( ) ( )

and then re-arranging equation (28) as

t

B

r

U

r

B

r
U

r

B

r

B

r

U B

B U

B U U. 29

f
¶
¶
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f f
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⎤
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· [( ) ]

·
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Equation (29) is then recast to be in the jet frame as

t

B

r

U

r

B

r
B U

d

d
, 30=  - f f f⎛

⎝⎜
⎞
⎠⎟ · · ( )

where d/dt denotes the convective derivative t U ¶ ¶ + · ,
i.e., the time derivative seen by an observer in the jet frame.
Since U 0=f was stipulated, equation (30) reduces to

t

B

r

B

r
U

d

d
. 31= - f f⎛

⎝⎜
⎞
⎠⎟ · ( )
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However, the continuity equation can be written as

t
U

d

d
0 32

r
r+  =· ( )

so elimination of U · from equations (31) and (32) gives

B

r t

B

r t

d

d

1 d

d
33

1

r
r

=f f
-⎛
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or

t

B

r t

d

d
ln

d

d
ln 34r=f⎛

⎝⎜
⎞
⎠⎟ ( )

which leads to

B

r
const. in the jet frame. 35

r
=f ( )

Thus axial compression increases ρ at a given r which causes
a corresponding increase in Bf and so an increase in
pinching. Since the total current I aB2 0p m= f is a constant,
the current channel radius a must decrease in the jet frame as
Bf increases. This reduction of a at the jet tip collimates the
jet. The jet tip thus self-collimates and this self-collimation
acts like a zipper continuously squeezing together poloidal
field lines as the jet propagates. Because the flux tube is
current-carrying, the magnetic field is helical and can be
represented as B B zB zf= +f ˆ ˆ. The jet flow is away from the
region where the flux tube diameter is small and the jet flow
direction remains the same when the current polarity is
reversed. This is because the jet mechanism ultimately
depends on the axial gradient of B2

f which clearly is inde-
pendent of the sign of Bf and hence independent of the sign of
the current.

The jet has a constant poloidal flux, but this flux is being
axially distended since it is frozen into the jet. However, the
toroidal flux in the jet is increasing because while Bf is
constant in the jet, the toroidal flux scales as the length of the
jet. Thus, the linked toroidal and poloidal flux, i.e., the heli-
city, is increasing with time. The rate of helicity injection is
proportional to the radial voltage drop at the electrodes
driving the jet since this voltage corresponds to the rate of
injection of toroidal flux. The jet requires a radial electric field
to drive the poloidal current I and create the ever-increasing
toroidal flux resulting from the lengthening of the jet. This
radial electric field has been provided by a capacitor in
laboratory experiments [17, 18, 22, 26] but obviously must be
provided by other means in the situation of an accretion disk.

5. Accretion disk

5.1. Field and force symmetries

I and ψ are defined for both positive and negative z and, as
sketched in figure 2, I is assumed to be an odd function of z
while ψ is assumed to be an even function of z. Both I and ψ

depend on r and both vanish at infinity. The disk lies in the
z=0 plane and is thin, weakly ionized, and in a Kepler orbit
around a star. Bf, Br, and Jz are antisymmetric with respect to

z since B I ,~f B zr y~ ¶ ¶ and J I rz ~ ¶ ¶ whereas
B rz y~ ¶ ¶ , J I zr ~ ¶ ¶ and Jf are symmetric with respect
to z. The axial component of the magnetic force is thus
antisymmetric with respect to z since

J B J BJ B , 36z r r

symmetricantisymmetric symmetricantisymmetric

´ = -f f ( ) ( )

whereas the radial component of the magnetic force
is symmetric with respect to z since

J B J BJ B . 37r z z

symmetricsymmetric antisymmetricantisymmetric

´ = -f f ( ) ( )

Because Bf is antisymmetric with respect to z while Bz is
symmetric, the z 0> and z 0< regions have opposite
helicity magnetic fields so the total helicity of the entire
system remains zero. The radial electric field Er and the radial
electric current Jr are oppositely directed in the z=0 plane
which indicates there is a power source in the z=0 plane.
This negative value of E J· in the disk (corresponding to the
existence of a power source) is missing from models invoking
anomalous resistivity (anomalously large magnetic diffusion)
since increasing the resistivity corresponds to creating a sink
for power and not a source. Since the disk is presumed to
drive the jets, the disk should be a power source and the jets a
power sink.

5.2. Inadequacy of ideal MHD Ohm’s law to model accretion

The accretion disk is assumed to be in a Kepler orbit, i.e., at
each radius the outward centrifugal force U r2r f is balanced
by the inward gravitational force MG r2r where M is the
mass of the star and G is the gravitational constant so
U MG r=f , the Kepler orbital velocity. Previous astro-
physical jet models have presumed that the accretion disk acts
as a homopolar generator [27] in the presence of some pre-
existing constant poloidal magnetic field, i.e., the Bz field
threading the disk plane. According to this presumption, the
Kepler rotation of the disk cuts the Bz field lines to create a
radial electric field as prescribed by the ideal MHD Ohm’s
law equation (3c). The radial component of equation (3c) is

E U B U B 0 38r z z+ - =f f ( )

and because the anti-symmetry of the bidirectional jets man-
dates U 0z = in the z=0 plane, equation (38) reduces to
E U Br z= - f whereUf is the disk’s Kepler rotational velocity.
Despite the intuitive appeal of this argument, it cannot be
correct because if equation (3c) is to be invoked, then all
components of equation (3c) must be satisfied, not just the
radial component. The failure of equation (3c) becomes evi-
dent upon consideration of its azimuthal component, namely

E U B U B 0. 39z r r z+ - =f ( )

The Bz magnetic field threading the z=0 plane is assumed to
be both constant in time and axisymmetric. The azimuthal
electric field is E r V A t1 f= - ¶ ¶ - ¶ ¶f f

- . It is seen that
Ef must vanish in the z=0 plane since axisymmetry implies

V 0f¶ ¶ = while Bz being constant in time implies
A t 0¶ ¶ =f . The anti-symmetry with respect to z of the jet
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axial velocity implies U 0z = in the z=0 plane. Because the
jets are a bidirectional outflow of matter from the disk plane
and because the configuration is in steady-state in the z=0
plane, there must be a continuous radially inward flow of
matter in the z=0 plane to supply the matter continuously
flowing out of the z=0 plane in the bidirectional jets. This
implies that Ur must be both finite and radially inwards in the
z=0 plane; i.e., there must be accretion. Because Bz is finite
in the z=0 plane, the term U Br z- in equation (39) must be
finite and yet no other term exists in equation (39) to balance
this term (recall that E 0=f and U 0z = in the z=0 plane).
Thus, the disk cannot be governed by equation (3c) and so
ideal MHD is an inadequate model for the accretion disk in
contrast to ideal MHD being adequate for the jet region
external to the accretion disk.

5.3. Kepler versus cyclotron orbits

We claim that a plasma cannot simultaneously satisfy the
ideal MHD equations and be in a Kepler orbit [28]. To prove
this claim we examine the distinction between Kepler and
cyclotron motion in detail. In order to present the essential
idea in the clearest possible fashion, we first restrict con-
sideration to motion in the z=0 plane and also assume the
magnetic field is constant, uniform, and normal to the z=0
plane. The magnetic field is then given by B zB z= ˆ with an
associated azimuthal vector potential A B r 2z=f and an
associated poloidal flux B rz

2y p= . We consider a particle
having mass m and charge q in the gravitational field of a
central object of mass M . The respective Lagrangian and
Hamiltonian for the particle in the combined gravitational and
magnetic field are

m v r qr A
mMG

r

1

2
40r

2 2 2 f f= + + +f( ˙ ) ˙ ( )

and

H m v r
mMG

r

1

2
. 41r

2 2 2f= + -( ˙ ) ( )

The canonical angular momentum defined as P  f= ¶ ¶f ˙ is

P mr qrA r

mr
q

r
2

. 42

2

2

f

f
p
y

= +

= +

f f
˙ ( )

˙ ( ) ( )

Lagrangian mechanics shows that because 0, f¶ ¶ = Pf is
a constant of the motion. An important consequence of the
term containing q ry ( ) in equation (42) is that a charged
particle behaves very differently from a neutral particle.
Equation (42) can be rearranged to give the angular velocity

P r

mr
. 43

q

2
2

f
y

=
-f p˙ ( )

( )

On substituting equation (43) into (41) the Hamiltonian
can be expressed as

H mv r
1

2
, 44r

2 c= + ( ) ( )

where the effective potential rc( ) can be decomposed into
two terms as

r r r . 45gc c c= +f( ) ( ) ( ) ( )

The first term is the azimuthal kinetic energy mv 22
f

expressed as [28, 29]

r
P r

mr2
46

q

2

2

2
c

y
=

-
f

f p( )
( )

( )
( )

while the second term

r
mMG

r
47gc = -( ) ( )

is the gravitational potential energy. If the particle is neutral
so q=0 then χ reverts to the classic Kepler form

r P mr mMG r22 2c = -f( ) ( ) which leads to circular Kepler
orbits when r is at the minimum of rc( ). Using B rz

2y p~ ,
comparison of the orders of magnitudes of cf and gc gives

q B r

m MG
, 48

g

z
2 2 3

2
c
2

K
2

c

c
w
w

~ =f ( )

where qB mzcw = is the cyclotron frequency and Kw =

MG r3 is the Kepler frequency. For typical astrophysical
parameters, cyclotron frequencies are many orders of mag-
nitude larger than the Kepler frequency so cf is orders of
magnitude larger than gc . This means that gravity is of neg-
ligible importance for charged particles and so charged par-
ticles will not execute Kepler orbits. If a plasma is fully
ionized, all particles are either electrons or ions, no particle
executes a Kepler orbit [28], and so the plasma center of mass
cannot execute a Kepler orbit. Hence, it is not possible for a
fully ionized ideal MHD plasma to be in a Kepler orbit.
However, if the magnitude of cw were somehow reduced to
become comparable to Kw , the two effective potentials would
then have associated forces of similar magnitude in which
case the motion would differ substantively from either strict
cyclotron or strict Kepler motion. This reduction of c

2
K
2w w

could be accomplished either by having a very weak magnetic
field Bz or by having a very small charge to mass ratio q m.

5.4. Weak ionization as a method for having an effective
cyclotron frequency comparable to the Kepler frequency

Reduction of c
2

K
2w w by having charged dust grains was

considered in [30] and while this appears physically possible,
it seems unlikely to be the typical situation. Instead, the effect
of weak ionization appears to be a more likely means by
which this reduction could occur because accretion disks
rotating around new-born stars are very weakly ionized
[7, 14] with fractional ionization ratios in the range

10 1013 8a ~ - -– . The neutral particle density is quite high,
nominally n 10n

16~ m−3. Because of the weak ionization, to
a first approximation one can ignore the charged particles and
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simply presume that the neutrals are in Kepler orbits around
the star. Also, because there are 1a- more neutrals than
charged particles, charged particles collide mainly with neu-
trals rather than with other charged particles. Assuming a
nominal temperature of 100 K, the thermal velocity of neu-
trals is v 10nT

3~ m s−1 and so assuming a nominal atomic
cross section 3 10 20s = ´ - m2, the nominal neutral–neutral
collision frequency will be n v 0.3nn n nTn s= = s−1 and
collisions of an ion with a neutral will have a similar fre-
quency. It is assumed that ion-neutral collisions are so fre-
quent that ions collide with neutrals and scatter before
completing a cyclotron orbit; this means that ions can be
considered unmagnetized. On the other hand, because the
electron cyclotron frequency is m mi e times higher than the
ion cyclotron frequency whereas the electron thermal velocity
is only m mi e times larger than the ion thermal velocity for
equal electron and ion temperatures, regimes exist where the
electrons complete a cyclotron orbit before being scattered by
a collision. Thus, we are considering a regime [8, 31] where
the electrons are magnetized but the ions are not. By ‘mag-
netized’ we mean that the particle completes a cyclotron orbit.

We now argue that despite the ions being unmagnetized,
the combination of ions and neutrals behaves in the manner of
a fictitious magnetized particle having a charge to mass ratio
smaller than that of an ion by the fractional ionization a. To
see this, consider a hypothetical situation where a transient
electromagnetic force imparts a certain momentum to the ions
during an interval shorter than the ion-neutral collision time.
After acquiring this momentum, the ions collide with the
neutrals and share this momentum with the neutrals. Because
of this sharing, the combination of the ions and neutrals have
the momentum the ions received from the electromagnetic
force and the total mass of the ions and the neutrals. This
shared momentum is identical to what would have been
gained by a fictitious particle having the ion charge and a
mass equal to the sum of the masses of the ions and neutrals
under consideration and so a charge to mass ratio q mi ia
where α is the fractional ionization. Thus, the center of mass
of the combination of ions and neutrals behaves like a ficti-
tious ‘metaparticle’ having cyclotron frequency q m ;i icw a=
this reduction of effective cyclotron frequency was previously
noted by Pandey and Wardle [14] who showed this would
greatly lower the frequency at which whistler wave physics
occurs since the cross-over from MHD physics to whistler
physics occurs in the vicinity of the ion cyclotron frequency.
Since 10 1013 8a ~ - -– and ion cyclotron frequencies are
typically 8–13 orders of magnitude larger than Kepler fre-
quencies, metaparticles with a cyclotron frequency of the
order of the Kepler frequency should exist in a typical
accretion disk. Ionization is typically stratified [7] because α

depends on ionization via x-ray or ultra-violet radiation, and
so typically α varies from being essentially zero in the disk
equatorial plane (as this plane is shielded by the disk particles
from x-rays and UV) to being near unity at the interface
between the disk face and the low-density, fully ionized
plasma external to the disk. Thus, there will always be a disk
stratum where α is such that the metaparticle cyclotron fre-
quency is of the order of the Kepler frequency.

The time required for the neutrals to become collisionally
attached to an ion can be estimated by considering a single
ion and its associated 1a- neutrals (e.g. one ion and 1012

neutrals) and supposing that the ion receives some momentum
from an electromagnetic field. The ion can be considered to
constitute a delta-function momentum input which will col-
lisionally diffuse through the surrounding 1a- neutrals. The
volume occupied by the 1a- neutrals is V nn

1a= -( ) so the
characteristic linear dimension of the clump of the 1a- neu-
trals is l V nn

1 3 1 3a= = -( ) . The momentum diffusion
coefficient is D v v nnn nT

2
Tn s~ = ( ). The diffusion

equation gives the time td to diffuse a length l as l Dt42
d so

t
l

D

n

v4 4
49n

d

2 1 3 2 3

T

s a
= =

-
( )

which indicates times of the order of nanoseconds or less for
the electromagnetic momentum gained by an ion to be shared
via collisional diffusion with its associated 1a- neutrals
assuming 10 1013 8a ~ - -– . Thus, it is very reasonable to
consider an ion and its associated 1a- neutrals to be colli-
sionally attached to each other.

The metaparticle equation of motion can be derived in an
alternative, equivalent, and more formal way by consideration
of the MHD equation of motion for a weakly ionized plasma
in a gravitational field, namely

t
P P P

U
J B g

d

d
50i e nr r= ´ -  + + -( ) ( )

and the Hall Ohm’s law expressed in the form of the electron
fluid equation of motion,

n q PE u B0 . 51e e e e= + ´ - ( ) ( )

Electron collisions have been dropped from equation (51)
since electrons are assumed magnetized so ecw exceeds the
electron-neutral collision frequency. The gravitational force
on electrons has also been dropped from this equation
because the electron cyclotron frequency exceeds the Kepler
frequency by many orders of magnitude. Using

n q n qJ u ui i i e e e= + , subtraction of equation (51) from (50)
yields

t
n q n q P P

U
E u B g

d

d
. 52e e i i i i nr r= - + ´ -  + -( ) ( )

Since the plasma is weakly ionized, the overall mass density
is essentially the neutral mass density, i.e., n mn nr = where
mn is the mass of a neutral particle and nn is the neutral
particle number density. Dividing equation (52) by ρ and
invoking the quasi-neutrality condition n q n qe e i i= - yields

t

q

m

P P

n m

U
E u B g

d

d
. 53i

n
i

i n

n n
a= + ´ -

 +
-( ) ( ) ( )

Because the ions collide frequently with the neutrals, the
mean ion velocity ui is nearly the center of mass velocity U
which is essentially the neutral center of mass velocity. The
mean ion and center of mass velocities are presumed to be of
order the Kepler velocity which at 1 a.u. is 3×104 m s−1. A
hydrogen gas with nominal temperature of 100 K has a
thermal velocity of the order of 103 m s−1 which is sig-
nificantly lower than the Kepler velocity. Also, the direction
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of rotation is assumed without loss of generality to be in the
positive f direction; or equivalently, the direction of Kepler
rotation defines the positive f direction. Finally, if the pres-
sure term can be neglected on the basis that the random
thermal velocities are small compared to the Kepler-like
center of mass velocity, equation (53) reduces to

t

q

m

U
E U B g

d

d
54i

n
a= + ´ -( ) ( )

which is the equation of motion for a metaparticle with charge
to mass ratio q mi na . Assuming the neutral mass is similar to
the ion mass, the effective cyclotron frequency is thus reduced
from the ion cyclotron frequency by ,a i.e., by 10 1013 8- -– .
Ion-neutral collisions do not exist in equation (54) because the
momentum ions lose from colliding with neutrals is precisely
the momentum neutrals gain from these collisions and
equation (54) describes the evolution of the sum of the ion
and neutral momenta. Thus, ion-neutral and neutral-ion col-
lisions have no effect on the metaparticle momentum. Instead,
these collisions are the means by which the ions and neutrals
are bound together to form the metaparticle. The metaparticle
point of view is thus a type of two-fluid system where instead
of having the two fluids being ions and electrons, now the two
fluids are metaparticles and electrons.

A metaparticle is thus a clump of particles having
effective charge to mass ratio q mi ia . Just as ion motion for
phenomena slow compared to icw can be described by the
guiding center approximation (i.e., E B´ drifts, polarization
drifts, curvature drifts, and grad B drifts), the metaparticle
motion can similarly be described by the guiding center
approximation for phenomena slow compared to icaw .
However, if the Kepler frequency Kw is comparable to the
metaparticle cyclotron frequency icaw , then the guiding center
approximation cannot be used for metaparticles and a quali-
tatively different behavior occurs. An essential result of the
guiding center approximation is that particles remain on
poloidal magnetic flux surfaces to the extent that the mr2ḟ
term in equation (42) is small compared to the q 2y p term.
However if iK cw aw , the two terms in equation (42)
become comparable, the guiding center approximation fails,
and metaparticles can move across flux surfaces. In contrast to
metaparticles, electrons remain governed by the guiding
center approximation and so cannot move across magnetic
flux surfaces. This distinction between metaparticle motion
and electron motion leads to the possibility of a steady radial
electric current composed of metaparticles, but not electrons,
flowing across magnetic flux surfaces. The metaparticle
constitutes the carrier of the radial current.

5.5. Inward spiral orbits of zero-canonical angular momentum
particles

Equation (54) is the equation of motion for a charged particle
with mass mn and charge qia in a gravitational field and a
magnetic field. The discussion can now be generalized by
removing the four previously imposed restrictions that (i)
motion is confined the z=0 plane, (ii) the magnetic field is
constant, (iii) the magnetic field is uniform, and (iv) there is

no electric field. With the removal of these restrictions the
metaparticle Hamiltonian H generalizes to

H

m
r r z

MG

r z

q

m
V r z t

1

2
, , ,

55
n

i

n

2 2 2 2

2 2
f

a
= + + -

+
+( ˙ ˙ ˙ ) ( )

( )

where V r z t, ,( ) is an electrostatic potential. Because the
system remains axisymmetric, the canonical angular
momentum is still a constant of the motion, i.e.,

P m r
q

r z t
2

, , const. 56n
i2f

a
p
y= + =f ˙ ( ) ( )

On substituting for ḟ using equation (56) the Hamiltonian
assumes the form

H

m
r z r z t

1

2
, , , 57

n

2 2 c= + +( ˙ ˙ ) ( ) ( )

where the effective potential χ now is

r z t
r z t

r
MG

r z

q

m
V r z t

, ,
, ,

2

, , . 58

P

m

q

m

i

n

1

2

2

2

2 2

n

i

nc
y

a

=
-

-
+

+

p
af( )

( )
( )

( ) ( )

Now consider the special case where P 0=f and assume
temporarily that V=0 so the effective potential becomes

r z t
q

m

r z t

r

MG

r z
, ,

, ,

8
. 59i

n

2 2

2

2

2 2 2 2
c

a y
p

= -
+

( ) ( ( )) ( )

Since Bz is approximately uniform at small r, the
poloidal flux for small r is

r x t B z t r, , 0, , 60z
2y p=( ) ( ) ( )

in which case

r z t
q

m

B z t
r

MG

r z
, ,

0, ,

8
. 61i

n

z
2 2

2

2
2

2 2
c

a
= -

+
( )

( )
( )

The radial force on the particle is rF c= -¶ ¶ and this force
is always radially inwards because the radial partial derivative
of both terms on the right hand side of equation (61) is
positive. Thus, a particle is subjected to an inward radial force
at any z. If the particle reaches r=0 at finite z, the gravita-
tional term provides an axial force towards the midplane
z=0. Thus, a particle will always experience a combination
of forces directing it towards r 0,= z=0, i.e., towards the
central mass. The P 0=f assumption can be used in
equation (56) to give

r

q

m
r z t

1

2
, , 62i

n
2

f
p

a
y= -˙ ( ) ( )

so using equation (60)

q

m
B z t

1

2
0, , 63i

n
zf

a
= -˙ ( ) ( )

i.e., ḟ is minus half the metaparticle cyclotron frequency.
Suppose a metaparticle was initially orbiting at a radius r0
with a Kepler frequency MG rK 0

3w = and that P 0=f was
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satisfied at this initial radius. Because Pf is a constant of the
motion, Pf will remain zero throughout the particle’s entire
motion. The combination of radially inward velocity and
angular velocity 2icf aw= -˙ means the P 0=f meta-
particle makes an inward spiral trajectory. This can be easily
verified by solving equation (54) numerically with P 0=f set
as an initial condition. Note that Bz must be negative at small r
since we have assumed that ḟ is positive; this corresponds to
the downward direction of the magnetic field at small r in
figure 2.

Since metaparticles have positive charge and spiral
inwards, their accumulation near r 0,= z=0 implies a
build-up of positive charge near the origin and so the elec-
trostatic potential V will become finite and there will be a
radially outward electric field Er. Metaparticle accumulation
then is the mechanism for producing the radial electric field
discussed in section 3. The concentration near r=0 of
positive charge from the accumulated metaparticles cannot be
neutralized by electron motion in the z=0 plane because
electrons cannot move across poloidal flux surfaces.
This constraint on electron motion results from conservation
of the electron canonical angular momentum P m re

e
2f= -f
˙

e r z t, , 2 ;y p( ) noting that me is negligible P const.e =f
implies that r z t, ,y ( ) is conserved for an electron. Electrons
therefore cannot deviate from their initial poloidal flux surface
and so cannot move in the z=0 plane to neutralize the
accumulated positive charge of the inward spiraled meta-
particles. However, as sketched in figure 2, electrons can
move along constant ψ contours outside of the z=0 plane
and so can make their way from large r in the disk plane to
small r in the disk plane by moving along a constant ψ sur-
face. This electron motion out of the disk plane along constant
ψ surfaces corresponds to a clockwise electric current in the
region above the z=0 plane and a counter-clockwise electric
current in the region below the z=0 plane. At small r, this
poloidal electric current is axially outwards from the z=0
midplane above and below the midplane. These poloidal
currents produce a toroidal magnetic field into the page above
the z=0 plane and out of the page below the z=0 plane.
The topology of the current is precisely what is required to
drive bidirectional jets away from the midplane.

Also, a portion of the inward spiraling metaparticles can
serve as the feedstock for the jet mass flux. SinceU rf=f ˙ and
ḟ is constant for the inward spiraling metaparticles, the
metaparticles have vanishing Uf at small radius and so the
assumption that the jet starts with U 0=f is seen to be
reasonable.

5.6. Hall Ohm’s law point of view

When the Hall term is included, the ideal MHD Ohm’s law
generalizes to be the Hall Ohm’s law

n e
E U B J B

1
0. 64

e
+ ´ - ´ = ( )

The addition of the Hall term n eJ B e- ´ ( ) does not cor-
respond to adding ‘new’ physics to the model but instead
corresponds to correcting an over-simplification inherent in

ideal MHD. This over-simplification is the assumption in
ideal MHD that the Hall term can be dropped because the
difference between each component of the perpendicular
electron and ion velocities is much less than the ion velocity
component, i.e., ideal MHD is based on the assumption that

J

n e
u u u U 65k

e
ik ek ik k= - »∣ ∣ ∣ ∣ ∣ ∣ ( )

for each perpendicular component k . Specifically, for a
magnetic field in the z direction, k would be the r or f
directions. The assumption prescribed by equation (65) is true
if both the ion and electron perpendicular motions are dom-
inantly E B´ drifts. However the assumption prescribed by
equation (65) is clearly false when there are inward spiraling
metaparticles since ions, being constituents of the meta-
particles, are spiraling in whereas the electrons, frozen to flux
surfaces, are not. The entire radial electric current is thus
produced by the radially inward ion velocity and so
equation (65) is false because u 0er = causes equation (65)
to imply u uir ir∣ ∣ ∣ ∣ which is clearly incorrect. An equiva-
lent point of view is to consider the azimuthal component of
equation (64), namely

U B
n e

J B
1

0; 66r z
e

r z- + = ( )

on dividing by Bz this becomes

J n eU n eU 67r e r n ra= = ( )

which shows that the radial current comes from the
metaparticles.

Because the Hall term in equation (66) is not contained in
ideal MHD there is no term to balance the U Br z- term in the
azimuthal component. Inclusion of the Hall Ohm’s law is
effectively a tautology as it contains no physical information,
but when the Hall term is omitted, the tautology is falsified.
This is seen by noting that the Hall Ohm’s law in the z=0
plane is just the electron equation of motion for the situation
where the electrons have no radial motion. The assumption in
equation (65) which is the basis for ideal MHD, falsely
assigns the electrons a radial motion comparable to the ion
radial motion.

5.7. Accretion and removal of angular momentum via magnetic
braking

An essential requirement for any accretion model is a
mechanism for removing angular momentum of accreting
mass. Suppose for the moment that the accreting mass is
neutral so the effective potential is

r
P

mr

mMG

r2
. 68

2

2
c = -f( ) ( )

If angular momentum were not removed, then as r 0 the
P mr22 2
f contribution to the effective potential energy would
diverge making it energetically impossible for accreting
neutral material to attain arbitrarily small r. Because torque is
the rate of change of angular momentum, removing angular
momentum of accreting matter at some radial location r
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means there must be a negative or ‘braking’ torque at this r.
Magnetic forces can provide such a braking torque and the
detailed mechanism can be understood in terms of con-
servation of canonical angular momentum or, equivalently, by
consideration of the azimuthal component of the MHD
equation of motion.

5.8. Braking torque from conservation of canonical angular
momentum

Consider an axisymmetric magnetic field and its associated
vector potential rA r z t r z t, , , , 2y p=f ( ) ( ) so conservation
of canonical angular momentum is expressed as

P mr
q

r z t
2

, , const. 692f
p
y= + =f ˙ ( ) ( )

The time derivative of equation (69) for each species σ gives

t
m r

q

t r

r

t z

z

t
0

d

d 2

d

d

d

d
, 702f

p
y y y

= +
¶
¶

+
¶
¶

+
¶
¶

s
s ⎛

⎝⎜
⎞
⎠⎟( ˙ ) ( )

where t t vd d = ¶ ¶ + · is the time derivative experi-
enced by an observer moving with a particle having velocity
v. Recalling that

B
r z

B
r r

1

2
,

1

2
, 71r z

p
y

p
y

= -
¶
¶

=
¶
¶

( )

equation (70) can be expressed as

t
m r

q

t r

r

t z

z

t
q

t
q r B v B v

d
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d

d

d

d

2
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Multiplying equation (72) by ns and summing over species
gives

t
n m ru m ru

n

t

rB J rB J

r J B

d

d

d

d

. 73

z r r z

pol pol

å

f

-

= - +

= ´

s
s s sf s sf
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ˆ · ( ) ( )

Summing n q vrs s s and n q vzs s s on the right hand side of
equation (72) gives the current densities Jr and Jz. Summing
n qs s over species gives zero because of quasi-neutrality so no
term involving ty¶ ¶ survives the summation of
equation (72) over species. The continuity equation for each
species can be written as

n

t
n u

d

d
0 74+  =s

s s· ( )

so equation (73) becomes

t
n m ru

n m ru

m ru n
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u

J B . 75pol polå f
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s s sf
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When summing over species in the first term on the left-hand
side, the random velocities sum to zero so what remains is the

mean velocity of the species. equation (75) then becomes

t
rU m ru n ru J B .

76

pol polår f
¶
¶

+  = ´f
s

s sf s s( ) · ( ) ˆ · ( )

( )

We may ignore electron mass since me is much smaller
than the ion or neutral masses and note that the strong col-
lisional coupling between ions and neutrals causes
u u Ui n  so

m ru n m rU n rUu U U. 77
i e,

å å r=
s

s sf s s s f s f( ) ( ) ( )

Here any terms involving the squares of random velo-
cities have been dropped because these would eventually give
a pressure gradient in the f direction, but because of the
assumed azimuthal symmetry P 0f¶ ¶ = .

Because Bpol = 2 1p -( ) y f ´  , Jpol = 2 1p -( )
I ,f ´  and r r2f f= ˆ the right hand side of

equation (76) can be expressed as

r r
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Finally, using equations (77) and (78), equation (76) assumes
the form

t
rU rU IU

1

4
79

2
r r

p
y f

¶
¶

+  =   ´ f f( ) · ( ) · ( ) ( )

which is identical to equation (9b).
If the right hand side of equation (79) were zero, then this

equation would be a conservation equation for the angular
momentum density rUr f. However, the right hand side can be
finite and so act as either a source or sink of angular
momentum depending on whether it is positive or negative.
Because the right hand side is in the form of a divergence and
because both ψ and I must vanish at infinity, integration of
equation (79) over volume up to infinity will result in there
being no contribution from the right hand side. Thus, if there
is a source of angular momentum over some subvolume, the
divergence form of the right hand side of equation (79) shows
that some other subvolume must absorb all the angular
momentum produced by the source. Because the flux term

rU Ur f· ( ) on the left-hand side of equation (79) also has
the form of a divergence, integration over the entire volume
up to infinity shows that all contributions from angular
momentum flux will similarly cancel. The result is that the
volume integral up to infinity of equation (79) gives

rU rd const. 803ò r =f ( )

so the total angular momentum is exactly conserved even
though there can be local fluxes of angular momentum and
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local sources or sinks, i.e., local torques from the J B´
force.

The right hand side of equation (79) describes the torque
associated with magnetic forces. This magnetic torque, a
source/sink for angular momentum, provides a non-
mechanical means for transporting angular momentum from
one subvolume to another spatially separated subvolume.
This transport of angular momentum to a distant location can
be understood by writing the right hand side as

I I
1

4

1

4
81

2 2p
y f

p
y f  ´  =  ´  · ( ) ( ) · ( )

and examining I y ´  . If surfaces of constant I coincide
with surfaces of constant ψ then, as in the Grad–Shafranov
equation, this means I I y= ( ) so I I y = ¢ and

I 0y ´  = so no magnetic torque exists, or equivalently
there is no source or sink of angular momentum.

In figure 2 the constant I surfaces approximately coincide
with the constant ψ surfaces in the regions above and below
the z=0 plane. This corresponds to the poloidal electric
current flowing along the poloidal magnetic flux surfaces in
the regions above and below the z=0 plane. Thus, above
and below the z=0 plane the poloidal flux surfaces can be
considered to behave as set of concentric insulated conductors
carrying the poloidal electric current.

However, if surfaces of constant I do not coincide with
surfaces of constant ψ there will be a source or sink of angular
momentum. This happens in the z 0 disk region where the
current is radial whereas the magnetic field is vertical. This
means y is horizontal while I is vertical so

I 0y ´  ¹ . Thus rJ Br z- is finite in the z 0 disk region,
i.e., torques exist in the disk region. However, while Jr is
always radially inwards, Bz is negative at small r and positive
at large r so the torque has opposite polarities at small and
large r . This torque reversal can also be seen from the point of
view of the poloidal flux function. In figure 2 ψ is negative
everywhere and has a minimum at the black circle. In the
z=0 plane and to the left of this minimum, ry¶ ¶ is
negative corresponding to negative Bz while to the right of the
black circle, ry¶ ¶ is positive corresponding to positive B ;z

see the vertical arrows indicating Bz in figure 2.
The inward spiraling metaparticles constitute a radially

inward electric current so Jr is negative in the z 0 disk
region. Since both Jr and Bz are negative in the z 0 disk
region to the left of the black circle, the first term in
equation (73) causes rB Jz r- to be negative corresponding to a
removal of angular momentum in this region. On the other
hand Bz is positive to the right of the black circle in the z 0
disk region while Jr remains negative corresponding to a
creation of angular momentum in the z 0 disk region to the
right of the black circle. Angular momentum is consequently
being transported from the left to the right. Unlike viscosity
which transports angular momentum between adjacent
regions, magnetic torque transports angular momentum to a
spatially separated region. In particular, angular momentum is
extracted by the magnetic torque from a small-r region and
then deposited into a non-adjacent large-r region that is
connected, not by geometric proximity, but instead by having

the same ψ flux surface. The connectivity occurs via electric
current flowing along the flux surfaces in the region external
to the z 0 disk region and there is no need for the angular
momentum mr2ḟ to be finite in this external region.

To see this in more detail, consider two nearby flux
surfaces labeled 1y and 2y , let V12 denote the volume of the
toroidal shell between these two flux surfaces, and let S1,2

denote the geometric surfaces associated with 1,2y . The rate of
change of angular momentum due to magnetic torque in this
toroidal shell is prescribed by integration over the volume of
the shell, i.e.,

I r

I Is s
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4
d
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d d
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where the last line is zero because sd is parallel to y on the
respective geometric surfaces S1,2 and because I y f ´ 
has no f component so Gauss’s law can be used without
concern about the shell being doubly-connected.
Equation (82) states that the angular momentum removed
magnetically from the disk region between 1y and 2y at small
radius (left of black circle) is deposited into the disk region
between 1y and 2y at large radius (right of black circle). Thus,
angular momentum is transported electrically along the flux
surfaces from the inner region to the distant outer region.

This magnetic transport of angular momentum has an
important consequence regarding energy. A flux surface
passing through small r to the left of the minimum of ψ in the
z=0 plane (left of black circle) and passes through large r to
the right of this minimum. Furthermore, the smaller the value
of r is to the left for this intersection of the flux surface with
the z=0 plane, the larger the value of r is for the intersection
to the right. Because the kinetic energy of angular momentum
is mv mr r2 22 2 2 2f=f ( ˙ ) ( ), the kinetic energy of a certain
amount of angular momentum scales as r1 2. Thus, the
energy required to create angular momentum at extremely
large r is negligible compared to the energy absorbed on
removing angular momentum at small r . This means that
there is negligible energy cost in transporting angular
momentum from small r to large r . While both angular
momentum and azimuthal kinetic energy are removed from
the same small r location, the creation of angular momentum
and of energy do not occur at the same location. As will be
argued below, the removed energy goes into driving the jet
while the removed angular momentum is shed in the disk
plane at extremely large r .

This transfer of angular momentum can be visualized by
imagining the accretion disk to have a set of ‘gear teeth’ at
small radius and another set of gear teeth at large radius. A
DC electric generator engages the gear teeth at small radius
and a DC electric motor engages the gear teeth at large radius.
The rotating disk at small radius drives the generator and the
load provided by the generator acts as a braking torque. At the
same time, the motor at large radius spins up the plasma by an
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infinitesimal amount at large radius to shed the angular
momentum absorbed at small radius. Because angular
momentum scales as mr2ḟ a tiny amount of angular velocity
at large radius absorbs the angular momentum associated with
finite ḟ at small radius. The electrical circuit connecting the
generator to the motor has one wire in the z=0 plane and
another wire arching out of the disk into the region above (or
below) the z=0 plane following the poloidal flux surfaces.
Thus, angular momentum is transferred from the inner region
(generator) to the outer region (motor) with no mechanical
contact between the two regions.

The energy budget is seen by considering the poloidal
flux surfaces as equivalent to an azimuthally symmetric set of
wires rising out of the z=0 plane and carrying electric
currents flowing in the poloidal direction. At small radius,
these currents will attract each other and thus squeeze the
plasma between the wires to produce an axial pressure gra-
dient. This axial pressure gradient accelerates plasma in the z
direction and this acceleration of matter constitutes an energy
sink; off the z-axis there is additional axial acceleration pro-
vided by the magnetic force z J B J BJ B r r´ = -f fˆ · . This
force is dominantly given by the J Br f term when the jet is
nearly collimated so Bz is approximately uniform in which
case Jf is small. Because magnetic field is frozen into the
plasma in the region external to the disk, the poloidal field is
frozen into the jet and so is distended by the jet. This
stretching of the poloidal field plus the increasing volume of
toroidal field in the lengthening jet correspond to an increase
of the magnetic energy in the region external to the disk. The
energy extracted from the disk goes into the jet and its frozen-
in magnetic field. Thus the angular momentum and gravita-
tional potential energy of the accreting disk particles are
absorbed at a single location (small radius region of the disk)
but are not deposited at some other single location. The
extracted energy is deposited at the jet location which is in the
vicinity of the z-axis and away from the z=0 plane; this
deposited energy becomes the jet kinetic and magnetic
energy. In contrast, the extracted angular momentum is
deposited at near infinite radius in the vicinity of the z=0
plane.

Maximum power coupling occurs when the load resist-
ance equals the battery internal resistance and if this is so, the
voltage at the battery terminals is half the open-circuit volt-
age. Bellan [1] showed that this situation was a stable oper-
ating point, i.e., any deviation would cause a heating or
cooling of the disk that would change the disk internal
resistance in such a way as to drive the system back to this
operating point. Because the electrical resistivity in the disk
results from collisions with neutrals rather than from Spitzer
resistivity, the resistivity increases with temperature. Stability
occurs because if the disk is at the operating point where the
load resistance matches the internal resistance and there is a
perturbation that increases the current, this will heat the disk
and so increase the disk electrical resistance which will then
reduce the current.

The open-circuit voltage occurs when the outward force
of the electric field resulting from the accumulation of
metaparticles at small radius balances the inward gravitational

force. This is because if the electric field balances gravity,
there is no more radial infall of metaparticles and so no
current, i.e., an open-circuit. Thus, the open-circuit electric
field is given by

q E
m MG

r
83i r

nopen
1

2

a
=

-
( )

since a metaparticle has charge qi and mass mn
1a- where mn is

the mass of a neutral. Since the voltage under matched load is
half the open-circuit voltage, the loaded electric field will be

E
m MG
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. 84r

n

i
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-
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5.9. Source current for poloidal magnetic field

Now consider electrons and metaparticles at r a,= z=0,
i.e., at the center of the black circle in figure 2 where there is a
magnetic field null. These particles will experience the inward
pull of gravity, outward centrifugal force, and a force from the
electric field. Thus, radial force balance for the electrons at the
black circle is given by

m u
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whereas radial force balance for metaparticles at the black
circle is given by
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On substituting for Er
loaded the electron and metaparticle tor-

oidal velocities are prescribed by
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which shows that the toroidal velocity of the metaparticles is
slower than the Kepler velocity whereas the toroidal velocity
of the electrons is much faster than the Kepler velocity. This
is because gravity is aided by the electric force for electrons
and opposed by the electric force for metaparticles. Assuming
that both electrons and metaparticles are moving in the
positive f direction, the net toroidal current would then be
negative and this would produce a poloidal magnetic field
with the sense shown in figure 2. The electron motion is
essentially a balance between the radially inward force from
the electric field and the outward centrifugal force. The value
of α at r a,= z=0 will in general not be the same as for the
metaparticles having zero-canonical angular momentum and
the situation might be complicated byelectron-neutral colli-
sions that tend to dissipate the toroidal current and by capture
of new particles that would tend to enhance the current.
However, despite these complications there would tend to be
a difference between electron and metaparticle toroidal
velocities and hence a current that produces the poloidal
magnetic field.
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6. Summary

The global model presented here integrates the different
physics of a weakly ionized accretion disk and the fully
ionized region exterior to the disk. The exterior region con-
tains bi-directional jets emanating from the accretion disk and
powered by the accretion disk. A radial electric field in the
accretion disk drives the jet poloidal current. The interaction
between this current and its associated toroidal magnetic field
provide the forces that drive and collimate the jets. The radial
electric field can also be considered as the provider of the
increasing amount of toroidal flux in the jets where this
increase occurs because the jet length is continuously
increasing. The radial voltage drop associated with this radial
electric field is, as stipulated by Faraday’s law, the rate of
increase of toroidal flux in the jet. The radial electric field
results from an accumulation of electric charge from a special
group of accreting clumps of ions and neutrals, called meta-
particles, that have a specific charge to mass ratio which
causes the clump to have an inward spiral trajectory. This
trajectory differs from both Kepler and cyclotron orbits and
results from Hamiltonian dynamics that is missed using
conventional MHD equations but can be deduced from con-
sideration of Hall dynamics in a weakly ionized plasma in
combined gravitational and magnetic fields. Electrons are not
allowed to move across magnetic flux surfaces but can move
on magnetic flux surfaces. Because electrons try to move in
such a way as to maintain quasi-neutrality, the electrons move
along flux surfaces in the external region in a fashion so as to
try to cancel the build-up of positive charge resulting from
accumulation of spiraled-in metaparticles. The consequence
of the radial inward motion of the metaparticles in the disk
plane and the radial inward motion of the electrons on flux
surfaces out of the disk plane is to produce oppositely
directed toroidal magnetic fields above and below the disk
plane. This is the toroidal magnetic field responsible for jet
acceleration and collimation. The process removes angular
momentum from accreting mass and sheds this angular
momentum at near infinite radius in the disk plane. Gravita-
tional potential energy is absorbed from the accreting material
and goes into powering the jets. The jets and their associated
electric circuit act as a conduit for angular momentum but not
as an absorber of angular momentum, just like copper wires
act as a conduit for electric power but not as an absorber for
electric power. Unlike models based on the MRI there is no
turbulent instability involved.

The model presented here has been presented in much
more detail in [1] and in particular, section 9 of [1] provides
quantitative parameters for the situation of a protoplanetary
disk and associated jet. This analysis provides self-consistent
quantitative values for accretion mass influx rate, jet velocity,

jet ejection to accretion ratio, jet velocity, magnetic fields,
ionization fraction, density, and temperature.
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