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Abstract

Objective. Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with significant health
ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened
mortality. Photoplethysmography (PPG) has emerged as a promising technology for continuous AF
monitoring for its cost-effectiveness and widespread integration into wearable devices. Our team
previously conducted an exhaustive review on PPG-based AF detection before June 2019. However,
since then, more advanced technologies have emerged in this field. Approach. This paper offers a
comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health
and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 to December
2022. Through extensive exploration of scientific databases, we have identified 57 pertinent studies.
Significance. Our comprehensive review encompasses an in-depth assessment of the statistical
methodologies, traditional machine learning techniques, and deep learning approaches employed in
these studies. In addition, we address the challenges encountered in the domain of PPG-based AF
detection. Furthermore, we maintain a dedicated website to curate the latest research in this area, with
regular updates on a regular basis.

1. Introduction

AF is a highly prevalent cardiac arrhythmia, which affects approximately 1%-2% of the general population, and
is expected to continue to rise in the future worldwide due to population aging (Schnabel e al 2015, Lane
etal2017, Vinter et al 2020). Individuals with AF face a substantially heightened risk of experiencing cerebral and
cardiovascular complications. Specifically, they are at a five fold higher risk (T'sao et al 2022) of ischemic stroke
and are associated with an increased risk of ischemic heart disease, sudden cardiac death, and heart failure
(Odutayo et al 2016). In general, people with AF have a four times increased risk of mortality compared to the
general population (Lee et al 2018). The current detection of AF heavily relies on routine medical examinations;
however, this approach may overlook paroxysmal AF cases, which refer to AF episodes that occur sporadically
and self-terminate within 7 d. Additionally, a significant portion of AF patients, estimated at 25%—35%, remain
asymptomatic (Rienstra et al 2012), which further reduces their likelihood of seeking care. These factors
collectively contribute to delays in the identification of AF cases. Consequently, there has been a surge in efforts
from both industry and academia sectors for developing technologies that enable reliable and continuous
detection of AF. These advancements aim to transform the screening process for early detection of AF,
particularly by identifying asymptomatic cases, potentially altering the course of treatment, and necessitating
further research to fully understand their impact on patient outcomes (Boriani e al 2014, Chen et al 2018).

To enable consistent and long-term monitoring of atrial fibrillation (AF), a solution needs to be non-
intrusive, cost-effective, and convenient, reducing operational complexity and encouraging user compliance.

© 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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Table 1. Search strings used in different scientific databases for study screening.

Scientific database Search strings

SCOPUS (PPG or photoplethysmography) and (atrial fibrillation or AF or AFib or arrhythmia or cardiac rhythm) and (detec-
tion or recognition)

IEEE Xplore (‘All Metadata’: atrial fibrillation) AND (‘All Metadata’: wearable computer) AND (‘All Metadata: photo-

plethysmography OR ‘All Metadata’: PPG)
PubMed (PPG ‘OR’ Photoplethysmography) ‘AND’ (atrial fibrillation ‘OR” AF ‘OR’ Afib ‘OR’ arrythmia of cardiac rhythm)
‘AND’ (detection ‘OR’ recognition)
Web of science (PPG or Photoplethysmography)(All Fields) and (atrial fibrillation or AF or afib or arrythmia or cardiac rhythm)(All
Fields) and (detection or recognition)(All Fields)

Google scholar (PPG or Photoplethysmography) and (atrial fibrillation or AF or AFib or arrhythmia or cardiac rhythm) and (detec-

tion or recognition)

To this end, photoplethysmography (PPG) has emerged as a preferred technology, with a ubiquitous adoption in
over 71% of wearable devices given its capacity to capture heart rhythm dynamics (Charlton et al 2023). The
physiological foundation of PPG for AF detection lies in the fact that irregular heartbeats induce variations in
cardiac output, leading to fluctuations in peripheral blood volume. This results in irregular pulse-to-pulse
intervals and altered morphologies in PPG during AF episodes. Exploiting this physiological basis, wearables
equipped with PPG sensors and specialized software offer great promise for personalized self-monitoring of AF,
enabling individuals to receive timely alerts for potential AF episodes. However, the success of this approach
hinges on the accuracy of PPG AF detection algorithms. Suboptimal algorithms can easily lead to a surge in false
positives, thereby straining healthcare resources through unnecessary or inappropriate medical consultations.

Therefore, it marks tremendous importance for the development of precise and sensitive PPG-based
algorithms for AF detection. These algorithms should aim to minimize false detections and optimize the
utilization of healthcare resources, ensuring that appropriate clinical guidance is provided to individuals
experiencing actual AF episodes. A prior review conducted by Pereira et al provided a comprehensive summary
of research on PPG-based AF detection using statistical analysis (STAT), machine learning (ML) and deep
learning (DL) approaches up until July 2019 (Pereira et al 2020). The review concluded that PPG holds promise
as a viable alternative to ECG for AF detection. However, it also highlighted challenges such as the presence of
arrhythmias other than AF, motion artifacts in PPG signals from wearable devices, and labor-intensive data
annotation processes, among others.

Given the rapid technological advancements in wearable technology and methodological development in
artificial intelligence (AI), there is a well-justified need for an updated review of AF detection using PPG.
Building upon the previous work by Pereira et al, this paper aims to fill the gap by providing a comprehensive
review of the latest developments in utilizing PPG-based digital health and Al solutions for AF detection in both
inpatient and outpatient settings from July 2019 to December 2022. The articles included in this review are
classified by the three methodological categories established by Pereira et al (2020), namely, STAT, ML, and DL,
to facilitate the tracking of evolving trends in the field. In addition to conducting a thorough analysis of studies
on PPG-based AF detection, this study has established an online knowledge database (GitHub). This database
encompasses all studies reviewed up to December 2022, including those from our work and Pereira’s, along with
direct links to the respective papers. Committed to keeping the database current, our team will update it semi-
annually. Through the creation of this resource, we aim to foster community collaboration and accelerate the
development of effective solutions to this critical clinical challenge.

2. Search criteria

The research team used the SCOPUS, IEEE Xplore, PubMed, Web of Science, and Google Scholar databases to
gather appropriate documents for the review. All articles selected were published between July 2019 and up to
December 2022, and reviews were eschewed in favor of data-based research studies. Databases function
similarly, but not uniformly, so queries needed to be adjusted to reflect this. Filters were used in all databases to
restrict the date of publication. Table 1 describes the exact search strings used in different databases for initial
document screening. After the documents were retrieved (in total 57 studies), they were further evaluated for
appropriateness for review by two researchers (RX and CD). For the subsequent analysis, only studies focused on
developing detection algorithms using PPG for AF detection were included. Review papers, perspectives,
commentaries, clinical trials, and meta-analyzes were excluded from further analysis. Based on this search
criteria, there are in total 57 studies included in the review, including 17 STAT, 18 ML, and 22 DL studies.
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Figure 1. Trends in the cumulative numbers of publications in three method categories using PPG for AF detection.

To categorize studies into STAT, ML and DL, the primary classifier adopted in the studies was considered as
the determinant factor for characterization. This way, in mixed methods where, for instance, features
traditionally belonging to ML are fed into a DL classifier, the overall assigned category would be considered
as DL.

3. Publication trends in the past decade

Figure 1 depicts the trends in the cumulative number of publications in the three method categories in the past
10 years between January 2013 and December 2022. To maintain consistency, the same screening criteria were
applied to identify relevant studies from before the review period of the current study. It reveals an accelerated
rate of growth in the number of publications in all three categories, indicating the increasing effort outpouring to
developing PPG-based AF detection algorithms. It is worth noting that studies utilizing DL for AF detection
emerged in 2017 and expanded rapidly, outpacing the other two categories. In the year 2022, the cumulative
number of publications using DL for AF detection exceeded any of the other two categories for the first time in
history.

4. Review of recent studies on PPG-based AF detection

Tables 2—4 were adapted and extended based on previous work from Pereira et al (2020). These tables summarize
the compiled studies for PPG-based AF detection categorized by three different signal processing methods. It is
important to note that within the 57 studies reviewed, some studies employed more than one signal processing
approach, leading to their inclusion in multiple tables, allowing for a comprehensive understanding of the
various methodologies. More information on data train/test splitting and excluded data due to noisy signals or
motion artifacts can be found in tables A1-A7 in appendix A for STAT, ML and DL studies, respectively.

When referring to the measurement devices, we classified them into several categories, namely smartwatch,
wrist band, fingertip sensor, smart ring, armband, and smartphone. This categorization is based on the implicit
location for PPG sensing and the primary utility of the device. For instance, smartwatches and wristbands
measure PPG signals at the wrist, while fingertip sensors, smart rings, and armbands measure PPG signals at the
fingertip, proximal phalange (i.e. the base of the finger), and various locations within the arm or forearm,
respectively. It is important to note that while both smartwatches and wristbands integrate reflective-type PPG
sensors at the wrist in all studies, we distinguished between them based on their primary function.

Smartwatches, such as the Apple Watch and Samsung Simband, are designed for general-purpose utilization and
may include features like a screen and notification management utilities. On the other hand, wristbands, such as
the Empatica E4, are screen-less devices primarily intended for monitoring physiological signals. Additionally,
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Table 2. Studies on photoplethysmography based AF detection using statistical approaches.

Length
Author (year) Number of Age of popula- PPG Measurement Acquisition Performance results for
[Reference] patients Dataset features tion Mean (SD) segments device conditions Input data Methodology rhythms detection
Viliaho et al 213 106 AF, 107 NSR 72.0(14.3) 5 min Wrist band Outpatient— Pulse-to-pulse interval Two AF detection Sen = 0.962; Spe = 0.981
(2019) checkpoint algorithms: AF Evi-
dence and COSEn
Eerikdinen 32 13 continuous AF, 10 AF:70 (9) YO, 30s Data logger worn Outpatient— Inter-pulse interval fea- Logistic regression 5 min data: Sen = 0.989;
etal (2019) non-AF Non-AF: 67 on thearm continuous tures: the percentage of Spe =10.990; Acc = 0.990;
(13)YO measurement inter- val differences of suc- 24 h data: Sen = 0.970;
cessive intervals greater Spe =0.920; Acc = 93.91%
than 70 ms (pNN70), Shan-
non Entropy (ShE), and
Sample Entropy (SampEn)
Kabutoya et al 59 29 AF, 30 NSR AF:66.5(12.2) 25s Wrist-type Outpatient— 3 measurements for the left Crafted threshold- Patient-level performance by
(2019) YO, NSR: 67.7 monitor checkpoint and right wrist based on based rules IPP 15%: Sen = 0.970;
8)YO irregular pulse peak (IPP) Spe=1;PPV=1;
and irregular heart- NPV =0.970
beat (IHB)
Bashar et al UMass UMass database: 10 AF — 30s Wrist band Outpatient— Root mean square of suc- Weighted average of Sen = 0.982, Spe = 0.974
(2019a) database 37, and 27 non-AF; Chon checkpoint cessive differences two features and Acc=0.975
Chon Lab Lab database: 9 healthy (RMSSD) and sample threshold-based rule
database 9 males entropy (SampEn) from the
pulse intervals
Bashar et al 20 8 AF, 12 non-AF — 30s Wristwatch Outpatient— Root mean square of suc- Weighted average of Sen =0.962, Spe = 0.974
(2019b) checkpoint cessive differences two features and Acc=0.971
(RMSSD) and sample threshold-based rule
entropy (SampEn) from the
pulse intervals
Hanetal 16 Patients: 11 NSRand 3 63-88YO 30s Smartwatch Outpatient— Notan Afib detetion study — —
(2019) with PAC/PVC, 2 with checkpoint but the HR estimation study

basal heart rate AF and 3
with fast heart rate AF

using ppg

suiysiiand dol

TOMLY0 (P207) S¥ 'svapy ‘Jorshyd

r323maD




Table 2. (Continued.)

Length
Author (year) Number of Age of popula- PPG Measurement Acquisition Performance results for
[Reference] patients Dataset features tion Mean (SD) segments device conditions Input data Methodology rhythms detection
Solosenko 34 Clinical testing database AF:72.9(8.9) 30s PPG simulator Simulation PP or RRinterval Threshold based Poor SQ dataset: Sen =0.72,
etal (2019) with 15 AFand 19 non- YO, Non-AF detector using Heavi- Spe =0.997;
AF, plus two simulated 67.5(10) YO side step function to High SQ dataset: Sen = 0.972,
developmental and test- calculate sample- Spe=0.996.
ing databases entropy like index
Hanetal 37 All patients have cardiac 50-91YO 30s Wristwatch Outpatient— Thisis for PAC/PVC detec- — —
(2020) arrhythmia continuous tor for AF patients or NSR
measurement subject, not for detecting AF
Inuietal 40 Patients scheduled for 70.9(11.1) YO 1 min Smartwatch and Outpatient— This is for using ppg for — —
(2020) cardiac surgery wrist band continuous pulse rate estimation in AF
measurement as compared to ECG
Estrella-Gal- 9 4 AF,9 Non- AF 35-80YO 30s Smartphone Outpatient— PPG signals with Offset — —
lego et al continuous removed and EWMA filer
(2020) measurement applied for smoothening
Viliaho etal 359 169 AF, 190 NSR AF:72.2(14.3), 1 min Wrist band Inpatient— The five pulse inverval- Linear logistic Sen = 0.964 Spe = 0.963
(2021a) NSR:57.9(18.8) checkpoint based variables were: mean regression AUC=0.993
PIN, root-mean-square
values of successive differ-
ences (RMSSD), AF Evi-
dence (AFE), Coefficient of
Sample Entropy (COSEn)
and turning point ratio
(TPR); Four features based
on pulse amplitude were:
mean AMP, RMSSD, Sam-
ple Entropy (SampEn) and
TPR. one autocorrelation
feature.
Avram et al 204 32 Non-AF, 159 parox- 62.61(11.6) YO 5 min Smartwatch Outpatient— IBI features: the dispersion Logistic regression Sen = 0.878 (95% confidence
(2021) ysmal AF, 16 with per- continuous of the Poincare plot, the model interval [CI] 0.836—0.910)
sistent AF measurement standard deviation and the Spe =0.974(95% CI

modified Shannon entropy

97.10%—97.70%)
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Table 2. (Continued.)

Length
Author (year) Number of Age of popula- PPG Measurement Acquisition Performance results for
[Reference] patients Dataset features tion Mean (SD) segments device conditions Input data Methodology rhythms detection
Chorin etal 18 6 AF,4DM, 8 HTN, 3 59.4(21.3)YO 1 min Cardiac sense Outpatient— RR and GG intervals of PPG Threshold based
(2021) Brugada syndrome, 5 smartwatch continuous and ECG defibrillation
DFT after ICD implant measurement
Changetal 200 112 AF, 88 non-AF 66.1(12.6)YO 5 min Garmin Outpatient— Standard deviation of nor- An undisclosed heart Performance based on 5 min
(2022) smartwatch continuous mal-to-normal intervals rate classifier segments: Sen = 0.971,
measurement and root mean square of Spe =0.868
successive RR interval PPV of AF detection = 0.897
Hanetal 35 23NSR,5PAC/PVC,5 50-91YO 30s Smartwatch Outpatient— Root mean square of suc- Weighted average of Notreported. AF detection is
(2022) Basal AF, 5 AF with RVR continuous cessive differences two features and a part of the procedure for
measurement (RMSSD) and sample threshold-based rule estimating HR.
entropy (SampEn) from the
pulse intervals
Viliaho et al 173 76 AF, 97 NSR AF:77.1(9.7), 1 min Wrist band Outpatient— See Viliaho etal (2021Db) Linear logistic 30 min time-frame perfor-
(2021b) NSR: 67.3(15.8) continuous regression mance: Sen = 0.947,
measurement F1=0.954
Nonoguchi 286 163 with high AF risk, 66(12) YO for 30 min Wristwatch-type Outpatient— Features based on pulse per- A rule-based algo- Patient-level performance:
etal (2022) 123 with known AF the high-risk continuous pulse continuous iod (PP) values: CV, degree rithm using CV Sen = 0.980 Spe = 0.906
group, 67 (12) wave monitor measurement of variation and KS, Kolmo- and KS PPV =0.694 NPV = 0. 995.
YO for AF group gorov—Smirnov difference. Interval level performance:

Sen = 0.869, Spe = 0.988,
PPV =0.896, and
NPV =0.985

Abbreviations: YO—Year Old, s—second, A—atrial fibrillation, NSR—normal sinus rhythm, AFL—atrial flutter, SD—standard deviation, PAC—premature atrial contraction, PVC—premature ventricular contraction, Sen—sensitivity,

Spe—specificity, Ac—accuracy, PPV—positive predictive value, NPV—negative predictive value, AUC—area under the receiver characteristic curve, CI— confident interval, DFT—defibrillation threshold, ICD—implantable

cardioverter-defibrillator.
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Table 3. Studies on photoplethysmography based AF detection using ML approaches.

Author (year) Number Ageofpopulation  Length PPG Measurement Acquisition Performance results for
[Reference] of patients Dataset features Mean (SD) segments device conitions Input data Methodology rhythms detection
Yangetal 11 Patients referred to 63(12)YO 5,10, Customized wrist- Inpatient Statistical measures of Wave- Support Vector Machines Sen =0.701; Spe = 0.886;
(2019) hospital in AF state 15,20 s type device let transform coefficients with polynomial and radial- Acc=0.804
(mean, median, standard basis function kernels
deviation, variance, Shannon
entropy, energy, contrast,
inverse different moment,
homogeneity)
Nehaetal 15 13 PPG records for — 24s Finger pulse from Inpatient Time series features: crest to Artificial neural network Sen = 0.980; Acc =0.977
(2019) training and 2 PPG bedside monitors crest intervals, trough to (ANN), support vector
sample for testing trough intervals; heart rate. machine (SVM), Logistic
(MIMICII) regression, decision trees and
Random Forest
Fallet et al 17 All patients referred 57(13)YO 10s Wrist-type device Inpatient— PPG-wave features and RR Bagging decision trees AF versus NSR: Sen = 0.997;
(2019) for catheter ablation continuous time series features Spe =0.924; Acc = 0.981;
of cardiac arrhyth- measurement PPV =0.979; NPV = 0.989;
mia, 415 VA, 1370 F1=0.990. AF versus
samples of AF and (SR&VA): Sen =0.962;
381 NSR Spe =0.928; Acc = 0.950;
PPV =0.959; NPV = 0.934;
F1=10.960
Guoetal 224 424 suspected AF, 227 55t032Y0O 45s Wrist-type device — Peak-to-peak intervals of ppg Threshold based ANN Sen =0.93; Spe =0.84,
(2019) confirmed AF for uniform SR, the variance, PPV =0.85
entropy derived from the
peak-to-peak intervals were
fluctuating for AF episodes
Zhanget al 375 20 AF, 140 NSR, 47 Mean age 53 YO 45 Wrist-type device Inpatient— Peak to Peak intervals of Boosting Algorithm Sen = 0.955; Spe = 0.991;
(2019) Hypertension, 23 dia- continuous PPG, Kolmogorov-Smirnov PPV =0.931;NPV=1;
betes, 14 artery dis- measurement test for normality of con- Kappa = 0.960.

ease, 24 current
smoking and 32
drinking

tinous variables, Normal dis-
tributions presenested as
Mean (SD), Mann- Whitney
Test values for categorical
values
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Table 3. (Continued.)

Author (year) Number Ageofpopulation  Length PPG Measurement Acquisition Performance results for
[Reference] of patients Dataset features Mean (SD) segments device conitions Input data Methodology rhythms detection
Bus et al (2020) 32 8 NSR recordings — 32 con- Finger pulse wave — Mean IBJ; standard deviation =~ KNearest Neighbors (KNN);  Best performance: RBF-SVM.
(total length of secutive acquisition system of IBI; SDSD (standard Support Vector Machinewith ~ Sen, Spe and Acc = over 0.975
240 min), 24 AF inter-beat Portapres 2 (ENS, deviation of the successive linear kernel (Linear SVM); (specific performance una-
recordings (total interval Holland) differences between IBI); Support Vector Machine with vailable due to graphic pre-
length of 120 min); (IBI) pSD50 (percentage of succes- radial basis function kernel sentation); F1 = 0.985
253 AF samples; 381 sive differences between IBI (RBF SVM); Decision Tree
NSR samples greater than 50 ms) (DT); Naive Bayes (NB).
Corinoetal 200 simu- 100 AF, 100 NSR — 20, 30, 40, PPG simulator — Variability analysis of IBI Linear SVM Signal length (20 ~ 300 beats):
(2020) lated PPG 50, 100, based on phenom- time series; Irregularity of IBI Sen =0.881~0.991;
signals 150,200, enological model Spe=0.940 ~ 1; Acc=0.913
250 and 300 ~0.995.
beats
Eerikainen et al 40 276 hof AF, 116 hof Mean age in 30s Wrist-type data Outpatient— IBI features; PPG waveform Random Forest AF versus AFL versus Other:
(2020) atrial flutter (AFL), training set: 66 logging device continuous features and Accelerometer Sen=0.976/0.845/0.981;
and 472 h of other YOinAF, 63YO equipped withthe =~ measurement features Spe=0.982/0.997/0.928;
rhythms (NSR, and in AFLand 69 YO Philips Cardio and Acc=0.981/0.964/0.956.
sinus rhythm accom- in Other; Mean Motion Monitor-
panied by premature agein testset: 76 ing Module
atrial or ventrical YO, 70 YO and
beats) 72YO
Mol etal 149 PPG recordings are 69(9) YO 330s Smartphone Inpatient Several rhythm and signal SVM AF versus NSR: Sen = 0.963;
(2020) obtained during NSR; segments features, such as heart rate Spe =0.935; Acc = 0.949
AF: 108 records; NSR: variability parameters, peak
108 records. amplitude, and other signal
characteristics
Millén et al Not men- 828 NSR signals and — — Finger pulse from Inpatient— IBI time series features, XGBoost AF versus NSR: Sen = 0.984;
(2020) tioned 828 AF signals from bedside monitors continuous Time—frequency domain fea- Spe =0.995; Acc = 0.990
five open Physionet measurement  tures, and Frequency domain
datasets features
Aydemir et al 7 subject’s signals 20t052Y0 3 swin- Wrist bracelet _ Mean, standard deviation, K-nearest Neighbor, Naive Acc=0.930, CA rate = 0.890
(2020) acquired in squat, dow- autoregressive model para- Bayes, and Decision Tree
stepper and resting length PPG meter, values of the real part
phase and standard deviation,

values of the imaginary part
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Table 3. (Continued.)

Author (year) Number Ageofpopulation  Length PPG Measurement Acquisition Performance results for
[Reference] of patients Dataset features Mean (SD) segments device conitions Input data Methodology rhythms detection
Guoetal 604 Individuals at high More than 18 YO 48 sec Huawei smart Outpatient— Heart rate features, Heart XGBoost AF versus NSR: Sen = 0.821;
(2021a) risk for AF. device and Hol- continuous rate variability features, Cus- Spe =0.974; Acc =0.935;
ter ECG measurement  tomized AF detection model PPV =0.914; F1 = 0.865;
output probability and AUC=0.971
Mathematical features
Xieetal (2021) 21 Healthy participants — 10 sec Wearables on Outpatient— Wavelet transform based SVM AF versus NSR: Acc = 0.983
forearm checkpoint features
Hiraoka et al 80 Patients scheduled for Mean (SD) 65.8 10 min Apple watch Inpatient- Median value of the mean Gradient Boosting Deci- AF versus Other: Sen = 0.909;
(2022) cardiovascular YO (13.4) after continuous and SD of PPG pulse rate sion Tree Spe=0.838
surgery excluding one measurement
patient
Liaoetal 116 76 patients with par- 59.6(11.4)YO 10, 25, 40, Wrist-worn Outpatient— PPI SD, RMSSD, Shannon Random Forest AF versus NSR: Sen = 0.941;
(2022) oxysmal AF, 40 and 80 smartwatch continuous entropy (SE10, SE100, and Spe =0.934; Acc = 0.937;
patients with persis- heartbeats measurement SE1000), rolling SD3, PPV =0.930; and
tent AF RMSSD3, and MaxFFTSD3 NPV =0.939
for AF discrimination
Jeanningros 42 42 patients refferred — 30s Wrist bracelet Outpatient— IBI time series features, Fre- Ridge regression, random for- AF versus non-AF versus
etal (2022) for catheter ablation continuous quency domain features, and est, K-Nearest Neighbors NSR: average Sen = 0.734;
measurement Pulse wave analysis (PWA) and SVM Spe =0.879; Acc = 0.840;

features

PPV =0.645; NPV =0.841

Abbreviations: YO—Year Old, s—second, AF—atrial fibrillation, NSR—normal sinus rhythm, AFL—atrial flutter, SD—standard deviation, PAC—premature atrial contraction, PVC—premature ventricular contraction, Sen—

sensitivity, Spe—specificity, Acc—accuracy, PPV—positive predictive value, NPV—negative predictive value, AUC—area under the receiver characteristic curve, Cl—confident interval, DFT—defibrillation threshold, ICD—implantable

cardioverter-defibrillator, IBI—inter-beat interval.
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Table 4. Studies on photoplethysmography based AF detection using DL approaches.

Age of popu-
Author (year) Number of lation Measurement Acquisition
[Reference] patients Dataset features Mean (SD) device conditions Input data Methodology Performance results for rhythms detection
Shenetal (2019) 29+53 13 with persistent AF, 2 with — Samsung Outpatient— PPG segment 1D ResNeXt AUC=10.950
NSR, and 14 with changed wrist-wear- continuous
rhythm, additional 53 heal- able device measurement
thy free-living subjects
Rezaei Yousefi et al 30 15 with AF, 15 with NSR Mean Wrist-worn Inpatient IBI features Deep NN All data: Sen = 0.936 +0.216, Spe = 0. 992
(2019) 71.5Y0 PPG monitor +0.180, AUC = 0.996, After quality assess-
ment: Sen = 99.2+ 1.3 Spe = 0.995 £ 0.640,
AUC=0.997
Zaenetal (2019) 105 84 from Long- Term AF — Tri-axis accel- Outpatient— Consecutive IBIs RNN Without outlier rejection: Acc =0.929
Database from PhysioNet, erometer continuous Sen = 0.980 Spe = 0.912 F1 = 0.875 With
21 from Lausanne Uni- measurement outlier rejection: Acc = 0.986 Sen =1
versity Hospital (CHUV) Spe=0.978 F1 =0.981
Kwon etal (2019) 75 57 persistent AF, 18 long- Mean 63 YO Pulse Outpatient— PPG segment 1D CNN Sen = 0.993 Spe =0.959 Acc = 0.976
standing persistent AF oximeter checkpoint PPV =0.960 NPV = 0.993 AUC = 0.998
Torres-Soto and 163 107 for cardioversion (CV) CV:68YO Did not Outpatient— PPG segment Autoencoder Sen =0.980 Spe = 0.99 F1 = 0.960
Ashley (2020) group, 41 for exercise stress EST:56 YO specify continuous +1DCNN FPR=0.01 FNR =0.02
test (EST) group, and 15 for AM:67YO measurement
ambulatory (AM) group
Selder et al (2020) 60 AF was identi-fied in 6 70(17)YO Wrist band Outpatient— PPG segment for LSTM for QA, Sen =1, Spe =0.960, ACC = 0.970,
(10%) subjects, of which 4 continuous quality assess- and, Tree PPV =0.750, NPV =1
were previously measurement ment, 31 features based classi-
undiagnosed such as RRinter- fier for AF
vals for AF detection
detection
Aschbacher et al 51413 40 for algorithms training, 63.6 Wrist-worn Inpatient Modell: RMSSD Modell: Model 1: Sen = 0.741 Spe = 0.584
(2020) 11 for algorithms testing/51 (11.3) YO fitness tracker and RR interval Logistic AUC=0.717 PPV =0.808 NPV = 0.488
patients were enrolled dur- Model 2: 35 con- regression Model2: Sen = 0.810 Spe = 0.921
ing cardioversion, addi- secutive heartbeat Model2: AUC =0.954 PPV = 0.960 NPV = 0.671
tional 13 individual subjects Model3: Raw PPG LSTM Model Model3: Sen = 0.985 Spe = 0.880
during sleep segment 3: DCNN AUC=0.983 PPV =0.951 NPV = 0.962
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Table 4. (Continued.)

Age of popu-
Author (year) Number of lation Length PPG ~ Measurement Acquisition
[Reference] patients Dataset features Mean (SD) segments device conditions Input data Methodology Performance results for rhythms detection
Genzoni et al (2020) 37 All patients are for catheter — 30s Wrist-worn Outpatient— Consecutive IBIs GRU Sen =1 Spe =0.966 Acc =0.979
ablation procedures and device continuous
wear an optical heart rate measurement/
monitor device inpatient
Chenetal (2020) 401 All patients had a stable >18YO 71s Wrist band Inpatientand PPG segment SEResNet Sen =10.950 Sep = 0.990 Acc =0.976
heart rhythm outpatient— PPV =0.986 NPV =0.970
checkpoint
Kwon et al (2020) 100 81 for Persistent AF, 19 for >20YO0 30s Ring-type Outpatient— PPG segment 1D CNN Sen = 0.990 Spe =0.943 Acc = 0.969
long-standing persistent AF wearable checkpoint PPV =0.956 NPV =0.987 AUC = 0.993
device
Aschbacher et al 51 All patients with persistent 63.6 10s Smartwatc Outpatient— PPG segment LSTM/CNN LSTML 0.954 Sen = 0.810 Spe = 0.921
(2020) AF/Patients undergoing (11.3)YO continuous DCNN Sen = 0.985 Spe = 0.880
electrical cardioversion were measurement AUC=10.983
sedated and remained
supine during the study
(Chengetal 2020) MIMIC-IIT 60 sick subjects from Children: 10s ICU monitor Inpatient and time—frequency CNN-LSTM Sen =0.980 Spe = 0.981 Acc =0.982
waveform data- MIMIC-II1, 42 patients 0.8-16.5YO, and pulse outpatient— chromatograph AUC=10.996
base: 30000 from IEEE TBMEand 15 h Adults: oximeter continuous
patients, IEEE of PPG from synthetic 26.2-75.6 measurement
dataset: 59 chil- dataset YO
drenand 35
adults
Ramesh et al (2021) 37 10 with AF, 27 non-AF — 30s Simband Outpatient— Time domain CNN Sen = 0.94640.02 Spe = 0.9524-0.07
continuous features Acc=0.95140.03F1 = 0.8934-0.02
measurement AUC=0.949+0.03
Zhanget al (2021a) 53 38 for NSR, 5 for persistent 66.3 30s Smartwatch Outpatient— PPG segment multi-view Ave of Acc =0.916 Spe = 0.930 Sen = 0.908
AFand 10 for parox- (11.8) YO continuous convolutional
ysmal AF measurement neural
network
Dasetal (2022) 175 108 with AF, 67 non-AF — 25s Wrist-worn Outpatient— PPG segment Bayesiandeep ~ Without uncertainty threshold: Sen = 0.722
wearable continuous neural Spe =0.720 Precision 0.627 F1 = 0.671
device measurement network AUC = 0.793, Without threshold:

Sen = 0.728 Spe = 0.892 Precision 0.783
F1=0.754 AUC=0.858
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Table 4. (Continued.)

Age of popu-
Author (year) Number of lation Length PPG ~ Measurement Acquisition
[Reference] patients Dataset features Mean (SD) segments device conditions Input data Methodology Performance results for rhythms detection
Dingetal (2022) 139 126 for UCLA medical cen- 18-95YO for 30s Pulse Inpatient— PPG segment ResNet Sen =10.928 Sep = 0.988 Acc =0.961
ter, 13 for UCSF NeuroICU ~ UCLA medi- oximeter continuous PPV =0.985NPV =0.943
cal center, measurement
19-91YO
forUCSF
Neuro ICU
Sabbadini et al (2022) 4158/88 56 from MIMIC database — 10s PPG device Outpatient— Root-mean- Deep NN F1 =0.920, Precision 0.890, Recall 0.950
(13 AF), 32 from UQVSD (did not find continuous square (RMS) and
database (2 AF) specified measurement the mean of Skew-
device name?) ness and Kurtosis
Nguyen et al (2022) 40 18 with NSR, 15 with AF, — 30s PPG sensor Outpatient— poincare plot 2D CNN Sen =0.968 Spe = 0.989 Acc =0.981
and 7 with PAC/PVC patch mea- checkpoint
sured on the
wrist
Liuetal (2022) 228 Patients all have arrythmia 52.3 10's Fingertip PPG Outpatient— PPG segment 1IDCNN AF Spe = 0.934 Acc = 0.944 PPV = 0.890
(11.3)YO sensor continuous NPV =0.940
measurement
Nehaetal (2022) 670 PPG sig- 400 normal, 90 PVC, 90 — 8s ICU monitor Inpatient Dynamic time Deep NN Sen = 0.970 Spe = 0.970 Acc = 0.960
nals/23 tachycardia, and 90 atrial warping based F1 =0.960 precision = 0.960
flutters features
Dinget al (2022) 28539 patients, Female AF 2304, Male AF 22t065Y0 30s Fingerprint, — PPG segment Autoencoders AUC =0.960
UCSF HER data- 3473, Female cohort 13203, Wearable + ResNet
set, UCLA data- Male cohort 15330, device
set, Sim band NSR, PVCs
Dataset, Stan-
ford Dataset
Kwon etal (2022) 35 All patients underwent suc- Mean 10s Smart wring Outpatient— PPG segment Not specify AUROC 0.995 Sen = 0.987 Spe = 0.978
cessful electrical cardiover- 58.9Y0 continuous FPR=0.02FNR=0.01
sion for AF measurement

Abbreviations: YO—Year old, s—second, AF—atrial fibrillation, NSR—normal sinus rhythm, AFL—atrial flutter, SD—standard deviation, PAC—premature atrial contraction, PVC—premature ventricular contraction, Sen—sensitivity,

Spe—specificity, Acc—accuracy, PPV—positive predictive value, NPV—negative predictive value, AUC—area under the receiver characteristic curve, Cl—confident interval, DFT—defibrillation threshold, ICD—implantable

cardioverter-defibrillator, IBI—inter-beat interval.
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studies using smartphones typically perform PPG measurements at the finger using reflective-type PPG sensors,
with the camera and flashlight serving as the photosensitive and photoemitter components, respectively.

For studies in which PPG signals were experimentally acquired the vast majority used a reflective-type PPG
sensor, which includes form factors such as the smartwatch, wrist band and armband. For studies using PPG
signals collected through ‘“fingertip sensors’, the working mode (i.e. reflective versus transmissive mode) was not
disclosed. Regarding the wavelength of the PPG sensors, this information was not disclosed in more than half of
the studies (approximately 57.6%). Moreover, approximately 30.5% and 13.6% of the studies used one or more
devices using green and red/infra-red, respectively, making the former wavelength the most common one
among studies specifying the device’s wavelength. More information can be consulted in table B1 in appendix B.

4.1. Updates on PPG-based AF detection using statistical analysis approaches

A compilation of studies for PPG-based AF detection employing statistical analysis approaches is summarized in
table 2. In the interest of maintaining uniformity and enabling systematic evaluation of the advancement in this
field in recent years, our study deliberately replicates the table format of tables 1-3 from Pereira et al (2020) in
our tables 2—4. The table provides an overview of these studies in chronological order, including patient cohorts,
data characteristics, employed features and methods, care settings (inpatient versus outpatient), and the
resultant performance outcomes. It shows that the statistical analysis approach mainly relies on threshold-based
rules on the selected set of features for AF detection. Under this umbrella, the most frequently employed features
for AF detection include the RR interval from the ECG and the inter-beat interval (IBI) from PPG (Kabutoya
etal2019, Solosenko et al 2019, Viliaho et al 2019, Viliaho et al 2021b, Chang et al 2022, Han et al 2022).
Additionally, the root mean square of successive differences (RMSSD) and sample entropy (SampEn) are also
among the most utilized features (Eerikdinen et al 2019, Han et al 2019, Bashar et al 2019b, Avram et al 2021,
Nonoguchi et al 2022). Consequently, the extracted features undergo analysis in terms of their histograms, both
with and without the presence of AF and other cardiac rhythms. This analysis assists in determining optimal
thresholds that effectively differentiate various rhythmic classes. Once these thresholds are established, they can
be applied to the same features extracted from PPG signals.

Furthermore, the utilization of identical feature sets with alternative statistical approaches, such as logistic
regression, enhances the versatility and comprehensiveness of AF detection studies. By applying logistic
regression, researchers can establish a mathematical model that estimates the probability of AF presence based
on the input features. The logistic function, also known as the sigmoid function, is employed to transform the
outputinto a range between 0 and 1. This transformed probability serves as an indicator of the likelihood of AF
compared to non-AF cases. The advantage of logistic regression lies in its ability to provide a quantitative
measure of the probability, allowing for a nuanced understanding of the classification outcome. Also, as
reported in table 2, studies incorporating larger patient cohorts intend to utilize logistic regression (Eerikdinen
etal2019, Avram et al 2021, Han et al 2022) rather than rule-based models. This observation aligns with the
trends identified in a previous review study (Pereira et al 2020), further reinforcing the preference for logistic
regression in cases involving a higher number of patients.

As compared to the previous review, we observe a rising number of studies using the statistical analysis approach
(4.25 studies/year between 2019 and 2022 versus 2 studies/year between 2013 ~ 2019), which aligns with the rising
number of all-type AF detection studies in recent years. It can be observed that more studies focus on outpatient
populations, which might be attributed to the rapid advancement of wearable technology in recent years.

4.2. Updates on PPG-based AF detection using machine learning approaches

Table 3 presents a chronological summary of AF detection studies based on machine learning approaches in the last
four years. Machine learning has demonstrated promising results in the detection of AF in low-sample settings. The
application of ML techniques requires domain expertise for feature engineering to extract features that effectively
capture the comprehensive characteristics of PPG waveforms and enable the discrimination of different classes.
Commonly extracted features include morphological descriptors, time domain statistics, statistic measurements in
the frequency domain, nonlinear measures, wavelet-based measures, and cross-correlation measures.

Of different machine learning algorithms, Tree-based algorithms, such as decision trees, random forest, and
extreme gradient boosting (XGBoost) (Chen and Guestrin 2016), are the most popular choices and are
collectively employed in 12 out of the 18 studies employing machine learning for AF detection. Random Forests
have demonstrated strong performance in AF detection tasks using PPG. This ensemble learning algorithm
combines multiple decision trees to create a robust classification model. By aggregating the predictions of
individual trees, Random Forests can reduce overfitting, handle complex feature interactions, and provide
accurate AF detection results. The versatility, interpretability, and resilience to noisy data make Random Forests
apopular choice in PPG-AF detection research. XGBoost is a boosting algorithm that combines gradient
boosting with decision trees to achieve high predictive accuracy in PPG-AF detection. XGBoost sequentially
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builds an ensemble of weak models, iteratively improving its performance by minimizing a loss function. It can
effectively handle complex feature interactions and capture subtle patterns in PPG signals, leading to improved
AF classification results and better detection performance compared to individual decision trees.

The second most popular (used in 8 out of 18 studies) machine learning classifier for AF detection is support
vector machines (SVM) (Cortes and Vapnik 1995), due to their ability to handle high-dimensional feature
spaces. SVM separates PPG signal data into different classes by identifying an optimal hyperplane that
maximizes the margin between the classes. By mapping PPG signals into a higher-dimensional space, SVM can
capture complex relationships and find effective decision boundaries for accurate AF classification. There are
also other classifiers adopted in the studies such as K-Nearest neighbors (KNN) and artificial neural networks
(ANN) but are not widely adopted as the above two classifiers.

Compared to the previous review, we observe a sharp increase in the adoption of machine learning for AF
detection using PPG (5 studies/year between 2019 and 2022 versus 1.5 studies/year between 2016 and 2019).

4.3. Updates on PPG-based AF detection using deep learning approaches

Deep learning has emerged as a powerful approach for detecting AF in PPG signals, as reported in table 4. Unlike
traditional ML methods, DL models can learn comprehensive feature representations through an end-to-end
learning fashion, eliminating the need for complex feature engineering. This is achieved by learning from a large
amount of training samples to train deep neural networks, which consist of interconnected layers of
computational nodes.

As shown in table 4, studies using DL approaches can be divided into two main categories. The first category
(employed in 14 out of 24 studies) is a family of convolutional neural networks (CNN). CNN is commonly
applied in computer vision tasks, but they have also been successfully adapted for PPG-AF detection CNN's
utilize convolutional layers to automatically extract relevant features from the PPG signal data (Shen et al 2019).
These convolutional layers apply numerous filters across the signal, allowing the network to capture local
patterns and identify important discriminative features associated with AF. By stacking multiple layers, CNNs
can learn increasingly complex representations of the PPG signals, enhancing the accuracy of AF detection.
Residual network (ResNet) (He et al 2016), a specific type of CNN, addresses the challenge of training deep
neural networks by utilizing skip connections. These connections allow the network to bypass layers and pass
information directly to subsequent layers, mitigating the vanishing gradient problem. In the context of PPG-AF
detection, ResNet architectures enable the training of deeper networks with improved performance and ease of
optimization. By incorporating residual connections, ResNet models can capture fine-grained details and long-
range dependencies in PPG signals, leading to enhanced AF detection capabilities. The second categoryisa
family of sequential DL models, of which long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997), is a popular choice (employed in 4 out of 24 studies). LSTM is a recurrent neural network
architecture commonly used in PPG-AF detection due to its ability to effectively capture temporal dependencies
in sequential data. In the context of PPG signals, LSTM models can analyze the sequential nature of the data,
considering the temporal order of the signal samples. This allows LSTM to capture long-term patterns and
dynamic changes in the PPG signals, which are crucial for accurate AF detection.

To effectively train DL models, a substantial amount of labeled training data is typically required. However,
in biomedical applications, the availability of labeled data is often limited. Transfer learning is a potential
solution to this challenge, wherein a pre-trained DL model is fine-tuned for a specific task. The number of layers
and the complexity of fine-tuning depend on the particular application. For example, in one study, a pre-trained
CNN model designed for ECG analysis was fine-tuned to detect AF from PPG segments using a small set of
labeled data. Another promising technique is data augmentation to generate artificial samples to boost the
number of samples for training the DL models and increasing the generalizability of model performance.

DL is the fastest growing approach of all three approaches for PPG-AF detection. We observe an average of 6
studies employing DL per year between 2019 and 2022, as compared to 3.5 studies/year between 2018 and 2019.

5. Discussion

While the performance metrics reported in tables 2—4 suggest the promising potential of PPG for AF detection,
several challenges remain. In this section, we will delve into these issues, offering insights drawn from our
comprehensive analysis of the reviewed studies. Key concerns to be discussed include PPG signal quality, label
accuracy, and the impact of concurrent arrhythmias. Studies that have considered these issues are summarized
in table 5. Furthermore, we extend our discussions to encompass additional considerations pertaining to PPG-
based AF detection. These include algorithmic factors such as performance metrics, data sources, computational
efficiency, domain shifts, as well as model explainability and equity.
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Table 5. Challenging factors considered in the studies.

Factors Studies Capacity
Signal Quality STAT (Eerikiinen eral 2019, Han et al 2019, Kabutoya et al 2019, Solo$enko et al 2019, Bashar 11/17
etal 2019b, Han et al 2020, Viliaho et al 2021b, Chang et al 2022, Han et al 2022)
ML (Falletetal 2019, Neha et al 2019, Eerikainen et al 2020, Mol et al 2020, Guo et al 2021a, 9/18
Jeanningros et al 2022, Liao etal 2022, Zhu et al 2022, Neha et al 2023)
DL (Kwon et al 2019, Rezaei Yousefi et al 2019, Zaen et al 2019, Chen et al 2020, Kwon et al 12/22

2020, Selder et al 2020, Torres-Soto and Ashley 2020, Zhang et al 2021b, Das et al 2022,
Liuetal 2022, Neha et al 2022, Nguyen et al 2022)

Label noise STAT (Viliaho et al 2019, Viliaho et al 2021b, Chang et al 2022) 4/17
ML (Fallet et al 2019, Hiraoka et al 2022, Liao et al 2022, Zhu et al 2022) 4/18
DL (Kwon etal 2019, Aschbacher et al 2020, Kwon et al 2020, Kwon et al 2022, Liu et al 2022, 6/22

Nguyen et al 2022)
Concurrentarrhythmias ~ STAT (Eerikdinen et al 2019, Bashar et al 2019b, Han et al 2019, 2020, 2022) 5/17
ML (Eerikainen et al 2020, Liao et al 2022) 2/18
DL (Kwon etal 2019, Genzoni et al 2020, Ding et al 2022, Liu et al 2022) 4/22

5.1. PPG signal quality

PPG signal quality remains a considerable challenge, which is widely acknowledged within the scientific
community. A multitude of complicating factors can compromise the PPG signal quality, including motion
artifacts, skin tone variations, sensor pressure variations, respiratory cycles, and ambient light interference, only
to name a few. The challenge of noise in PPG signal is particularly acute when it comes to the continuous
acquisition of PPG, which is crucial for long-term monitoring of AF risk.

Asreported in table 5, most of the reviewed studies take signal quality into consideration, with 54% of the
reviewed studies implementing measures to exclude PPG signals of poor quality. For example, in Han et al (2020),
the authors presented a noise artifact detection algorithm designed for detecting noise artifacts. Out of a total of
2728 30 s PPG strips, only 314 strips were deemed suitable for further analysis after applying the algorithm.
Similarly, in Torres-Soto and Ashley (2020), the authors proposed a multi-tasking framework that incorporated
both signal quality assessment and AF detection tasks. Only PPG signals of excellent quality were retained for the
purpose of AF detection. This practice, however, harbors potential issues that warrant deeper consideration.
Firstly, by systematically discarding vast swaths of signal data considered of inferior quality, the earliest possible
detection of AF is inevitably delayed, creating a potentially significant time lag in diagnosis. Secondly, this approach
harbors a statistical dilemma; the discarded PPG-AF signals could be construed as false positives within the context
of the overall analysis. However, such instances are typically overlooked when calculating the positively predicted
value or false positive rate, thereby potentially inflating the model’s reported performance. Consequently, the
reliance on selective data exclusion as a signal quality control strategy may inadvertently compromise the validity
of the study’s outcomes and the efficacy of predictive models developed therefrom.

We propose a nuanced perspective on PPG signal quality assessment rather than adhering to the
dichotomous approach of designating signals as merely black or white (Charlton ef al 2023). Instead, we suggest
the computation of a signal quality index (SQI) as a continuous metric (Guo et al 2021b). This calculation would
be based on the proportion of motion artifacts present within individual PPG segments, thus providing a more
precise estimate of signal quality. Subsequently, an appropriate threshold could be ascertained to filter out PPG
signals devoid of meaningful information. Alternatively, one can integrate the signal quality information as part
of the model input that controls the uncertainty level of the model output. These approaches would strike the
balance of salvaging PPG signals with suboptimal quality for disrupt-less monitoring and model performance.

5.2.Label noise
Theissue of label noise in annotated datasets presents another significant challenge in the application of PPG for
AF detection. Accurate and consistent labeling of datasets is crucial for the development and validation of reliable
detection algorithms (Song et al 2022). To achieve this, it usually involves more than two clinical domain experts to
cross-check the agreement of annotations, and a reconciliation strategy needs to be in place in the event of
disagreement. However, many studies often fall short in this aspect due to the labor-intensive task and an
insufficient number of cardiologists available to annotate the datasets. Across the reviewed studies, only 9 out of the
57 studies (Kwon et al 2019, Viliaho etal 2019, Viliaho et al 2021b, Chang et al 2022, Liao et al 2022, Liu et al 2022,
Nguyen etal 2022, Zhu et al 2022) employed the expertise of at least two cardiologists for annotation, as reported in
table 5. This scarcity of expert annotators can result in imprecise and incomplete labeling of AF events, leading to
label noise, which in turn, may undermine the performance of supervised learning algorithms.

Furthermore, the absence of standardized guidelines to address disagreements among annotators
exacerbates this issue. In the event of conflicting annotations, the lack of a clear protocol or consensus
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Table 6. Summary of the data annotation methods across the three study categories.

Ground-truth Studies Capacity
Simultaneously acquired ECG STAT (Eerikiinen etal 2019, Han et al 2019, Kabutoya et al 2019, Solo$enko et al 17/17
signals 2019, Viliaho et al 2019, Bashar et al 2019b, Estrella-Gallego et al 2020, Han

etal 2020, Inui et al 2020, Avram et al 2021, Chorin et al 2021, Viliaho et al
2021b, Chang et al 2022, Han et al 2022, Nonoguchi et al 2022)
ML (Fallet et al 2019, Guo et al 2019, Yang et al 2019, Bus et al 2020, Corino et al 13/18
2020, Eerikainen et al 2020, Millan et al 2020, Mol et al 2020, Guo et al 2021a,
Hiraoka et al 2022, Jeanningros et al 2022, Liao et al 2022, Zhu et al 2022)
DL (Kwon et al 2019, Rezaei Yousefi et al 2019, Shen et al 2019, Zaen et al 2019, 17/22
Aschbacher et al 2020, Chen et al 2020, Genzoni et al 2020, Kwon et al 2020,
Selder et al 2020, Torres-Soto and Ashley 2020, Ramesh et al 2021, Zhang et al
2021a, Kwon etal 2022, Liu et al 2022, Neha et al 2022, Nguyen et al 2022,
Dinget al 2023)

Labeled PPG signals STAT — 0/17
ML (Nehaetal2019,2023) 2/18
DL (Nehaetal 2019, Das et al 2022) 2/22
Mixed annotation methods or STAT — 0/17
simulated data
ML (Aydemir et al 2020) 1/18
DL (Cheng et al 2020, Ding et al 2022) 2/22
Unknown STAT — 0/17
ML (Zhangetal 2019, Xie etal 2021) 2/18
DL (Sabbadini et al 2022) 1/22

mechanism can lead to inconsistencies in the dataset. This variability not only confounds the training of
predictive models but also hampers the reproducibility of research findings. Consequently, establishing robust
procedures for data annotation, which involve recruiting sufficient expert annotators and defining clear rules for
resolving disagreements, is paramount. Addressing these issues would significantly enhance the quality of the
annotated PPG datasets, thereby facilitating more reliable and accurate AF detection.

In addition to the shortage of expert involvement, the field faces another substantial challenge: the absence of
clear clinical guidelines for annotating AF events using PPG data. Unlike ECG, which has well-established
guidelines for AF event labeling, PPG operates in a far less standardized environment. This lack of formalized
guidance further exacerbates the risk of label noise, compromising both algorithmic performance and clinical
reliability. Given these constraints, it becomes imperative to consider multimodal signal inputs when annotating
data. Incorporating ECG or other established modalities alongside PPG can provide a more robust framework
for annotation, thereby improving the quality of labeled data.

Also, table 6 provides an overview of the methodologies used in obtaining annotated PPG data across the
three study categories. Among the 57 studies, a significant majority (47 studies, representing approximately 80%
of the studies) relied on annotated ECG data as the primary reference for validating PPG data during the
classification phase, emerging as the predominant approach for generating ground-truth data. Furthermore,
four studies used direct PPG data labeling, while three studies adopted mixed annotation techniques, which
included simulated data (i.e. PPG data was generated based on acquired and annotated ECG signals). Notably, in
three instances, the specific methodology for ground-truth generation was not explicitly outlined.

5.3. Concurrent arrhythmias

The detection accuracy of AF through PPG can be significantly influenced by the presence of other arrhythmias,
notably premature ventricular contractions (PVC), premature atrial contractions (PAC), and atrial flutter (AFL).
All of these introduce irregularities into the heart rhythm that can mimic the rhythm irregularities seen in AF,
potentially leading to false-positive detections. PVCs and PACs are characterized by early heartbeats originating
from the ventricles and atria, respectively (Han et al 2020). These early beats can disrupt the regular rhythm of
the heart, resulting in PPG signal patterns that may resemble those associated with AF. Whereas in AFL, the
rhythm is typically more organized and less erratic than AF, presenting a sawtooth-like pattern in ECG tracings
which does not typically manifest in PPG data (Eerikainen et al 2020). This organized rhythm may not exhibit
the characteristic variability and irregularity that PPG-based AF detection models are designed to identify.
Consequently, a PPG-based AF detection model might mistakenly classify these as AF events, thereby reducing
the specificity of the model. Furthermore, the simultaneous presence of AF and other arrhythmias in the same
patient adds another layer of complexity to the problem. This co-existence can modify the PPG signal’s
morphology in ways that differ from the signals of patients with AF or PVC/PAC alone, making it more difficult
to accurately identify the presence of AF.
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Itis noteworthy that several studies considered the presence of arrhythmias other than AF, as shown in
table 5. For instance, in the study by Eerikainen et al (2020), Liao et al (2022), the differentiation of PVC and PAC
from AF using PPG signals was explored. The results of this investigation demonstrated successful
differentiation between PVC/PAC and AF based on PPG signal characteristics. Despite limited research on
PPG-based detection of atrial flutter (AFL), Eerikdinen et al have shown that PPG can differentiate among AF,
AFL, and other rhythms. They employed a Random Forest classifier that utilizes a combination of inter-pulse
interval features and PPG waveform characteristics, achieving high sensitivity and specificity (Eerikainen
etal 2020). These findings suggest that PPG-based analysis holds promise for distinguishing various types of
arrhythmias beyond AF. Thus, when developing and evaluating PPG-based AF detection models, it is critical to
account for the potential influence of other arrhythmias. Robust algorithms should be designed to discriminate
between AF and these other rhythm disturbances to maintain high detection accuracy, reinforcing the necessity
of comprehensive, diverse, and well-annotated training datasets in the development of these predictive models.

5.4. Quantitative metrics for algorithm performance evaluation

The studies reviewed in this work always use conventional performance metrics, such as the area under the
receiver operational characteristics curve (AUROC), accuracy, sensitivity, specificity, and F1 Score. However, it
is crucial to acknowledge that relying solely on these conventional metrics may be insufficient, particularly
within the context of continuous health monitoring scenarios (Butkuviene et al 2021). The landscape of
continuous health monitoring, facilitated through wearable devices, unfolds as a dynamic and perpetually
evolving terrain of data. Within this context, the intrinsic nature of a continuous data stream introduces
complexities that transcend the conventional boundaries of traditional evaluation metrics. In scenarios wherein
health-related parameters undergo ceaseless scrutiny, the spectrum of fluctuations, subtleties, and overarching
trends assumes paramount significance. Conventional metrics, by design, tend to compartmentalize
performance assessment within discrete segments, potentially missing the panoramic context that is intrinsic to
continuous health monitoring. This paradigm invites us to reflect upon the necessity of embracing evaluation
methodologies that are attuned to the temporal dynamics, such as assessing the frequency of AF occurrence that
reflects AF burden, the duration of AF episodes, the nuances of variation, and the holistic import of trends. For
instance, incorporating equivalent standards to the ANSI/AAMI EC57:2012 standard (which is used for ECG)
(American Association of Medical Instrumentation 2020) into algorithm evaluation frameworks for PPG-based
AF detection could provide guidance for assessing the clinical significance in continuous monitoring scenarios.

5.5. Domain shift problem

PPG signals, despite their utility in non-invasive physiological monitoring, present certain complexities linked
to the site of acquisition and inter-patient variability. It has been observed that PPG signals sourced from distinct
anatomical sites yield diverse morphological patterns (Fleischhauer et al 2023). This is primarily due to the
different vascular structures, skin thickness, and other physiological attributes specific to these sites. Such
morphological variations can pose significant challenges in interpreting these signals and developing universally
applicable models, as the distribution of signal characteristics is inherently contingent on the site of collection.

Moreover, inter-patient variability further compounds this issue by introducing additional variations in the
data distribution. These variations stem from a wide array of factors, including demographic attributes (such as age
and sex), physiological characteristics (including skin pigmentation and body mass index [BMI]), and medical
conditions unique to individual patients (Clifton e al 2007). For instance, an older patient might exhibit a different
PPG signal morphology due to increased arterial stiffness, while individuals with darker skin might present a
different signal-to-noise ratio owing to higher melanin content that can observe more light than lighter skin.

These site-specific and inter-patient differences can induce what is referred to as a ‘domain shift’ problem in
machine learning (Wang and Deng 2018, Radha et al 2021). Here, a model that is trained on data from a specific
group (for example, PPG signals from a certain body site or a particular patient group) may not generalize the
model performance when it is applied to a different group. Therefore, while harnessing PPG signals for health
monitoring and disease prediction, it is paramount to consider these variations and devise strategies to address
the domain shift problem for reliable and generalized model performance.

5.6. Lack of large-scale labeled dataset

In concert with the label noise issue discussed in section 5.2, there exists a challenge of a paucity of large-scale,
annotated datasets. To develop robust and reliable algorithms for AF detection, especially when deep learning
models are employed, it requires extensive, labeled datasets. These ideal datasets should encompass a broad
range of patient demographic groups, diverse health conditions, and various physiological states to ensure
generalizable findings. Furthermore, they should contain precise annotations of the AF events in the PPG signal
to facilitate effective supervised learning.
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Emerging research is increasingly focused on addressing this issue by generating synthetic PPG signals through
various data augmentation techniques. These range from traditional computational models that simulate
physiologic PPG patterns (e.g. PPGSynth) (Tang et al2020) to advanced generative models such as generative
adversarial networks (GANs) (Goodfellow et al 2020, Ding et al 2023), variational autoencoders (VAEs) (Kingma
and Welling 2013), and diffusion models. However, the extent to which these synthesized signals contribute to
improved learning outcomes remains an open question. Recent research by Cheng et al indicates the existence ofa
‘performance ceiling’'—a limit to the improvements achieved by incorporating synthetic signals (Ding et al 2023).
This underscores the need for further investigation into more effective algorithms for synthetic signal generation as
well as a deeper understanding of this performance ceiling phenomenon.

To sum up, the lack of large, labeled datasets impedes the progress of research in this area, limiting the
development and validation of predictive models. It restricts the ability to comprehensively evaluate and
compare the performance of different AF detection methods under diverse and challenging conditions.
Additionally, it hampers the exploration of more advanced machine learning techniques, which often
necessitate large quantities of annotated data to train effectively. Therefore, efforts to collect/generate, share,
and consolidate large-scale, well-annotated PPG datasets for AF detection represent a critical step to move the
performance needle in this field.

5.7. Computational time

With the rapid advancement of graphics processing units (GPUs) and increasing computational power, it is now
feasible to train complex, large-scale neural networks that outperform traditional statistical or conventional
machine learning methods (Thompson et al 2020). However, this complexity presents new challenges,
particularly for model inference. The inference process, which involves generating predictions from new data
based on trained models, can be computationally demanding. This poses significant obstacles for wearable
technologies that rely on edge computing, as these calculations can quickly deplete battery life, thereby
undermining the feasibility of continuous monitoring (Chen and Ran 2019). Alternative solutions include
offloading computational tasks to more powerful, tethered smartphones or to cloud-based platforms. Yet, both
alternatives require robust and fast data streaming infrastructures.

Research efforts to address these challenges are bifurcated. On one hand, there is a burgeoning focus on ‘tiny
ML,” which aims to optimize neural network architectures for efficient edge computing without sacrificing
performance. On the other hand, advancements in hardware and battery technology are driving the
development of more powerful sensing techniques that enhance the capacity for long-term monitoring.
Consequently, tackling these computational challenges necessitates orchestrated efforts from both research
directions. It also underscores the imperative to keep computational requirements at the forefront when
developing PPG-based AF detection algorithms.

5.8. Explainability

Explainability in the context of PPG AF detection algorithms is a critical aspect that determines how well we
understand the decision-making process of these algorithms. This is particularly important in healthcare, where
the decisions made by these algorithms can have significant implications for patient care. Statistical methods are
often considered naturally explainable because they rely on well-understood mathematical principles and
procedures. For example, a linear regression model, which lies in the intersection between statistical methods and
machine learning, makes predictions based on a weighted sum of input features. The weights (or coefficients)
assigned to each feature provide a direct measure of the feature’s importance in the prediction, making it relatively
straightforward to interpret the model’s decisions. Machine learning methods, on the other hand, often involve
more complex computations and may not be as directly interpretable as statistical methods. However, techniques
have been developed to calculate feature importance, which can provide a certain level of explainability. For
instance, in Yang et al (2019), the Fisher score method was employed to calculate the importance of features. The
Fisher score is a statistical measure that evaluates the discriminative power of individual features in a classification
task. By utilizing this method, the study aimed to assess the relevance and significance of different features in the
context of atrial fibrillation detection. Similarly, in Jeanningros et al (2022), each feature was input into the
classifier separately, enabling the generation of a ranked list based on its impact on the overall classification
performance through this sensitivity analysis.

Deep learning models, on the other hand, are often referred to as ‘black boxes,” which make predictions
based on intricate, high-dimensional mappings that are difficult to comprehend for humans. While they may
achieve high predictive accuracy, it’s often challenging to understand what features and their interactions the
models use to make predictions, and how these features contribute to the final decision. This lack of
transparency can be a major drawback in healthcare applications, where it’s desirable to understand the
underlying decision logic so as to gain trust from end users, such as clinicians and patients.
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Several approaches are being explored to improve the explainability of deep learning models, including
attention mechanisms, layer-wise relevance propagation, and model-agnostic methods like local interpretable
model-agnostic explanations (LIME) and SHapley Additive exPlanations (SHAP) (Binder et al 2016, Ribeiro
etal 2016, Zhou et al 2016, Lundberg and Lee 2017). A good example is Liu et al (2022), where authors used the
guided gradient-weighted class activation mapping (Grad-CAM) approach to visualize crucial regions within
the PPG signals that enabled the model to predict a specific rhythm category. Despite these advances,
explainability in deep learning remains an active area of research, particularly in the context of PPG-based AF
detection.

5.9. Performance bias and model equity

Disparities in both access to and outcomes from utilizing digital health solutions and biotechnologies manifest a
variety of identity dimensions, including economic status, social background, ethnicity, and gender (Lanier
etal2022). As described by Braveman (2014), health equity means, ‘...striving for the highest possible standard
of health for all people and giving special attention to the needs of those at greatest risk of poor health, based on
social conditions.” In the context of PPG-based AF detection, this issue of equity extends across a spectrum of
potential causes. [t encompasses accessibility issues, particularly for individuals from rural areas or those with
disadvantaged socioeconomic statuses, as well as physiological factors like skin tone and obesity, which can
influence the reliability of PPG readings (Ajmal et al 2021, Fine et al 2021). Of the studies reviewed, a mere three
explicitly touched upon the issue of performance bias and model equity (Aschbacher et al 2020, Avram
etal2021, Zhanget al 2021b). This oversight underscores the pressing need to heighten awareness and equity
considerations within the field. To tackle this challenge, a multidisciplinary approach is necessary, and
healthcare providers, engineers, and researchers must proactively develop technologies that consider the needs
of vulnerable and underrepresented populations.

6. Conclusion

In conclusion, this comprehensive review highlights the growing significance of PPG-based AF detection in
addressing a critical clinical challenge. The surge in research efforts, especially in machine learning and deep
learning approaches, underscores the potential of PPG technology for continuous and accurate AF
monitoring. While machine learning techniques offer versatility and promising results, deep learning models
demonstrate remarkable performance by automating feature extraction. Nevertheless, challenges related to
signal quality, label accuracy, and concurrent arrhythmias persist, necessitating ongoing research and
development. Furthermore, the availability of large-scale labeled datasets, computational efficiency, model
explainability, and addressing performance bias and equity issues emerge as crucial considerations in
advancing PPG-based AF detection technology. This review underscores the importance of continued
collaboration between the medical and artificial intelligence communities to refine and deploy effective
solutions for AF detection, ultimately improving patient outcomes in the face of this widespread health
concern.
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Table Al. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (STAT).

Author (year)
[References]

Initial data

Excluded data

Excluded data (%)

Total Acquisition time after exclusion

Train/test data split

Viliaho etal (2019)

Eerikéinen et al
(2019)

Kabutoya et al
(2019)

Bashar et al (2019b)

Hanetal (2019)

Hanetal (2019)

Solosenko et al

(2019)
Han et al (2020)

Inuietal (2020)

220 subjects

40 subjects
59 patients

2394 segments

491 segments

2728 30 s segments

33 AF events from
40 enrolled
subjects

Initially 220 subjects, with 7 subjects
excluded due to inadequate quality of
data or inconclusive rhythm
8 patients (40 min)

UMass dataset: 2080 30 s acquisi-
tions (17.3 h)

428 segments

314 30 ssegments

10 AF events due to device-related noises
and interruptions

3.2% patients

209% patients/signal length

86.9% of PPG segments

87.2% of segments (for the
proposed motion noise artifact
signal-quality criteria)

10.8% of signals

MNE 88.5%

30% of AF events

8.8 h (AF patients), 8.9 h (Sinus Rhythm control)

5 min x 32 patients = 160 min
150 seconds x (29 AF + 30 SR); total of 1,180 beats

UMass dataset: 314 segments were clean and used (55
AF and 259 non-AF); Chonlab: NSR subjects (9 subjects;
285 segments) and 52 30 s segments were clean/used
30 sec segments x 63 total segments (proposed MNA:
Motion and Noise Artifacts)

141 30 s segments are detected as clean data from the 16
patients (11 with SR and 5 with cardiac arythmia)
316 hfor AFand 411 h for non-AF

(all 37 subjects with cardiac arythmia) 2728 x 30 sec for
training dataset (2 subjects, one AF and one non-AF)
101 x 30 sec for Samsung Gear S3 Dataset 4 h of PPG

data for testing dataset MIMIC I1I Dataset (2 AF, 5 NSR

and 3 PAC/PVC)
23 AF events

Unspecified (probably from ECG as GT)

leave-one-subject-out cross- validation
Unspecified (probably from ECG as GT)

Unspecified (probably from ECG as GT)

Unspecified (probably from ECG as GT)

Train: 37 subjects; Test: first 2 subjects (1
AF and 1 non-AF) and then 10 subjects
with (2 AF, 5 NSR and 3 PAC/PVC)
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Table A2. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (STAT continued).
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Author (year)
[Reference] Initial data Excluded data Excluded data (%) Total Acquisition time after exclusion Train/test data split
Estrella-Gallego et al — — — 2 minx 9 subjects = 18 min —
(2020)
Viliaho etal (2021a) 365 PPG signals/subjects with 6 PPG signals/subjects 1.6% of PPG sig- 1 min x 359 subjects 10-fold cross validation

Avram etal (2021)

Chorinetal (2021)
Changet al (2022)

Hanetal (2022)
Viliaho et al (2021b)

(2021b)
Nonoguchi et al (2022)

confirmed rhythm
207 participants with collected
signals
1527 QRS complexes
24 h x 200 subjects

3781 h of PPG data were
analyzed,
40 055 intervals were obtained

3 participants excluded

1667 h of PPG data

13985 intervals exclude (7022 due to insufficient
PWM and 6963 due to insufficient tele-
metry ECG)

nals/subjects
1.4%

44% of PPG data

34.9% of intervals

Atotal of 81 944 h of monitoring from the ePatch with
simultaneous W-PPG data was recorded and analyzed.
1527 QRS complexes
24 h x 200 subjects

Training: 35 participants, testing: 25 subjects; 271 segments
for training; 2112 clean 30 s for testing
2114 h (55.9%) of the data were approved by the quality
algorithm.
163 x 30 min segments (hig risk) with 17 segments of AF
and 123 x 30 min (known AF) with 55 segments of AF

Training: 25 subjects with

cardiac arythmia

Training/testing datasets

ECG
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Table A3. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (ML).

Author (year)
[References] Initial data Excluded data Excluded data (%) Total Acquisition time after exclusion Train/test data split
Yangetal (2019) 13.2 h for NSR and 23.7 h for AF episodes — — 13.2 hfor NSRand 23.7 h for AF episodes 75% of the time slots for training and
25% for testing.
Nehaetal (2019) 24 s x 15 subjects (6 min) — — 24 s x 15 subjects (6 min) 13 PPG samples (for training) and 2
PPG samples (for testing)
Fallet et al (2019) 2166 labeled 10-s epochs from 17 patients — — 2166 labeled 10 s epochs from 17 patients 5-fold cross validation
Guoeral (2019) 227 individuals, with 186 956 identified AF 11 individuals 4.8% 216 entered the follow-up program —
episodes
Zhanget al (2019) — —
Bus eral (2020) 8 PPG recordings for NSR (240 min) and 24 for None 0% 8 PPG recordings for NSR (240 min) and 24 for —
AFib (120 min) AFib (120 min)
Corino etal (2020) Simulated PPG signals corresponding to 20, 30, 40, — — Simulated PPG signals corresponding to 20, 30, 40, train-validation-test split (55% of the

Eerikainen et al
(2020)

Mol et al (2020)

Millan et al (2020)

50, 100, 150, 200, 250 and 300 RR intervals. For
each length, 200 signals were generated, 100 in AF
and 100 in NSR.

39 subjects, each on a 24 h-acquisition (936 h total)

216 X 90 s

Train: 368 h; Test: 138.7 h

Only the second recording
attempt was considered for
each subject

Train: 53%; Test:
57.8%. Average per
subject

50, 100, 150, 200, 250 and 300 RR intervals. For
each length, 200 signals were generated, 100 in AF
and 100in NSR
Train: 328 h; Test: 101.3 h

216 x 90 s

data is used as training set, 25% as
validation set, 20% as test set

75% of the patients to the training set
and 25% to the test set

1656 signals for training
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Table A4. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (ML continued).

Author (year) Excluded
[Reference] Initial data Excluded data data (%) Total Acquisition time after exclusion Train/test data split
Aydemir et al (2020) 5 h 30 min — — 5h30min Y5 train and Y% test
Guoetal (2021a) — — 469 267 PPG signals (optimization setp); 30 640 PPG sig- Randomly divided (3:1)
nals for AF and 89 359 PPG signals for non-AF (for the
testing step)
Xieetal (2021) PPG signals collected form 21 healthy — — — —
individuals
Nehaetal (2023) 100 8 s PPG signals (800 s) signals with multiple abnormalities in a — — 70:30 ratio train test
frame have been excluded from the study
Zhuetal (2022) Total of 106 663 h of collected PPG 34 345 h of PPG signals 32.2% 72 317 h of PPG signals A pre- viously trained model is
signals deployed in real-world setting

Hiraoka et al (2022) Average of 13.3 d of PPG measurements 1 subject excluded from the — Average of 13.3 d of PPG measurements among 79 training cohort of 59 patients

among 80 patients (24 h monitoring) measurements patients (24 h monitoring) and a test cohort of 20 patients
Liao etal (2022) — — 18% — five-fold cross-validation
Jeanningros et al 11985 30 s windows (99.9 h) 7838 30 swindow (65.3 h) 65.4% 4147 30 s windows (34.5 h) leave-one-group-out

(2022)
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Table A5. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (DL).

Author (year) Total Acquisition time after
[Reference] Initial data Excluded data Excluded data (%) exclusion Train/test data split
Rezaei Yousefi et al 30 subjects 1 subjects 3.3% 22.5 h (estimate) from 29 subjects 29 subsets were used as the test set and the remaining 28
(2019) (1.5 h average PPG acquisi- subsets were put together to form a training set
tion each)
Zaenetal (2019) physionet dataset: unknow; — Physionet dataset; unknown; CHUV data- Physionet dataset: 1719 h CHUV 80%),/20% split stratified by label; for physionet (only ECG)
CHUYV dataset: 21 subjects set: 0% (no outlier rejection) or 50% (with dataset: unknwon
outlier rejection)
Kwon etal (2019) 119.2h Unknown unknown 119.2 h 10 x 5-fold cross-validation
Aschbacher et al — 72totalhours +91 h 40 sujects to train and 11 to test
(2020)
Torres-Soto and Ash- >500k labeled signals — — Evaluation datasets: Held out test Train/test from multiple datasets. Train: The model is
ley (2020) set: 151.7; ambulatory cohort trained on approximately one million simulated unlabeled
156.5h physiological signals and fine-tuned on a curated dataset of
over 500 K labeled signals from over 100 individuals from 3
different wearable devices.
Selder et al (2020) 180 min of PPG signals (1 min 43 PPG signals 24% 137 PPG signals/minutes trained on full data + manually annotated PPG-signals
per PPG signal) from 60
subjects
Genzoni et al (2020) 321330 s segments (26.8 h) of 849 30 s noisy seg- 26.4% 2364 30 slabeled segments (19.7 h) Trained on one public db and tested on theirs
labeled segments ments (7 h)
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Table A6. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (DL continued).

Author (year)

[Reference] Initial data Excluded data Excluded data (%) Total acquisition time after exclusion Train/test data split

Chen et al (2020) 401 patients 15 patients 3.7% 386 x 3 min (19.3 h) Training step: 70% of the total data set was randomly selec-

ted for the training step, 90% of which was used as the
training set, and 10% was used as the cross-validation set;
Testing step: 30% of the total data
Kwon et al (2020) 108,6 h (13 038 30-s PPG) — — 108,6 h (13 038 30 s PPG) 5-fold cross validation repeated 10 times
Aschbacher et al 91 h of PPG recordings — — 91 h of PPG recordings 80%/20% train/test
(2020)
Chenget al (2020) 60 subj x 1 h (MIMIC-III) + 42 subj — — 60 subjx 1 h (MIMIC-III) + 42 subj x 8 min (IEEE training set, val- idation set, and test set with a 6:2:2 ratio.
x 8 min (IEEETBME) + 15 h TBME) + 15 h (synthetic)
(synthetic)
Ramesh et al (2021) 37 subjects, with 10 having AF — — 37 subjects, with 10 having AF 80% was randomly divided for training and validation, and
20% was used as the test set. The Stratified k-fold cross-
validation strategy was implemented with k=5
Zhanget al (2021a) 27 622 h None None 27 622 h 5-fold cross- validation scheme with a random selection
Daset al (2022) 872 h of PPG signals in raw dataset — None for raw dataset, 97.4% 872 h of PPG signals in which the algorithm was split of 70% as train, 15% as validation, and 15% as test sets

Dingetal (2022)

Sabbadini et al
(2022)

4158 windows 10 s (11.5 h)

for ‘Excellent quality’
segments

tested or 3246 25 s segments (22.5 h) for ‘Excellent
quality’ segments
No time range. Estimated for testing: UCLA medi-
cal center: 1349 h; Stanford dataset 3681 h; Sim-
band dataset 2.9 h
4158 windows 10 s (11.5 h)

(Based on subjects)

Training: UCSF EHR;Testing: UCLA medical center, Stan-
ford dataset, Simband dataset
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Table A7. Summary of the train/test data splitting and excluded data due to noisy data and motion artifacts (DL continued).

Excluded
Author (year) [Reference] Initial data Excluded data data (%) Total Acquisition time after exclusion Train/test data split
(Nguyen et al 2022) Pre-train: MIMICIII (1327 h for ECG, and 21 h for PPG), — — Pre-train: MIMIC III (1327 h for ECG, and 21 h
Train (qualified data) 79.5 min;test (qualified) 23 min for PPG), Train (qualified data) 79.5 min;
test (qualified) 23 min Pre-train (test 70% train 30% both for ECG and PPG in
transfer learning) and then main experiment: 80% train
20% test
(Liuetal2022) 158 355 10 s segments (439.9 h) 30 79310 s seg- 19.4% 354 h —
ments (85.5 h)
(Nehaetal 2022) 89 min — — 89 min —
Dinget al (2022) (Ding — — — Train: 1467 h; test: 22.4 h Train: 126 patients UCLA Medical
etal2023) Center Test: UCSF Medical Center
(Kwon etal2022) Total 0of 2532 PPG-ECG snapshots were acquired (from 35 909 PPG-ECG 35.9% 1623 PPG-ECG snapshots —
participants, average of 9.2 d continuous acquisition) snapshots
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Appendix B

Table B1. Summary of the color ranges used in PPG sensors. Some studies used wearable devices with more than one color range, which
were included in more than one category.

Color/ wavelength Studies Capacity  Capacity (%)

Green (Eerikiinen etal 2019, Fallet et al 2019, Kabutoya et al 2019, Rezaei Yousefi et al 18/57 315
2019, Viliaho et al 2019, Zaen et al 2019, Aydemir et al 2020, Chen et al 2020,
Eerikainen et al 2020, Han et al 2019, 2020, Zhang et al 202 1a, Viliaho et al
2021b, Hiraoka et al 2022, Nguyen et al 2022, Ding et al 2023, Neha et al 2023)

Red/IR (Fallet et al 2019, Aydemir et al 2020, Selder et al 2020; Viliaho et al 2019, 2021b, 8/57 14.1
Nguyen etal 2022, Ding et al 2023)
Smartphone flashlight (Estrella-Gallego et al 2020, Mol et al 2020) 2/57 3.5
(white)
Unspecified (Guoetal 2019, Han et al 2019, Kwon et al 2019, Neha et al 2019, Solosenko et al 34/57 59.6

2019, Yangetal 2019, Zhang et al 2019, Bashar et al 2019b, Aschbacher et al
2020, Bus et al 2020, Cheng et al 2020, Corino et al 2020, Genzoni et al 2020, Inui
etal 2020, Kwon et al 2020, Milldn et al 2020, Mol et al 2020, Torres-Soto and
Ashley 2020, Avram et al 2021, Ramesh e al 2021, Xie et al 2021, Guo et al 202 1a,
Changeral 2022, Das et al 2022, Ding et al 2022, Han et al 2022, Jeanningros et al
2022, Liao etal 2022, Liu et al 2022, Neha et al 2022, Nonoguchi et al 2022, Sab-
badini et al 2022, Zhu et al 2022)

ORCIDiDs

Cheng Ding ® https:/orcid.org/0000-0001-8641-9299
Ran Xiao ® https://orcid.org/0000-0002-3689-1680
Xiao Hu @ https:/orcid.org/0000-0001-9478-5571
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