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Abstract
Objective.Atrialfibrillation (AF) is a prevalent cardiac arrhythmia associatedwith significant health
ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened
mortality. Photoplethysmography (PPG)has emerged as a promising technology for continuousAF
monitoring for its cost-effectiveness andwidespread integration intowearable devices. Our team
previously conducted an exhaustive review on PPG-basedAF detection before June 2019.However,
since then,more advanced technologies have emerged in thisfield.Approach.This paper offers a
comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health
and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 toDecember
2022. Through extensive exploration of scientific databases, we have identified 57 pertinent studies.
Significance.Our comprehensive review encompasses an in-depth assessment of the statistical
methodologies, traditionalmachine learning techniques, and deep learning approaches employed in
these studies. In addition, we address the challenges encountered in the domain of PPG-basedAF
detection. Furthermore, wemaintain a dedicatedwebsite to curate the latest research in this area, with
regular updates on a regular basis.

1. Introduction

AF is a highly prevalent cardiac arrhythmia, which affects approximately 1%–2%of the general population, and
is expected to continue to rise in the future worldwide due to population aging (Schnabel et al 2015, Lane
et al 2017, Vinter et al 2020). Individuals withAF face a substantially heightened risk of experiencing cerebral and
cardiovascular complications. Specifically, they are at afive fold higher risk (Tsao et al 2022) of ischemic stroke
and are associatedwith an increased risk of ischemic heart disease, sudden cardiac death, and heart failure
(Odutayo et al 2016). In general, people withAFhave a four times increased risk ofmortality compared to the
general population (Lee et al 2018). The current detection of AF heavily relies on routinemedical examinations;
however, this approachmay overlook paroxysmal AF cases, which refer to AF episodes that occur sporadically
and self-terminate within 7 d. Additionally, a significant portion of AF patients, estimated at 25%–35%, remain
asymptomatic (Rienstra et al 2012), which further reduces their likelihood of seeking care. These factors
collectively contribute to delays in the identification of AF cases. Consequently, there has been a surge in efforts
fromboth industry and academia sectors for developing technologies that enable reliable and continuous
detection of AF. These advancements aim to transform the screening process for early detection of AF,
particularly by identifying asymptomatic cases, potentially altering the course of treatment, and necessitating
further research to fully understand their impact on patient outcomes (Boriani et al 2014, Chen et al 2018).

To enable consistent and long-termmonitoring of atrialfibrillation (AF), a solution needs to be non-
intrusive, cost-effective, and convenient, reducing operational complexity and encouraging user compliance.
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To this end, photoplethysmography (PPG) has emerged as a preferred technology, with a ubiquitous adoption in
over 71%ofwearable devices given its capacity to capture heart rhythmdynamics (Charlton et al 2023). The
physiological foundation of PPG for AF detection lies in the fact that irregular heartbeats induce variations in
cardiac output, leading tofluctuations in peripheral blood volume. This results in irregular pulse-to-pulse
intervals and alteredmorphologies in PPGduringAF episodes. Exploiting this physiological basis, wearables
equippedwith PPG sensors and specialized software offer great promise for personalized self-monitoring of AF,
enabling individuals to receive timely alerts for potential AF episodes.However, the success of this approach
hinges on the accuracy of PPGAF detection algorithms. Suboptimal algorithms can easily lead to a surge in false
positives, thereby straining healthcare resources through unnecessary or inappropriatemedical consultations.

Therefore, itmarks tremendous importance for the development of precise and sensitive PPG-based
algorithms for AF detection. These algorithms should aim tominimize false detections and optimize the
utilization of healthcare resources, ensuring that appropriate clinical guidance is provided to individuals
experiencing actual AF episodes. A prior review conducted by Pereira et al provided a comprehensive summary
of research on PPG-based AF detection using statistical analysis (STAT), machine learning (ML) and deep
learning (DL) approaches up until July 2019 (Pereira et al 2020). The review concluded that PPGholds promise
as a viable alternative to ECG for AF detection.However, it also highlighted challenges such as the presence of
arrhythmias other thanAF,motion artifacts in PPG signals fromwearable devices, and labor-intensive data
annotation processes, among others.

Given the rapid technological advancements inwearable technology andmethodological development in
artificial intelligence (AI), there is awell-justified need for an updated review of AF detection using PPG.
Building upon the previous work by Pereira et al, this paper aims tofill the gap by providing a comprehensive
review of the latest developments in utilizing PPG-based digital health andAI solutions for AF detection in both
inpatient and outpatient settings from July 2019 toDecember 2022. The articles included in this review are
classified by the threemethodological categories established by Pereira et al (2020), namely, STAT,ML, andDL,
to facilitate the tracking of evolving trends in the field. In addition to conducting a thorough analysis of studies
on PPG-basedAF detection, this study has established an online knowledge database (GitHub). This database
encompasses all studies reviewed up toDecember 2022, including those fromourwork and Pereira’s, alongwith
direct links to the respective papers. Committed to keeping the database current, our teamwill update it semi-
annually. Through the creation of this resource, we aim to foster community collaboration and accelerate the
development of effective solutions to this critical clinical challenge.

2. Search criteria

The research teamused the SCOPUS, IEEEXplore, PubMed,Web of Science, andGoogle Scholar databases to
gather appropriate documents for the review. All articles selectedwere published between July 2019 and up to
December 2022, and reviewswere eschewed in favor of data-based research studies. Databases function
similarly, but not uniformly, so queries needed to be adjusted to reflect this. Filters were used in all databases to
restrict the date of publication. Table 1 describes the exact search strings used in different databases for initial
document screening. After the documents were retrieved (in total 57 studies), theywere further evaluated for
appropriateness for review by two researchers (RX andCD). For the subsequent analysis, only studies focused on
developing detection algorithms using PPG for AF detectionwere included. Review papers, perspectives,
commentaries, clinical trials, andmeta-analyzes were excluded from further analysis. Based on this search
criteria, there are in total 57 studies included in the review, including 17 STAT, 18ML, and 22DL studies.

Table 1. Search strings used in different scientific databases for study screening.

Scientific database Search strings

SCOPUS (PPGor photoplethysmography) and (atrialfibrillation orAF orAFib or arrhythmia or cardiac rhythm) and (detec-
tion or recognition)

IEEEXplore (‘AllMetadata’: atrialfibrillation)AND (‘AllMetadata’: wearable computer)AND (‘AllMetadata: photo-

plethysmographyOR ‘AllMetadata’: PPG)
PubMed (PPG ‘OR’Photoplethysmography) ‘AND’ (atrialfibrillation ‘OR’AF ‘OR’Afib ‘OR’ arrythmia of cardiac rhythm)

‘AND’ (detection ‘OR’ recognition)
Webof science (PPGor Photoplethysmography)(All Fields) and (atrialfibrillation orAF or afib or arrythmia or cardiac rhythm)(All

Fields) and (detection or recognition)(All Fields)
Google scholar (PPGor Photoplethysmography) and (atrialfibrillation orAF orAFib or arrhythmia or cardiac rhythm) and (detec-

tion or recognition)
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To categorize studies into STAT,ML andDL, the primary classifier adopted in the studies was considered as
the determinant factor for characterization. This way, inmixedmethodswhere, for instance, features
traditionally belonging toML are fed into aDL classifier, the overall assigned categorywould be considered
asDL.

3. Publication trends in the past decade

Figure 1 depicts the trends in the cumulative number of publications in the threemethod categories in the past
10 years between January 2013 andDecember 2022. Tomaintain consistency, the same screening criteria were
applied to identify relevant studies frombefore the review period of the current study. It reveals an accelerated
rate of growth in the number of publications in all three categories, indicating the increasing effort outpouring to
developing PPG-based AF detection algorithms. It is worth noting that studies utilizingDL for AF detection
emerged in 2017 and expanded rapidly, outpacing the other two categories. In the year 2022, the cumulative
number of publications usingDL for AF detection exceeded any of the other two categories for the first time in
history.

4. Review of recent studies onPPG-basedAFdetection

Tables 2–4were adapted and extended based on previous work fromPereira et al (2020). These tables summarize
the compiled studies for PPG-basedAF detection categorized by three different signal processingmethods. It is
important to note that within the 57 studies reviewed, some studies employedmore than one signal processing
approach, leading to their inclusion inmultiple tables, allowing for a comprehensive understanding of the
variousmethodologies.More information on data train/test splitting and excluded data due to noisy signals or
motion artifacts can be found in tables A1–A7 in appendix A for STAT,ML andDL studies, respectively.

When referring to themeasurement devices, we classified them into several categories, namely smartwatch,
wrist band, fingertip sensor, smart ring, armband, and smartphone. This categorization is based on the implicit
location for PPG sensing and the primary utility of the device. For instance, smartwatches andwristbands
measure PPG signals at thewrist, whilefingertip sensors, smart rings, and armbandsmeasure PPG signals at the
fingertip, proximal phalange (i.e. the base of the finger), and various locationswithin the armor forearm,
respectively. It is important to note that while both smartwatches andwristbands integrate reflective-type PPG
sensors at thewrist in all studies, we distinguished between thembased on their primary function.
Smartwatches, such as the AppleWatch and Samsung Simband, are designed for general-purpose utilization and
may include features like a screen and notificationmanagement utilities. On the other hand, wristbands, such as
the Empatica E4, are screen-less devices primarily intended formonitoring physiological signals. Additionally,

Figure 1.Trends in the cumulative numbers of publications in threemethod categories using PPG forAF detection.
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Table 2. Studies on photoplethysmography basedAF detection using statistical approaches.

Author (year)
[Reference]

Number of

patients Dataset features

Age of popula-

tionMean (SD)

Length

PPG

segments

Measurement

device

Acquisition

conditions Input data Methodology

Performance results for

rhythms detection

Väliaho et al

(2019)
213 106AF, 107NSR 72.0 (14.3) 5 min Wrist band Outpatient–

checkpoint

Pulse-to-pulse interval TwoAFdetection

algorithms: AF Evi-

dence andCOSEn

Sen= 0.962; Spe= 0.981

Eerikäinen

et al (2019)
32 13 continuous AF, 10

non-AF

AF: 70 (9)YO,
Non-AF: 67

(13)YO

30 s Data logger worn

on the arm

Outpatient–

continuous

measurement

Inter-pulse interval fea-

tures: the percentage of

inter- val differences of suc-

cessive intervals greater

than 70 ms (pNN70), Shan-
non Entropy (ShE), and

Sample Entropy (SampEn)

Logistic regression 5 min data: Sen= 0.989;

Spe= 0.990; Acc= 0.990;

24 h data: Sen= 0.970;

Spe= 0.920; Acc= 93.91%

Kabutoya et al

(2019)
59 29AF, 30NSR AF: 66.5 (12.2)

YO,NSR: 67.7

(8)YO

25 s Wrist-type

monitor

Outpatient–

checkpoint

3measurements for the left

and rightwrist based on

irregular pulse peak (IPP)
and irregular heart-

beat (IHB)

Crafted threshold-

based rules

Patient-level performance by

IPP 15%: Sen= 0.970;

Spe= 1; PPV= 1;

NPV= 0.970

Bashar et al

(2019a)
UMass

database 37,

Chon Lab

database 9

UMass database: 10 AF

and 27 non-AF; Chon

Lab database: 9 healthy

males

— 30 s Wrist band Outpatient–

checkpoint

Rootmean square of suc-

cessive differences

(RMSSD) and sample

entropy (SampEn) from the

pulse intervals

Weighted average of

two features and

threshold-based rule

Sen= 0.982, Spe= 0.974

Acc= 0.975

Bashar et al

(2019b)
20 8AF, 12 non-AF — 30 s Wristwatch Outpatient–

checkpoint

Rootmean square of suc-

cessive differences

(RMSSD) and sample

entropy (SampEn) from the

pulse intervals

Weighted average of

two features and

threshold-based rule

Sen= 0.962, Spe= 0.974

Acc= 0.971

Han et al

(2019)
16 Patients: 11NSR and 3

with PAC/PVC, 2with

basal heart rate AF and 3

with fast heart rate AF

63–88YO 30 s Smartwatch Outpatient–

checkpoint

Not anAfib detetion study

but theHR estimation study

using ppg

— —
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Table 2. (Continued.)

Author (year)
[Reference]

Number of

patients Dataset features

Age of popula-

tionMean (SD)

Length

PPG

segments

Measurement

device

Acquisition

conditions Input data Methodology

Performance results for

rhythms detection

Sološenko

et al (2019)
34 Clinical testing database

with 15AF and 19 non-

AF, plus two simulated

developmental and test-

ing databases

AF: 72.9 (8.9)
YO,Non-AF

67.5 (10)YO

30 s PPG simulator Simulation PP orRR interval Threshold based

detector usingHeavi-

side step function to

calculate sample-

entropy like index

Poor SQdataset: Sen= 0.72,

Spe= 0.997;

HighSQdataset: Sen=0.972,

Spe=0. 996.

Han et al

(2020)
37 All patients have cardiac

arrhythmia

50–91YO 30 s Wristwatch Outpatient–

continuous

measurement

This is for PAC/PVCdetec-

tor for AF patients orNSR

subject, not for detecting AF

— —

Inui et al

(2020)
40 Patients scheduled for

cardiac surgery

70.9 (11.1)YO 1 min Smartwatch and

wrist band

Outpatient–

continuous

measurement

This is for using ppg for

pulse rate estimation in AF

as compared to ECG

— —

Estrella-Gal-

lego et al

(2020)

9 4AF, 9Non- AF 35–80YO 30 s Smartphone Outpatient–

continuous

measurement

PPG signals withOffset

removed and EWMAfiler

applied for smoothening

— —

Väliaho et al

(2021a)
359 169AF, 190NSR AF: 72.2(14.3),

NSR: 57.9 (18.8)
1 min Wrist band Inpatient–

checkpoint

The five pulse inverval-

based variables were:mean

PIN, root-mean-square

values of successive differ-

ences (RMSSD), AF Evi-
dence (AFE), Coefficient of
Sample Entropy (COSEn)
and turning point ratio

(TPR); Four features based
on pulse amplitudewere:

meanAMP, RMSSD, Sam-

ple Entropy (SampEn) and
TPR. one autocorrelation

feature.

Linear logistic

regression

Sen= 0.964 Spe= 0.963

AUC= 0.993

Avram et al

(2021)
204 32Non-AF, 159 parox-

ysmal AF, 16with per-

sistent AF

62.61 (11.6)YO 5 min Smartwatch Outpatient–

continuous

measurement

IBI features: the dispersion

of the Poincare plot, the

standard deviation and the

modified Shannon entropy

Logistic regression

model

Sen= 0.878 (95% confidence

interval [CI] 0.836–0.910)
Spe= 0.974 (95%CI

97.10%– 97.70%)
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Table 2. (Continued.)

Author (year)
[Reference]

Number of

patients Dataset features

Age of popula-

tionMean (SD)

Length

PPG

segments

Measurement

device

Acquisition

conditions Input data Methodology

Performance results for

rhythms detection

Chorin et al

(2021)
18 6AF, 4DM, 8HTN, 3

Brugada syndrome, 5

DFT after ICD implant

59.4 ( 21.3)YO 1 min Cardiac sense

smartwatch

Outpatient–

continuous

measurement

RR andGG intervals of PPG

and ECG

Threshold based

defibrillation

Chang et al

(2022)
200 112AF, 88 non-AF 66.1 ( 12.6)YO 5 min Garmin

smartwatch

Outpatient–

continuous

measurement

Standard deviation of nor-

mal-to-normal intervals

and rootmean square of

successive RR interval

An undisclosed heart

rate classifier

Performance based on 5 min

segments: Sen= 0.971,

Spe= 0.868

PPVof AF detection= 0.897

Han et al

(2022)
35 23NSR, 5 PAC/PVC, 5

Basal AF, 5 AFwithRVR

50–91YO 30 s Smartwatch Outpatient–

continuous

measurement

Rootmean square of suc-

cessive differences

(RMSSD) and sample

entropy (SampEn) from the

pulse intervals

Weighted average of

two features and

threshold-based rule

Not reported. AF detection is

a part of the procedure for

estimatingHR.

Väliaho et al

(2021b)
173 76AF, 97NSR AF: 77.1(9.7),

NSR: 67.3 (15.8)
1 min Wrist band Outpatient–

continuous

measurement

SeeVäliaho et al (2021b) Linear logistic

regression

30 min time-frame perfor-

mance: Sen= 0.947,

F1= 0.954

Nonoguchi

et al (2022)
286 163with highAF risk,

123with knownAF

66 (12)YO for

the high-risk

group, 67 (12)
YO for AF group

30 min Wristwatch-type

continuous pulse

wavemonitor

Outpatient–

continuous

measurement

Features based on pulse per-

iod (PP) values: CV, degree
of variation andKS, Kolmo-

gorov–Smirnov difference.

A rule-based algo-

rithmusingCV

andKS

Patient-level performance:

Sen= 0.980 Spe= 0.906

PPV= 0.694NPV= 0. 995.

Interval level performance:

Sen= 0.869, Spe= 0.988,

PPV= 0.896, and

NPV= 0.985

Abbreviations:YO—YearOld, s—second, A—atrialfibrillation,NSR—normal sinus rhythm, AFL—atrialflutter, SD—standard deviation, PAC—premature atrial contraction, PVC—premature ventricular contraction, Sen—sensitivity,

Spe—specificity, Ac—accuracy, PPV—positive predictive value,NPV—negative predictive value, AUC—area under the receiver characteristic curve, CI— confident interval, DFT—defibrillation threshold, ICD—implantable

cardioverter-defibrillator.
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Table 3. Studies on photoplethysmography basedAF detection usingML approaches.

Author (year)
[Reference]

Number

of patients Dataset features

Age of population

Mean (SD)
Length PPG

segments

Measurement

device

Acquisition

conitions Input data Methodology

Performance results for

rhythms detection

Yang et al

(2019)
11 Patients referred to

hospital in AF state

63 (12)YO 5, 10,

15, 20 s

Customizedwrist-

type device

Inpatient Statisticalmeasures ofWave-

let transform coefficients

(mean,median, standard

deviation, variance, Shannon

entropy, energy, contrast,

inverse differentmoment,

homogeneity)

Support VectorMachines

with polynomial and radial-

basis function kernels

Sen= 0.701; Spe= 0.886;

Acc= 0.804

Neha et al

(2019)
15 13 PPG records for

training and 2 PPG

sample for testing

(MIMIC II)

— 24 s Finger pulse from

bedsidemonitors

Inpatient Time series features: crest to

crest intervals, trough to

trough intervals; heart rate.

Artificial neural network

(ANN), support vector
machine (SVM), Logistic

regression, decision trees and

RandomForest

Sen= 0.980; Acc= 0.977

Fallet et al

(2019)
17 All patients referred

for catheter ablation

of cardiac arrhyth-

mia, 415 VA, 1370

samples of AF and

381NSR

57 (13 )YO 10 s Wrist-type device Inpatient–

continuous

measurement

PPG-wave features andRR

time series features

Bagging decision trees AF versusNSR: Sen= 0.997;

Spe= 0.924; Acc= 0.981;

PPV= 0.979;NPV= 0.989;

F1= 0.990. AF versus

(SR&VA): Sen= 0.962;

Spe= 0.928; Acc= 0.950;

PPV= 0.959;NPV= 0.934;

F1= 0.960

Guo et al

(2019)
224 424 suspected AF, 227

confirmedAF

55 to 32 YO 45 s Wrist-type device — Peak-to-peak intervals of ppg

for uniformSR, the variance,

entropy derived from the

peak-to-peak intervals were

fluctuating for AF episodes

Threshold basedANN Sen= 0.93; Spe= 0.84,

PPV= 0.85

Zhang et al

(2019)
375 20AF, 140NSR, 47

Hypertension, 23 dia-

betes, 14 artery dis-

ease, 24 current

smoking and 32

drinking

Mean age 53 YO 45 s Wrist-type device Inpatient–

continuous

measurement

Peak to Peak intervals of

PPG, Kolmogorov-Smirnov

test for normality of con-

tinous variables, Normal dis-

tributions presenested as

Mean (SD),Mann-Whitney

Test values for categorical

values

Boosting Algorithm Sen= 0.955; Spe= 0.991;

PPV= 0.931;NPV= 1;

Kappa= 0.960.
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Table 3. (Continued.)

Author (year)
[Reference]

Number

of patients Dataset features

Age of population

Mean (SD)
Length PPG

segments

Measurement

device

Acquisition

conitions Input data Methodology

Performance results for

rhythms detection

Buś et al (2020) 32 8NSR recordings

(total length of
240 min), 24 AF
recordings (total

length of 120 min);
253 AF samples; 381

NSR samples

— 32 con-

secutive

inter-beat

interval

(IBI)

Finger pulsewave

acquisition system

Portapres 2 (FNS,
Holland)

— Mean IBI; standard deviation

of IBI; SDSD (standard
deviation of the successive

differences between IBI);
pSD50 (percentage of succes-
sive differences between IBI

greater than 50 ms)

KNearestNeighbors (KNN);
Support VectorMachinewith

linear kernel (Linear SVM);
Support VectorMachinewith

radial basis function kernel

(RBF SVM); Decision Tree
(DT); Naive Bayes (NB).

Best performance: RBF-SVM.

Sen, Spe andAcc= over 0.975

(specific performance una-

vailable due to graphic pre-

sentation); F1= 0.985

Corino et al

(2020)
200 simu-

lated PPG

signals

100AF, 100NSR — 20, 30, 40,

50, 100,

150, 200,

250 and 300

beats

PPG simulator

based on phenom-

enologicalmodel

— Variability analysis of IBI

time series; Irregularity of IBI

Linear SVM Signal length (20∼ 300 beats):
Sen= 0.881∼ 0.991;

Spe= 0.940∼ 1; Acc= 0.913

∼ 0.995.

Eerikainen et al

(2020)
40 276 h of AF, 116 h of

atrialflutter (AFL),
and 472 h of other

rhythms (NSR, and
sinus rhythmaccom-

panied by premature

atrial or ventrical

beats)

Mean age in

training set: 66

YO inAF, 63 YO

inAFL and 69 YO

inOther;Mean

age in test set: 76

YO, 70 YOand

72 YO

30 s Wrist-type data

logging device

equippedwith the

Philips Cardio and

MotionMonitor-

ingModule

Outpatient–

continuous

measurement

IBI features; PPGwaveform

features andAccelerometer

features

RandomForest AF versus AFL versusOther:

Sen= 0.976/0.845/0.981;

Spe= 0.982/0.997/0.928;

Acc= 0.981/0.964/0.956.

Mol et al

(2020)
149 PPG recordings are

obtained duringNSR;

AF: 108 records; NSR:

108 records.

69 (9)YO 3 30 s

segments

Smartphone Inpatient Several rhythm and signal

features, such as heart rate

variability parameters, peak

amplitude, and other signal

characteristics

SVM AF versusNSR: Sen= 0.963;

Spe= 0.935; Acc= 0.949

Millán et al

(2020)
Notmen-

tioned

828NSR signals and

828AF signals from

five open Physionet

datasets

— — Finger pulse from

bedsidemonitors

Inpatient–

continuous

measurement

IBI time series features,

Time–frequency domain fea-

tures, and Frequency domain

features

XGBoost AF versusNSR: Sen= 0.984;

Spe= 0.995; Acc= 0.990

Aydemir et al

(2020)
7 subject’s signals

acquired in squat,

stepper and resting

phase

20 to 52 YO 3 swin-

dow-

length PPG

Wrist bracelet _ Mean, standard deviation,

autoregressivemodel para-

meter, values of the real part

and standard deviation,

values of the imaginary part

K-nearest Neighbor, Naïve

Bayes, andDecision Tree

Acc= 0.930, CA rate= 0.890
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Table 3. (Continued.)

Author (year)
[Reference]

Number

of patients Dataset features

Age of population

Mean (SD)
Length PPG

segments

Measurement

device

Acquisition

conitions Input data Methodology

Performance results for

rhythms detection

Guo et al

(2021a)
604 Individuals at high

risk for AF.

More than 18YO 48 sec Huawei smart

device andHol-

ter ECG

Outpatient–

continuous

measurement

Heart rate features,Heart

rate variability features, Cus-

tomizedAFdetectionmodel

output probability and

Mathematical features

XGBoost AF versusNSR: Sen= 0.821;

Spe= 0.974; Acc= 0.935;

PPV= 0.914; F1= 0.865;

AUC= 0.971

Xie et al (2021) 21 Healthy participants — 10 sec Wearables on

forearm

Outpatient–

checkpoint

Wavelet transformbased

features

SVM AF versusNSR: Acc= 0.983

Hiraoka et al

(2022)
80 Patients scheduled for

cardiovascular

surgery

Mean (SD) 65.8
YO (13.4) after
excluding one

patient

10 min Apple watch Inpatient-

continuous

measurement

Median value of themean

and SDof PPGpulse rate

Gradient BoostingDeci-

sionTree

AF versusOther: Sen= 0.909;

Spe= 0.838

Liao et al

(2022)
116 76 patients with par-

oxysmal AF, 40

patients with persis-

tent AF

59.6 (11.4)YO 10, 25, 40,

and 80

heartbeats

Wrist-worn

smartwatch

Outpatient–

continuous

measurement

PPI SD, RMSSD, Shannon

entropy (SE10, SE100, and
SE1000), rolling SD3,

RMSSD3, andMaxFFTSD3

for AF discrimination

RandomForest AF versusNSR: Sen= 0.941;

Spe= 0.934; Acc= 0.937;

PPV= 0.930; and

NPV= 0.939

Jeanningros

et al (2022)
42 42 patients refferred

for catheter ablation

— 30 s Wrist bracelet Outpatient–

continuous

measurement

IBI time series features, Fre-

quency domain features, and

Pulsewave analysis (PWA)
features

Ridge regression, random for-

est, K-Nearest Neighbors

and SVM

AF versus non-AF versus

NSR: average Sen= 0.734;

Spe= 0.879; Acc= 0.840;

PPV= 0.645;NPV= 0.841

Abbreviations:YO—YearOld, s—second, AF—atrialfibrillation,NSR—normal sinus rhythm,AFL—atrialflutter, SD—standard deviation, PAC—premature atrial contraction, PVC—premature ventricular contraction, Sen—

sensitivity, Spe—specificity, Acc—accuracy, PPV—positive predictive value, NPV—negative predictive value, AUC—area under the receiver characteristic curve, CI—confident interval, DFT—defibrillation threshold, ICD—implantable

cardioverter-defibrillator, IBI—inter-beat interval.
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Table 4. Studies on photoplethysmography basedAF detection usingDL approaches.

Author (year)
[Reference]

Number of

patients Dataset features

Age of popu-

lation

Mean (SD)
Length PPG

segments

Measurement

device

Acquisition

conditions Input data Methodology Performance results for rhythms detection

Shen et al (2019) 29+53 13with persistent AF, 2with

NSR, and 14with changed

rhythm, additional 53 heal-

thy free-living subjects

— 30 s Samsung

wrist-wear-

able device

Outpatient–

continuous

measurement

PPG segment 1DResNeXt AUC= 0.950

Rezaei Yousefi et al

(2019)
30 15withAF, 15withNSR Mean

71.5 YO

30 con-

secutive

PPGpulses

Wrist-worn

PPGmonitor

Inpatient IBI features DeepNN All data: Sen= 0.936± 0.216, Spe= 0. 992

± 0.180, AUC= 0.996, After quality assess-

ment: Sen= 99.2± 1.3 Spe= 0.995± 0.640,

AUC= 0.997

Zaen et al (2019) 105 84 fromLong- TermAF

Database fromPhysioNet,

21 fromLausanneUni-

versityHospital (CHUV)

— 30 s Tri-axis accel-

erometer

Outpatient–

continuous

measurement

Consecutive IBIs RNN Without outlier rejection: Acc= 0.929

Sen= 0.980 Spe= 0.912 F1= 0.875With

outlier rejection: Acc= 0.986 Sen= 1

Spe= 0.978 F1= 0.981

Kwon et al (2019) 75 57 persistent AF, 18 long-

standing persistent AF

Mean 63 YO 30 s Pulse

oximeter

Outpatient–

checkpoint

PPG segment 1DCNN Sen= 0.993 Spe= 0.959Acc= 0.976

PPV= 0.960NPV= 0.993AUC= 0.998

Torres-Soto and

Ashley (2020)
163 107 for cardioversion (CV)

group, 41 for exercise stress

test (EST) group, and 15 for
ambulatory (AM) group

CV: 68YO

EST: 56 YO

AM: 67YO

25 s Did not

specify

Outpatient–

continuous

measurement

PPG segment Autoencoder

+1DCNN

Sen= 0.980 Spe= 0.99 F1= 0.960

FPR= 0.01 FNR= 0.02

Selder et al (2020) 60 AFwas identi-fied in 6

(10%) subjects, of which 4
were previously

undiagnosed

70 (17)YO 60 s Wrist band Outpatient–

continuous

measurement

PPG segment for

quality assess-

ment, 31 features

such as RR inter-

vals for AF

detection

LSTM forQA,

and, Tree

based classi-

fier for AF

detection

Sen= 1, Spe= 0.960, ACC= 0.970,

PPV= 0.750,NPV= 1

Aschbacher et al

(2020)
51+ 13 40 for algorithms training,

11 for algorithms testing/51

patients were enrolled dur-

ing cardioversion, addi-

tional 13 individual subjects

during sleep

63.6

(11.3)YO
Roughly

30 s

Wrist-worn

fitness tracker

Inpatient Model1: RMSSD

andRR interval

Model 2: 35 con-

secutive heartbeat

Model3: RawPPG

segment

Model1:

Logistic

regression

Model2:

LSTMModel

3: DCNN

Model 1: Sen= 0.741 Spe= 0.584

AUC= 0.717 PPV= 0.808NPV= 0.488

Model2: Sen= 0.810 Spe= 0.921

AUC= 0.954 PPV= 0.960NPV= 0.671

Model3: Sen= 0.985 Spe= 0.880

AUC= 0.983 PPV= 0.951NPV= 0.962
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Table 4. (Continued.)

Author (year)
[Reference]

Number of

patients Dataset features

Age of popu-

lation

Mean (SD)
Length PPG

segments

Measurement

device

Acquisition

conditions Input data Methodology Performance results for rhythms detection

Genzoni et al (2020) 37 All patients are for catheter

ablation procedures and

wear an optical heart rate

monitor device

— 30 s Wrist-worn

device

Outpatient–

continuous

measurement/

inpatient

Consecutive IBIs GRU Sen= 1 Spe= 0.966Acc= 0.979

Chen et al (2020) 401 All patients had a stable

heart rhythm

>18YO 71 s Wrist band Inpatient and

outpatient–

checkpoint

PPG segment SEResNet Sen= 0.950 Sep= 0.990Acc= 0.976

PPV= 0.986NPV= 0.970

Kwon et al (2020) 100 81 for Persistent AF, 19 for

long-standing persistent AF

�20YO 30 s Ring-type

wearable

device

Outpatient–

checkpoint

PPG segment 1DCNN Sen= 0.990 Spe= 0.943Acc= 0.969

PPV= 0.956NPV= 0.987AUC= 0.993

Aschbacher et al

(2020)
51 All patients with persistent

AF/Patients undergoing

electrical cardioversionwere

sedated and remained

supine during the study

63.6

(11.3)YO
10 s Smartwatc Outpatient–

continuous

measurement

PPG segment LSTM/CNN LSTML0.954 Sen= 0.810 Spe= 0.921

DCNNSen= 0.985 Spe= 0.880

AUC= 0.983

(Cheng et al 2020) MIMIC-III

waveformdata-

base: 30000

patients, IEEE

dataset: 59 chil-

dren and 35

adults

60 sick subjects from

MIMIC-III, 42 patients

from IEEETBME and 15 h

of PPG from synthetic

dataset

Children:

0.8–16.5 YO,

Adults:

26.2–75.6

YO

10 s ICUmonitor

and pulse

oximeter

Inpatient and

outpatient–

continuous

measurement

time–frequency

chromatograph

CNN-LSTM Sen= 0.980 Spe= 0.981Acc= 0.982

AUC= 0.996

Ramesh et al (2021) 37 10withAF, 27 non-AF — 30 s Simband Outpatient–

continuous

measurement

Time domain

features

CNN Sen= 0.946±0.02 Spe= 0.952±0.07

Acc= 0.951±0.03F1= 0.893±0.02

AUC= 0.949±0.03

Zhang et al (2021a) 53 38 forNSR, 5 for persistent

AF and 10 for parox-

ysmal AF

66.3

(11.8)YO
30 s Smartwatch Outpatient–

continuous

measurement

PPG segment multi-view

convolutional

neural

network

Ave of Acc= 0.916 Spe= 0.930 Sen= 0.908

Das et al (2022) 175 108with AF, 67 non-AF — 25 s Wrist-worn

wearable

device

Outpatient–

continuous

measurement

PPG segment Bayesian deep

neural

network

Without uncertainty threshold: Sen= 0.722

Spe= 0.720 Precision 0.627 F1= 0.671

AUC= 0.793,Without threshold:

Sen= 0.728 Spe= 0.892 Precision 0.783

F1= 0.754AUC= 0.858
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Table 4. (Continued.)

Author (year)
[Reference]

Number of

patients Dataset features

Age of popu-

lation

Mean (SD)
Length PPG

segments

Measurement

device

Acquisition

conditions Input data Methodology Performance results for rhythms detection

Ding et al (2022) 139 126 forUCLAmedical cen-

ter, 13 forUCSFNeuro ICU

18–95YO for

UCLAmedi-

cal center,

19–91YO

forUCSF

Neuro ICU

30 s Pulse

oximeter

Inpatient–

continuous

measurement

PPG segment ResNet Sen= 0.928 Sep= 0.988Acc= 0.961

PPV= 0.985NPV= 0.943

Sabbadini et al (2022) 4158/88 56 fromMIMICdatabase

(13AF), 32 fromUQVSD

database (2AF)

— 10 s PPGdevice

(did notfind
specified

device name?)

Outpatient–

continuous

measurement

Root-mean-

square (RMS) and
themean of Skew-

ness andKurtosis

DeepNN F1= 0.920, Precision 0.890, Recall 0.950

Nguyen et al (2022) 40 18withNSR, 15with AF,

and 7with PAC/PVC

— 30 s PPG sensor

patchmea-

sured on the

wrist

Outpatient–

checkpoint

poincare plot 2DCNN Sen= 0.968 Spe= 0.989Acc= 0.981

Liu et al (2022) 228 Patients all have arrythmia 52.3

(11.3)YO
10 s Fingertip PPG

sensor

Outpatient–

continuous

measurement

PPG segment 1DCNN AFSpe= 0.934Acc= 0.944 PPV= 0.890

NPV= 0.940

Neha et al (2022) 670 PPG sig-

nals/23

400 normal, 90 PVC, 90

tachycardia, and 90 atrial

flutters

— 8 s ICUmonitor Inpatient Dynamic time

warping based

features

DeepNN Sen= 0.970 Spe= 0.970Acc= 0.960

F1= 0.960 precision= 0.960

Ding et al (2022) 28539 patients,

UCSFHERdata-

set, UCLAdata-

set, Sim band

Dataset, Stan-

fordDataset

Female AF 2304,Male AF

3473, Female cohort 13203,

Male cohort 15330,

NSR, PVCs

22 to 65YO 30 s Fingerprint,

Wearable

device

— PPG segment Autoencoders

+ResNet

AUC= 0.960

Kwon et al (2022) 35 All patients underwent suc-

cessful electrical cardiover-

sion for AF

Mean

58.9 YO

10 s Smart wring Outpatient–

continuous

measurement

PPG segment Not specify AUROC0.995 Sen= 0.987 Spe= 0.978

FPR= 0.02 FNR= 0.01

Abbreviations: YO—Year old, s—second, AF—atrial fibrillation,NSR—normal sinus rhythm,AFL—atrialflutter, SD—standard deviation, PAC—premature atrial contraction, PVC—premature ventricular contraction, Sen—sensitivity,

Spe—specificity, Acc—accuracy, PPV—positive predictive value, NPV—negative predictive value, AUC—area under the receiver characteristic curve, CI—confident interval, DFT—defibrillation threshold, ICD—implantable

cardioverter-defibrillator, IBI—inter-beat interval.
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studies using smartphones typically performPPGmeasurements at the finger using reflective-type PPG sensors,
with the camera and flashlight serving as the photosensitive and photoemitter components, respectively.

For studies in which PPG signals were experimentally acquired the vastmajority used a reflective-type PPG
sensor, which includes form factors such as the smartwatch, wrist band and armband. For studies using PPG
signals collected through ‘fingertip sensors’, theworkingmode (i.e. reflective versus transmissivemode)was not
disclosed. Regarding thewavelength of the PPG sensors, this informationwas not disclosed inmore than half of
the studies (approximately 57.6%).Moreover, approximately 30.5% and 13.6%of the studies used one ormore
devices using green and red/infra-red, respectively,making the formerwavelength themost commonone
among studies specifying the device’s wavelength.More information can be consulted in table B1 in appendix B.

4.1. Updates onPPG-basedAFdetection using statistical analysis approaches
A compilation of studies for PPG-basedAF detection employing statistical analysis approaches is summarized in
table 2. In the interest ofmaintaining uniformity and enabling systematic evaluation of the advancement in this
field in recent years, our study deliberately replicates the table format of tables 1–3 fromPereira et al (2020) in
our tables 2–4. The table provides an overview of these studies in chronological order, including patient cohorts,
data characteristics, employed features andmethods, care settings (inpatient versus outpatient), and the
resultant performance outcomes. It shows that the statistical analysis approachmainly relies on threshold-based
rules on the selected set of features for AF detection. Under this umbrella, themost frequently employed features
for AF detection include the RR interval from the ECG and the inter-beat interval (IBI) fromPPG (Kabutoya
et al 2019, Sološenko et al 2019, Väliaho et al 2019, Väliaho et al 2021b, Chang et al 2022,Han et al 2022).
Additionally, the rootmean square of successive differences (RMSSD) and sample entropy (SampEn) are also
among themost utilized features (Eerikäinen et al 2019,Han et al 2019, Bashar et al 2019b, Avram et al 2021,
Nonoguchi et al 2022). Consequently, the extracted features undergo analysis in terms of their histograms, both
with andwithout the presence of AF and other cardiac rhythms. This analysis assists in determining optimal
thresholds that effectively differentiate various rhythmic classes. Once these thresholds are established, they can
be applied to the same features extracted fromPPG signals.

Furthermore, the utilization of identical feature sets with alternative statistical approaches, such as logistic
regression, enhances the versatility and comprehensiveness of AF detection studies. By applying logistic
regression, researchers can establish amathematicalmodel that estimates the probability of AF presence based
on the input features. The logistic function, also known as the sigmoid function, is employed to transform the
output into a range between 0 and 1. This transformed probability serves as an indicator of the likelihood of AF
compared to non-AF cases. The advantage of logistic regression lies in its ability to provide a quantitative
measure of the probability, allowing for a nuanced understanding of the classification outcome. Also, as
reported in table 2, studies incorporating larger patient cohorts intend to utilize logistic regression (Eerikäinen
et al 2019, Avram et al 2021,Han et al 2022) rather than rule-basedmodels. This observation alignswith the
trends identified in a previous review study (Pereira et al 2020), further reinforcing the preference for logistic
regression in cases involving a higher number of patients.

As compared to the previous review,weobserve a risingnumber of studies using the statistical analysis approach
(4.25 studies/year between2019 and2022 versus 2 studies/year between 2013∼ 2019), which alignswith the rising
number of all-typeAFdetection studies in recent years. It canbe observed thatmore studies focus onoutpatient
populations,whichmight be attributed to the rapid advancement ofwearable technology in recent years.

4.2. Updates onPPG-basedAFdetection usingmachine learning approaches
Table 3 presents a chronological summary ofAFdetection studies basedonmachine learning approaches in the last
four years.Machine learning has demonstrated promising results in the detectionofAF in low-sample settings. The
applicationofML techniques requires domain expertise for feature engineering to extract features that effectively
capture the comprehensive characteristics of PPGwaveforms and enable thediscriminationof different classes.
Commonly extracted features includemorphological descriptors, timedomain statistics, statisticmeasurements in
the frequencydomain, nonlinearmeasures,wavelet-basedmeasures, and cross-correlationmeasures.

Of differentmachine learning algorithms, Tree-based algorithms, such as decision trees, random forest, and
extreme gradient boosting (XGBoost) (Chen andGuestrin 2016), are themost popular choices and are
collectively employed in 12 out of the 18 studies employingmachine learning for AF detection. RandomForests
have demonstrated strong performance inAF detection tasks using PPG. This ensemble learning algorithm
combinesmultiple decision trees to create a robust classificationmodel. By aggregating the predictions of
individual trees, RandomForests can reduce overfitting, handle complex feature interactions, and provide
accurate AF detection results. The versatility, interpretability, and resilience to noisy datamake RandomForests
a popular choice in PPG-AF detection research. XGBoost is a boosting algorithm that combines gradient
boostingwith decision trees to achieve high predictive accuracy in PPG-AF detection. XGBoost sequentially
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builds an ensemble of weakmodels, iteratively improving its performance byminimizing a loss function. It can
effectively handle complex feature interactions and capture subtle patterns in PPG signals, leading to improved
AF classification results and better detection performance compared to individual decision trees.

The secondmost popular (used in 8 out of 18 studies)machine learning classifier for AF detection is support
vectormachines (SVM) (Cortes andVapnik 1995), due to their ability to handle high-dimensional feature
spaces. SVM separates PPG signal data into different classes by identifying an optimal hyperplane that
maximizes themargin between the classes. Bymapping PPG signals into a higher-dimensional space, SVMcan
capture complex relationships and find effective decision boundaries for accurate AF classification. There are
also other classifiers adopted in the studies such asK-Nearest neighbors (KNN) and artificial neural networks
(ANN) but are notwidely adopted as the above two classifiers.

Compared to the previous review, we observe a sharp increase in the adoption ofmachine learning for AF
detection using PPG (5 studies/year between 2019 and 2022 versus 1.5 studies/year between 2016 and 2019).

4.3. Updates onPPG-basedAFdetection using deep learning approaches
Deep learning has emerged as a powerful approach for detecting AF in PPG signals, as reported in table 4. Unlike
traditionalMLmethods, DLmodels can learn comprehensive feature representations through an end-to-end
learning fashion, eliminating the need for complex feature engineering. This is achieved by learning froma large
amount of training samples to train deep neural networks, which consist of interconnected layers of
computational nodes.

As shown in table 4, studies usingDL approaches can be divided into twomain categories. Thefirst category
(employed in 14 out of 24 studies) is a family of convolutional neural networks (CNN). CNN is commonly
applied in computer vision tasks, but they have also been successfully adapted for PPG-AF detectionCNNs
utilize convolutional layers to automatically extract relevant features from the PPG signal data (Shen et al 2019).
These convolutional layers apply numerous filters across the signal, allowing the network to capture local
patterns and identify important discriminative features associatedwithAF. By stackingmultiple layers, CNNs
can learn increasingly complex representations of the PPG signals, enhancing the accuracy of AF detection.
Residual network (ResNet) (He et al 2016), a specific type of CNN, addresses the challenge of training deep
neural networks by utilizing skip connections. These connections allow the network to bypass layers and pass
information directly to subsequent layers,mitigating the vanishing gradient problem. In the context of PPG-AF
detection, ResNet architectures enable the training of deeper networks with improved performance and ease of
optimization. By incorporating residual connections, ResNetmodels can capture fine-grained details and long-
range dependencies in PPG signals, leading to enhancedAF detection capabilities. The second category is a
family of sequential DLmodels, of which long short-termmemory (LSTM) (Hochreiter and
Schmidhuber 1997), is a popular choice (employed in 4 out of 24 studies). LSTM is a recurrent neural network
architecture commonly used in PPG-AF detection due to its ability to effectively capture temporal dependencies
in sequential data. In the context of PPG signals, LSTMmodels can analyze the sequential nature of the data,
considering the temporal order of the signal samples. This allows LSTM to capture long-termpatterns and
dynamic changes in the PPG signals, which are crucial for accurate AF detection.

To effectively trainDLmodels, a substantial amount of labeled training data is typically required.However,
in biomedical applications, the availability of labeled data is often limited. Transfer learning is a potential
solution to this challenge, wherein a pre-trainedDLmodel isfine-tuned for a specific task. The number of layers
and the complexity offine-tuning depend on the particular application. For example, in one study, a pre-trained
CNNmodel designed for ECG analysis was fine-tuned to detect AF fromPPG segments using a small set of
labeled data. Another promising technique is data augmentation to generate artificial samples to boost the
number of samples for training theDLmodels and increasing the generalizability ofmodel performance.

DL is the fastest growing approach of all three approaches for PPG-AF detection.We observe an average of 6
studies employingDL per year between 2019 and 2022, as compared to 3.5 studies/year between 2018 and 2019.

5.Discussion

While the performancemetrics reported in tables 2–4 suggest the promising potential of PPG for AF detection,
several challenges remain. In this section, wewill delve into these issues, offering insights drawn fromour
comprehensive analysis of the reviewed studies. Key concerns to be discussed include PPG signal quality, label
accuracy, and the impact of concurrent arrhythmias. Studies that have considered these issues are summarized
in table 5. Furthermore, we extend our discussions to encompass additional considerations pertaining to PPG-
basedAF detection. These include algorithmic factors such as performancemetrics, data sources, computational
efficiency, domain shifts, as well asmodel explainability and equity.

14

Physiol.Meas. 45 (2024) 04TR01 CDing et al



5.1. PPG signal quality
PPG signal quality remains a considerable challenge, which is widely acknowledgedwithin the scientific
community. Amultitude of complicating factors can compromise the PPG signal quality, includingmotion
artifacts, skin tone variations, sensor pressure variations, respiratory cycles, and ambient light interference, only
to name a few. The challenge of noise in PPG signal is particularly acutewhen it comes to the continuous
acquisition of PPG,which is crucial for long-termmonitoring of AF risk.

As reported in table 5,most of the reviewed studies take signal quality into consideration,with 54%of the
reviewed studies implementingmeasures to excludePPG signals of poorquality. For example, inHan et al (2020),
the authors presented anoise artifact detection algorithmdesigned for detecting noise artifacts.Out of a total of
2728 30 s PPG strips, only 314 stripswere deemed suitable for further analysis after applying the algorithm.
Similarly, inTorres-Soto andAshley (2020), the authors proposed amulti-tasking framework that incorporated
both signal quality assessment andAFdetection tasks.OnlyPPG signals of excellent qualitywere retained for the
purpose ofAFdetection. This practice, however, harbors potential issues thatwarrant deeper consideration.
Firstly, by systematically discarding vast swaths of signal data considered of inferior quality, the earliest possible
detection ofAF is inevitably delayed, creating a potentially significant time lag indiagnosis. Secondly, this approach
harbors a statistical dilemma; the discardedPPG-AF signals could be construed as false positiveswithin the context
of the overall analysis.However, such instances are typically overlookedwhen calculating the positively predicted
value or false positive rate, thereby potentially inflating themodel’s reported performance. Consequently, the
reliance on selective data exclusion as a signal quality control strategymay inadvertently compromise the validity
of the study’s outcomes and the efficacy of predictivemodels developed therefrom.

We propose a nuanced perspective on PPG signal quality assessment rather than adhering to the
dichotomous approach of designating signals asmerely black orwhite (Charlton et al 2023). Instead, we suggest
the computation of a signal quality index (SQI) as a continuousmetric (Guo et al 2021b). This calculationwould
be based on the proportion ofmotion artifacts present within individual PPG segments, thus providing amore
precise estimate of signal quality. Subsequently, an appropriate threshold could be ascertained tofilter out PPG
signals devoid ofmeaningful information. Alternatively, one can integrate the signal quality information as part
of themodel input that controls the uncertainty level of themodel output. These approaches would strike the
balance of salvaging PPG signals with suboptimal quality for disrupt-lessmonitoring andmodel performance.

5.2. Label noise
The issueof label noise in annotateddatasets presents another significant challenge in the applicationof PPG for
AFdetection.Accurate and consistent labeling of datasets is crucial for the development and validationof reliable
detection algorithms (Song et al2022). To achieve this, it usually involvesmore than two clinical domain experts to
cross-check the agreement of annotations, and a reconciliation strategy needs to be inplace in the event of
disagreement.However,many studies often fall short in this aspect due to the labor-intensive task and an
insufficient number of cardiologists available to annotate the datasets. Across the reviewed studies, only 9 out of the
57 studies (Kwon et al2019,Väliaho et al2019,Väliaho et al2021b,Chang et al2022, Liao et al2022, Liu et al 2022,
Nguyen et al2022, Zhu et al2022) employed the expertise of at least two cardiologists for annotation, as reported in
table 5. This scarcity of expert annotators can result in imprecise and incomplete labeling ofAF events, leading to
label noise, which in turn,mayundermine the performance of supervised learning algorithms.

Furthermore, the absence of standardized guidelines to address disagreements among annotators
exacerbates this issue. In the event of conflicting annotations, the lack of a clear protocol or consensus

Table 5.Challenging factors considered in the studies.

Factors Studies Capacity

SignalQuality STAT (Eerikäinen et al 2019,Han et al 2019, Kabutoya et al 2019, Sološenko et al 2019, Bashar

et al 2019b,Han et al 2020, Väliaho et al 2021b, Chang et al 2022,Han et al 2022)
11/17

ML (Fallet et al 2019,Neha et al 2019, Eerikainen et al 2020,Mol et al 2020, Guo et al 2021a,

Jeanningros et al 2022, Liao et al 2022, Zhu et al 2022,Neha et al 2023)
9/18

DL (Kwon et al 2019, Rezaei Yousefi et al 2019, Zaen et al 2019, Chen et al 2020, Kwon et al
2020, Selder et al 2020, Torres-Soto andAshley 2020, Zhang et al 2021b,Das et al 2022,

Liu et al 2022,Neha et al 2022,Nguyen et al 2022)

12/22

Label noise STAT (Väliaho et al 2019, Väliaho et al 2021b, Chang et al 2022) 4/17

ML (Fallet et al 2019,Hiraoka et al 2022, Liao et al 2022, Zhu et al 2022) 4/18

DL (Kwon et al 2019, Aschbacher et al 2020, Kwon et al 2020, Kwon et al 2022, Liu et al 2022,
Nguyen et al 2022)

6/22

Concurrent arrhythmias STAT (Eerikäinen et al 2019, Bashar et al 2019b,Han et al 2019, 2020, 2022) 5/17

ML (Eerikainen et al 2020, Liao et al 2022) 2/18

DL (Kwon et al 2019, Genzoni et al 2020, Ding et al 2022, Liu et al 2022) 4/22
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mechanism can lead to inconsistencies in the dataset. This variability not only confounds the training of
predictivemodels but also hampers the reproducibility of research findings. Consequently, establishing robust
procedures for data annotation, which involve recruiting sufficient expert annotators and defining clear rules for
resolving disagreements, is paramount. Addressing these issues would significantly enhance the quality of the
annotated PPGdatasets, thereby facilitatingmore reliable and accurate AF detection.

In addition to the shortage of expert involvement, the field faces another substantial challenge: the absence of
clear clinical guidelines for annotating AF events using PPGdata. Unlike ECG,which haswell-established
guidelines for AF event labeling, PPGoperates in a far less standardized environment. This lack of formalized
guidance further exacerbates the risk of label noise, compromising both algorithmic performance and clinical
reliability. Given these constraints, it becomes imperative to considermultimodal signal inputs when annotating
data. Incorporating ECGor other establishedmodalities alongside PPG can provide amore robust framework
for annotation, thereby improving the quality of labeled data.

Also, table 6 provides an overview of themethodologies used in obtaining annotated PPGdata across the
three study categories. Among the 57 studies, a significantmajority (47 studies, representing approximately 80%
of the studies) relied on annotated ECGdata as the primary reference for validating PPGdata during the
classification phase, emerging as the predominant approach for generating ground-truth data. Furthermore,
four studies used direct PPGdata labeling, while three studies adoptedmixed annotation techniques, which
included simulated data (i.e. PPGdatawas generated based on acquired and annotated ECG signals). Notably, in
three instances, the specificmethodology for ground-truth generationwas not explicitly outlined.

5.3. Concurrent arrhythmias
The detection accuracy of AF through PPG can be significantly influenced by the presence of other arrhythmias,
notably premature ventricular contractions (PVC), premature atrial contractions (PAC), and atrialflutter (AFL).
All of these introduce irregularities into the heart rhythm that canmimic the rhythm irregularities seen inAF,
potentially leading to false-positive detections. PVCs and PACs are characterized by early heartbeats originating
from the ventricles and atria, respectively (Han et al 2020). These early beats can disrupt the regular rhythmof
the heart, resulting in PPG signal patterns thatmay resemble those associatedwith AF.Whereas in AFL, the
rhythm is typicallymore organized and less erratic thanAF, presenting a sawtooth-like pattern in ECG tracings
which does not typicallymanifest in PPGdata (Eerikainen et al 2020). This organized rhythmmay not exhibit
the characteristic variability and irregularity that PPG-basedAF detectionmodels are designed to identify.
Consequently, a PPG-based AF detectionmodelmightmistakenly classify these as AF events, thereby reducing
the specificity of themodel. Furthermore, the simultaneous presence of AF and other arrhythmias in the same
patient adds another layer of complexity to the problem. This co-existence canmodify the PPG signal’s
morphology inways that differ from the signals of patients with AF or PVC/PAC alone,making itmore difficult
to accurately identify the presence of AF.

Table 6. Summary of the data annotationmethods across the three study categories.

Ground-truth Studies Capacity

Simultaneously acquired ECG

signals

STAT (Eerikäinen et al 2019,Han et al 2019, Kabutoya et al 2019, Sološenko et al

2019, Väliaho et al 2019, Bashar et al 2019b, Estrella-Gallego et al 2020,Han

et al 2020, Inui et al 2020, Avram et al 2021, Chorin et al 2021, Väliaho et al

2021b, Chang et al 2022,Han et al 2022,Nonoguchi et al 2022)

17/17

ML (Fallet et al 2019, Guo et al 2019, Yang et al 2019, Buś et al 2020, Corino et al
2020, Eerikainen et al 2020,Millán et al 2020,Mol et al 2020, Guo et al 2021a,

Hiraoka et al 2022, Jeanningros et al 2022, Liao et al 2022, Zhu et al 2022)

13/18

DL (Kwon et al 2019, Rezaei Yousefi et al 2019, Shen et al 2019, Zaen et al 2019,
Aschbacher et al 2020, Chen et al 2020, Genzoni et al 2020, Kwon et al 2020,

Selder et al 2020, Torres-Soto andAshley 2020, Ramesh et al 2021, Zhang et al

2021a, Kwon et al 2022, Liu et al 2022, Neha et al 2022,Nguyen et al 2022,

Ding et al 2023)

17/22

Labeled PPG signals STAT — 0/17

ML (Neha et al 2019, 2023) 2/18

DL (Neha et al 2019,Das et al 2022) 2/22

Mixed annotationmethods or

simulated data

STAT — 0/17

ML (Aydemir et al 2020) 1/18

DL (Cheng et al 2020,Ding et al 2022) 2/22

Unknown STAT — 0/17

ML (Zhang et al 2019, Xie et al 2021) 2/18

DL (Sabbadini et al 2022) 1/22
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It is noteworthy that several studies considered the presence of arrhythmias other thanAF, as shown in
table 5. For instance, in the study by Eerikainen et al (2020), Liao et al (2022), the differentiation of PVC and PAC
fromAFusing PPG signals was explored. The results of this investigation demonstrated successful
differentiation between PVC/PAC andAF based on PPG signal characteristics. Despite limited research on
PPG-based detection of atrialflutter (AFL), Eerikäinen et al have shown that PPG can differentiate amongAF,
AFL, and other rhythms. They employed aRandomForest classifier that utilizes a combination of inter-pulse
interval features and PPGwaveform characteristics, achieving high sensitivity and specificity (Eerikainen
et al 2020). These findings suggest that PPG-based analysis holds promise for distinguishing various types of
arrhythmias beyondAF. Thus, when developing and evaluating PPG-based AF detectionmodels, it is critical to
account for the potential influence of other arrhythmias. Robust algorithms should be designed to discriminate
betweenAF and these other rhythmdisturbances tomaintain high detection accuracy, reinforcing the necessity
of comprehensive, diverse, andwell-annotated training datasets in the development of these predictivemodels.

5.4.Quantitativemetrics for algorithmperformance evaluation
The studies reviewed in this work always use conventional performancemetrics, such as the area under the
receiver operational characteristics curve (AUROC), accuracy, sensitivity, specificity, and F1 Score. However, it
is crucial to acknowledge that relying solely on these conventionalmetricsmay be insufficient, particularly
within the context of continuous healthmonitoring scenarios (Butkuviene et al 2021). The landscape of
continuous healthmonitoring, facilitated throughwearable devices, unfolds as a dynamic and perpetually
evolving terrain of data.Within this context, the intrinsic nature of a continuous data stream introduces
complexities that transcend the conventional boundaries of traditional evaluationmetrics. In scenarioswherein
health-related parameters undergo ceaseless scrutiny, the spectrumoffluctuations, subtleties, and overarching
trends assumes paramount significance. Conventionalmetrics, by design, tend to compartmentalize
performance assessmentwithin discrete segments, potentiallymissing the panoramic context that is intrinsic to
continuous healthmonitoring. This paradigm invites us to reflect upon the necessity of embracing evaluation
methodologies that are attuned to the temporal dynamics, such as assessing the frequency of AF occurrence that
reflects AF burden, the duration of AF episodes, the nuances of variation, and the holistic import of trends. For
instance, incorporating equivalent standards to the ANSI/AAMIEC57:2012 standard (which is used for ECG)
(AmericanAssociation ofMedical Instrumentation 2020) into algorithm evaluation frameworks for PPG-based
AF detection could provide guidance for assessing the clinical significance in continuousmonitoring scenarios.

5.5.Domain shift problem
PPG signals, despite their utility in non-invasive physiologicalmonitoring, present certain complexities linked
to the site of acquisition and inter-patient variability. It has been observed that PPG signals sourced fromdistinct
anatomical sites yield diversemorphological patterns (Fleischhauer et al 2023). This is primarily due to the
different vascular structures, skin thickness, and other physiological attributes specific to these sites. Such
morphological variations can pose significant challenges in interpreting these signals and developing universally
applicablemodels, as the distribution of signal characteristics is inherently contingent on the site of collection.

Moreover, inter-patient variability further compounds this issue by introducing additional variations in the
data distribution.These variations stem fromawide array of factors, including demographic attributes (such as age
and sex), physiological characteristics (including skinpigmentation andbodymass index [BMI]), andmedical
conditions unique to individual patients (Clifton et al 2007). For instance, an older patientmight exhibit a different
PPG signalmorphology due to increased arterial stiffness, while individualswith darker skinmight present a
different signal-to-noise ratio owing to highermelanin content that can observemore light than lighter skin.

These site-specific and inter-patient differences can inducewhat is referred to as a ‘domain shift’ problem in
machine learning (Wang andDeng 2018, Radha et al 2021). Here, amodel that is trained on data from a specific
group (for example, PPG signals from a certain body site or a particular patient group)maynot generalize the
model performancewhen it is applied to a different group. Therefore, while harnessing PPG signals for health
monitoring and disease prediction, it is paramount to consider these variations and devise strategies to address
the domain shift problem for reliable and generalizedmodel performance.

5.6. Lack of large-scale labeled dataset
In concert with the label noise issue discussed in section 5.2, there exists a challenge of a paucity of large-scale,
annotated datasets. To develop robust and reliable algorithms for AF detection, especially when deep learning
models are employed, it requires extensive, labeled datasets. These ideal datasets should encompass a broad
range of patient demographic groups, diverse health conditions, and various physiological states to ensure
generalizablefindings. Furthermore, they should contain precise annotations of the AF events in the PPG signal
to facilitate effective supervised learning.
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Emerging research is increasingly focusedon addressing this issue by generating synthetic PPG signals through
various data augmentation techniques. These range from traditional computationalmodels that simulate
physiologic PPGpatterns (e.g. PPGSynth) (Tang et al2020) to advanced generativemodels such as generative
adversarial networks (GANs) (Goodfellow et al2020,Ding et al 2023), variational autoencoders (VAEs) (Kingma
andWelling 2013), anddiffusionmodels.However, the extent towhich these synthesized signals contribute to
improved learning outcomes remains an openquestion. Recent research byCheng et al indicates the existence of a
‘performance ceiling’—a limit to the improvements achievedby incorporating synthetic signals (Ding et al 2023).
This underscores the need for further investigation intomore effective algorithms for synthetic signal generation as
well as a deeper understanding of this performance ceiling phenomenon.

To sumup, the lack of large, labeled datasets impedes the progress of research in this area, limiting the
development and validation of predictivemodels. It restricts the ability to comprehensively evaluate and
compare the performance of different AF detectionmethods under diverse and challenging conditions.
Additionally, it hampers the exploration ofmore advancedmachine learning techniques, which often
necessitate large quantities of annotated data to train effectively. Therefore, efforts to collect/generate, share,
and consolidate large-scale, well-annotated PPGdatasets for AF detection represent a critical step tomove the
performance needle in this field.

5.7. Computational time
With the rapid advancement of graphics processing units (GPUs) and increasing computational power, it is now
feasible to train complex, large-scale neural networks that outperform traditional statistical or conventional
machine learningmethods (Thompson et al 2020). However, this complexity presents new challenges,
particularly formodel inference. The inference process, which involves generating predictions fromnewdata
based on trainedmodels, can be computationally demanding. This poses significant obstacles for wearable
technologies that rely on edge computing, as these calculations can quickly deplete battery life, thereby
undermining the feasibility of continuousmonitoring (Chen andRan 2019). Alternative solutions include
offloading computational tasks tomore powerful, tethered smartphones or to cloud-based platforms. Yet, both
alternatives require robust and fast data streaming infrastructures.

Research efforts to address these challenges are bifurcated.On one hand, there is a burgeoning focus on ‘tiny
ML,’which aims to optimize neural network architectures for efficient edge computing without sacrificing
performance. On the other hand, advancements in hardware and battery technology are driving the
development ofmore powerful sensing techniques that enhance the capacity for long-termmonitoring.
Consequently, tackling these computational challenges necessitates orchestrated efforts fromboth research
directions. It also underscores the imperative to keep computational requirements at the forefront when
developing PPG-based AF detection algorithms.

5.8. Explainability
Explainability in the context of PPGAFdetection algorithms is a critical aspect that determines howwellwe
understand the decision-makingprocess of these algorithms. This is particularly important inhealthcare,where
the decisionsmadeby these algorithms canhave significant implications for patient care. Statisticalmethods are
often considered naturally explainable because they rely onwell-understoodmathematical principles and
procedures. For example, a linear regressionmodel,which lies in the intersection between statisticalmethods and
machine learning,makes predictions based onaweighted sumof input features. Theweights (or coefficients)
assigned to each feature provide a directmeasure of the feature’s importance in the prediction,making it relatively
straightforward to interpret themodel’s decisions.Machine learningmethods, on the other hand, often involve
more complex computations andmaynot be as directly interpretable as statisticalmethods.However, techniques
have been developed to calculate feature importance,which canprovide a certain level of explainability. For
instance, inYang et al (2019), the Fisher scoremethodwas employed to calculate the importance of features. The
Fisher score is a statisticalmeasure that evaluates the discriminative power of individual features in a classification
task. Byutilizing thismethod, the study aimed to assess the relevance and significance of different features in the
context of atrialfibrillationdetection. Similarly, in Jeanningros et al (2022), each featurewas input into the
classifier separately, enabling the generationof a ranked list based on its impact on the overall classification
performance through this sensitivity analysis.

Deep learningmodels, on the other hand, are often referred to as ‘black boxes,’whichmake predictions
based on intricate, high-dimensionalmappings that are difficult to comprehend for humans.While theymay
achieve high predictive accuracy, it’s often challenging to understandwhat features and their interactions the
models use tomake predictions, and how these features contribute to thefinal decision. This lack of
transparency can be amajor drawback in healthcare applications, where it’s desirable to understand the
underlying decision logic so as to gain trust from end users, such as clinicians and patients.
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Several approaches are being explored to improve the explainability of deep learningmodels, including
attentionmechanisms, layer-wise relevance propagation, andmodel-agnosticmethods like local interpretable
model-agnostic explanations (LIME) and SHapley Additive exPlanations (SHAP) (Binder et al 2016, Ribeiro
et al 2016, Zhou et al 2016, Lundberg and Lee 2017). A good example is Liu et al (2022), where authors used the
guided gradient-weighted class activationmapping (Grad-CAM) approach to visualize crucial regionswithin
the PPG signals that enabled themodel to predict a specific rhythm category. Despite these advances,
explainability in deep learning remains an active area of research, particularly in the context of PPG-based AF
detection.

5.9. Performance bias andmodel equity
Disparities in both access to and outcomes fromutilizing digital health solutions and biotechnologiesmanifest a
variety of identity dimensions, including economic status, social background, ethnicity, and gender (Lanier
et al 2022). As described by Braveman (2014), health equitymeans, ‘Kstriving for the highest possible standard
of health for all people and giving special attention to the needs of those at greatest risk of poor health, based on
social conditions.’ In the context of PPG-based AF detection, this issue of equity extends across a spectrumof
potential causes. It encompasses accessibility issues, particularly for individuals from rural areas or thosewith
disadvantaged socioeconomic statuses, as well as physiological factors like skin tone and obesity, which can
influence the reliability of PPG readings (Ajmal et al 2021, Fine et al 2021). Of the studies reviewed, amere three
explicitly touched upon the issue of performance bias andmodel equity (Aschbacher et al 2020, Avram
et al 2021, Zhang et al 2021b). This oversight underscores the pressing need to heighten awareness and equity
considerations within the field. To tackle this challenge, amultidisciplinary approach is necessary, and
healthcare providers, engineers, and researchersmust proactively develop technologies that consider the needs
of vulnerable and underrepresented populations.

6. Conclusion

In conclusion, this comprehensive review highlights the growing significance of PPG-based AF detection in
addressing a critical clinical challenge. The surge in research efforts, especially inmachine learning and deep
learning approaches, underscores the potential of PPG technology for continuous and accurate AF
monitoring.Whilemachine learning techniques offer versatility and promising results, deep learningmodels
demonstrate remarkable performance by automating feature extraction. Nevertheless, challenges related to
signal quality, label accuracy, and concurrent arrhythmias persist, necessitating ongoing research and
development. Furthermore, the availability of large-scale labeled datasets, computational efficiency,model
explainability, and addressing performance bias and equity issues emerge as crucial considerations in
advancing PPG-based AF detection technology. This review underscores the importance of continued
collaboration between themedical and artificial intelligence communities to refine and deploy effective
solutions for AF detection, ultimately improving patient outcomes in the face of this widespread health
concern.
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TableA1. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (STAT).

Author (year)
[References] Initial data Excluded data Excluded data (%) Total Acquisition time after exclusion Train/test data split

Väliaho et al (2019) 220 subjects Initially 220 subjects, with 7 subjects

excluded due to inadequate quality of

data or inconclusive rhythm

3.2%patients 8.8 h (AFpatients), 8.9 h (Sinus Rhythm control) Unspecified (probably fromECGasGT)

Eerikäinen et al

(2019)
40 subjects 8 patients (40 min) 20%patients/signal length 5 min x 32 patients= 160 min leave-one-subject-out cross- validation

Kabutoya et al

(2019)
59 patients — — 150 seconds x (29AF+ 30 SR); total of 1,180 beats Unspecified (probably fromECGasGT)

Bashar et al (2019b) 2394 segments UMass dataset: 2080 30 s acquisi-

tions (17.3 h)
86.9%of PPG segments UMass dataset: 314 segments were clean and used (55

AF and 259 non-AF); Chonlab:NSR subjects (9 subjects;
285 segments) and 52 30 s segments were clean/used

Unspecified (probably fromECGasGT)

Han et al (2019) 491 segments 428 segments 87.2%of segments (for the
proposedmotion noise artifact

signal-quality criteria)

30 sec segments x 63 total segments (proposedMNA:

Motion andNoise Artifacts)
Unspecified (probably fromECGasGT)

Han et al (2019) — — — 141 30 s segments are detected as clean data from the 16

patients (11with SR and 5with cardiac arythmia)
—

Sološenko et al

(2019)
— — 10.8%of signals 316 h for AF and 411 h for non-AF —

Han et al (2020) 2728 30 s segments 314 30 s segments MNE88.5% (all 37 subjects with cardiac arythmia) 2728 x 30 sec for
training dataset (2 subjects, one AF and one non-AF)
101 x 30 sec for SamsungGear S3Dataset 4 h of PPG

data for testing datasetMIMIC IIIDataset (2AF, 5NSR
and 3PAC/PVC)

Train: 37 subjects; Test:first 2 subjects (1
AF and 1 non-AF) and then 10 subjects
with (2AF, 5NSR and 3 PAC/PVC)

Inui et al (2020) 33AF events from

40 enrolled

subjects

10AF events due to device-related noises

and interruptions

30%ofAF events 23AF events —
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TableA2. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (STAT continued).

Author (year)
[Reference] Initial data Excluded data Excluded data (%) Total Acquisition time after exclusion Train/test data split

Estrella-Gallego et al

(2020)
— — — 2 min x 9 subjects= 18 min —

Väliaho et al (2021a) 365 PPG signals/subjects with

confirmed rhythm

6PPG signals/subjects 1.6%of PPG sig-

nals/subjects

1 min x 359 subjects 10-fold cross validation

Avram et al (2021) 207 participants with collected

signals

3 participants excluded 1.4% A total of 81 944 h ofmonitoring from the ePatchwith

simultaneousW-PPGdatawas recorded and analyzed.

—

Chorin et al (2021) 1527QRS complexes — — 1527QRS complexes —

Chang et al (2022) 24 h× 200 subjects — 24 h× 200 subjects Training: 25 subjects with

cardiac arythmia

Han et al (2022) — — Training: 35 participants, testing: 25 subjects; 271 segments

for training; 2112 clean 30 s for testing

Training/testing datasets

Val̈iaho et al (2021b)
( 2021b)

3781 h of PPGdata were

analyzed,

1667 h of PPGdata 44%of PPGdata 2114 h (55.9%) of the data were approved by the quality
algorithm.

Nonoguchi et al (2022) 40 055 intervals were obtained 13985 intervals exclude (7022 due to insufficient
PWMand 6963 due to insufficient tele-

metry ECG)

34.9%of intervals 163× 30 min segments (hig risk)with 17 segments of AF

and 123× 30 min (knownAF)with 55 segments of AF

ECG
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TableA3. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (ML).

Author (year)
[References] Initial data Excluded data Excluded data (%) Total Acquisition time after exclusion Train/test data split

Yang et al (2019) 13.2 h forNSR and 23.7 h for AF episodes — — 13.2 h forNSR and 23.7 h for AF episodes 75%of the time slots for training and

25% for testing.

Neha et al (2019) 24 s× 15 subjects (6 min) — — 24 s× 15 subjects (6 min) 13 PPG samples (for training) and 2
PPG samples (for testing)

Fallet et al (2019) 2166 labeled 10-s epochs from17 patients — — 2166 labeled 10 s epochs from 17 patients 5-fold cross validation

Guo et al (2019) 227 individuals, with 186 956 identifiedAF

episodes

11 individuals 4.8% 216 entered the follow-up program —

Zhang et al (2019) — —

Buś et al (2020) 8 PPG recordings forNSR (240 min) and 24 for
AFib (120 min)

None 0% 8PPG recordings forNSR (240 min) and 24 for
AFib (120 min)

—

Corino et al (2020) Simulated PPG signals corresponding to 20, 30, 40,

50, 100, 150, 200, 250 and 300RR intervals. For

each length, 200 signals were generated, 100 in AF

and 100 inNSR.

— — Simulated PPG signals corresponding to 20, 30, 40,

50, 100, 150, 200, 250 and 300RR intervals. For

each length, 200 signals were generated, 100 inAF

and 100 inNSR

train-validation-test split (55%of the

data is used as training set, 25% as

validation set, 20% as test set

Eerikainen et al

(2020)
39 subjects, each on a 24 h-acquisition (936 h total) Train: 368 h; Test: 138.7 h Train: 53%; Test:

57.8%. Average per

subject

Train: 328 h; Test: 101.3 h 75%of the patients to the training set

and 25% to the test set

Mol et al (2020) 216× 90 s Only the second recording

attemptwas considered for

each subject

— 216× 90 s —

Millán et al (2020) — — — — 1656 signals for training
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TableA4. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (MLcontinued).

Author (year)
[Reference] Initial data Excluded data

Excluded

data (%) Total Acquisition time after exclusion Train/test data split

Aydemir et al (2020) 5 h 30 min — — 5h30min ½ train and½ test

Guo et al (2021a) — — 469 267 PPG signals (optimization setp); 30 640 PPG sig-

nals for AF and 89 359 PPG signals for non-AF (for the
testing step)

Randomly divided (3:1)

Xie et al (2021) PPG signals collected form21 healthy

individuals

— — — —

Neha et al (2023) 100 8 s PPG signals (800 s) signals withmultiple abnormalities in a

frame have been excluded from the study

— — 70:30 ratio train test

Zhu et al (2022) Total of 106 663 h of collected PPG

signals

34 345 h of PPG signals 32.2% 72 317 h of PPG signals A pre- viously trainedmodel is

deployed in real-world setting

Hiraoka et al (2022) Average of 13.3 d of PPGmeasurements

among 80 patients (24 hmonitoring)
1 subject excluded from the

measurements

— Average of 13.3 d of PPGmeasurements among 79

patients (24 hmonitoring)
training cohort of 59 patients

and a test cohort of 20 patients

Liao et al (2022) — — 18% — five-fold cross-validation

Jeanningros et al

(2022)
11985 30 swindows (99.9 h) 7838 30 swindow (65.3 h) 65.4% 4147 30 swindows (34.5 h) leave-one-group-out
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TableA5. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (DL).

Author (year)
[Reference] Initial data Excluded data Excluded data (%)

Total Acquisition time after

exclusion Train/test data split

Rezaei Yousefi et al

(2019)
30 subjects 1 subjects 3.3% 22.5 h (estimate) from29 subjects

(1.5 h average PPG acquisi-

tion each)

29 subsets were used as the test set and the remaining 28

subsets were put together to form a training set

Zaen et al (2019) physionet dataset: unknow;

CHUVdataset: 21 subjects

— Physionet dataset; unknown; CHUVdata-

set: 0% (no outlier rejection) or 50% (with
outlier rejection)

Physionet dataset: 1719 hCHUV

dataset: unknwon

80%/20% split stratified by label; for physionet (only ECG)

Kwon et al (2019) 119.2 h Unknown unknown 119.2 h 10× 5-fold cross-validation

Aschbacher et al

(2020)
— 72 total hours+ 91 h 40 sujects to train and 11 to test

Torres-Soto andAsh-

ley (2020)
>500k labeled signals — — Evaluation datasets: Held out test

set: 151.7; ambulatory cohort

156.5 h

Train/test frommultiple datasets. Train: Themodel is

trained on approximately onemillion simulated unlabeled

physiological signals and fine-tuned on a curated dataset of

over 500 K labeled signals fromover 100 individuals from3

different wearable devices.

Selder et al (2020) 180 min of PPG signals (1 min

per PPG signal) from60

subjects

43 PPG signals 24% 137 PPG signals/minutes trained on full data+manually annotated PPG-signals

Genzoni et al (2020) 3213 30 s segments (26.8 h) of
labeled segments

849 30 s noisy seg-

ments (7 h)
26.4% 2364 30 s labeled segments (19.7 h) Trained on one public db and tested on theirs
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TableA6. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (DL continued).

Author (year)
[Reference] Initial data Excluded data Excluded data (%) Total acquisition time after exclusion Train/test data split

Chen et al (2020) 401 patients 15 patients 3.7% 386× 3 min (19.3 h) Training step: 70%of the total data set was randomly selec-

ted for the training step, 90%ofwhichwas used as the

training set, and 10%was used as the cross-validation set;

Testing step: 30%of the total data

Kwon et al (2020) 108,6 h (13 038 30-s PPG) — — 108,6 h (13 038 30 s PPG) 5-fold cross validation repeated 10 times

Aschbacher et al

(2020)
91 h of PPG recordings — — 91 h of PPG recordings 80%/20% train/test

Cheng et al (2020) 60 subj x 1 h (MIMIC-III)+ 42 subj

x 8 min (IEEETBME)+ 15 h

(synthetic)

— — 60 subj x 1 h (MIMIC-III)+ 42 subj x 8 min (IEEE
TBME)+ 15 h (synthetic)

training set, val- idation set, and test set with a 6:2:2 ratio.

Ramesh et al (2021) 37 subjects, with 10 having AF — — 37 subjects, with 10 having AF 80%was randomly divided for training and validation, and

20%was used as the test set. The Stratified k-fold cross-

validation strategywas implementedwith k= 5

Zhang et al (2021a) 27 622 h None None 27 622 h 5-fold cross- validation schemewith a random selection

Das et al (2022) 872 h of PPG signals in raw dataset — None for raw dataset, 97.4%

for ‘Excellent quality’

segments

872 h of PPG signals inwhich the algorithmwas

tested or 3246 25 s segments (22.5 h) for ‘Excellent
quality’ segments

split of 70%as train, 15% as validation, and 15%as test sets

(Based on subjects)

Ding et al (2022) — — — No time range. Estimated for testing: UCLAmedi-

cal center: 1349 h; Stanford dataset 3681 h; Sim-

band dataset 2.9 h

Training: UCSFEHR;Testing: UCLAmedical center, Stan-

ford dataset, Simband dataset

Sabbadini et al

(2022)
4158windows 10 s (11.5 h) 4158windows 10 s (11.5 h)
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TableA7. Summary of the train/test data splitting and excluded data due to noisy data andmotion artifacts (DL continued).

Author (year) [Reference] Initial data Excluded data

Excluded

data (%) Total Acquisition time after exclusion Train/test data split

(Nguyen et al 2022) Pre-train:MIMIC III (1327 h for ECG, and 21 h for PPG),
Train (qualified data) 79.5 min;test (qualified) 23 min

— — Pre-train:MIMIC III (1327 h for ECG, and 21 h
for PPG), Train (qualified data) 79.5 min;

test (qualified) 23 min Pre-train (test 70% train 30%both for ECGand PPG in

transfer learning) and thenmain experiment: 80% train

20% test

(Liu et al 2022) 158 355 10 s segments (439.9 h) 30 793 10 s seg-

ments (85.5 h)
19.4% 354 h —

(Neha et al 2022) 89 min — — 89 min —

Ding et al (2022) (Ding
et al 2023)

— — — Train: 1467 h; test: 22.4 h Train: 126 patients UCLAMedical

Center Test: UCSFMedical Center

(Kwon et al 2022) Total of 2532 PPG-ECG snapshots were acquired (from35

participants, average of 9.2 d continuous acquisition)
909 PPG-ECG

snapshots

35.9% 1623 PPG-ECG snapshots —
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