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Abstract
Objective.Electrical impedance tomography (EIT) is a noninvasive imagingmethodwhereby electrical
measurements on the periphery of a heterogeneous conductor are inverted tomap its internal
conductivity. The EITmethod proposed here aims to improve computational speed and noise
tolerance by introducing sensitivity volume as a figure-of-merit for comparing EITmeasurement
protocols.Approach.Eachmeasurement is shown to correspond to a sensitivity vector inmodel space,
such that the set ofmeasurements, in turn, corresponds to a set of vectors that subtend a sensitivity
volume inmodel space. Amaximal sensitivity volume identifies themeasurement protocol with the
greatest sensitivity and greatestmutual orthogonality. A distinguishability criterion is generalized to
quantify the increased noise tolerance of high sensitivitymeasurements.Main result.The sensitivity
volumemethod allows themodel space dimension to beminimized tomatch that of the data space,
and the data importance to be increasedwithin an expanded space ofmeasurements defined by an
increased number of contacts. Significance.The reduction inmodel space dimension is shown to
increase computational efficiency, accelerating tomographic inversion by several orders ofmagnitude,
while the enhanced sensitivity tolerates higher noise levels up to several orders ofmagnitude larger than
standardmethods.

1. Introduction

Electrical impedance tomography (EIT) of conducting volumes holds great promise, particularly in thefield of
medicine as an alternative or a complement to x-ray computed tomography (CT), magnetic resonance imaging
(MRI), and sonograms, with further applications in sensors (Liu et al 2020), engineering (Jordana et al 2001,
Tapp et al 2003), and geoscience (Ducut et al 2022). Although its imagesmay have lower resolution than some of
these competingmethods, the disadvantage of EIT’s diffuse nature can be compensated by the advantages of
being radiation-free, easily portable, wearable for extended periods, and low-cost. Two longstanding challenges
have preventedwider adoption of EIT in potential applications. First, the computational time of existing
algorithms increases exponentially with the dimension of themodel space (Boyle et al 2012). The ill-posed
nature of the inverse problemunder standard algorithms employs a densemesh of upwards of 10 000model
elements, necessitating computationally costly regularizationwith no benefit in resolution. The second
challenge is that present-day EIT relies on data spaces which include low sensitivitymeasurements whose data
are vulnerable to experimental noise. Error in these low sensitivitymeasurements will impair the fidelity of the
inverse problem, further reducing the resolution of the invertedmodel. In this work, we reframe the EIT
problemby introducing a sensitivity volume figure-of-merit into amodified EITmethod in order to create a
model space of reduced dimensionality that achieves rapid computational refresh rates, while acquiring only
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data of high importance, thereby accelerating data collection and enhancing robustness against experimental
noise.

The remainder of this paper is structured as follows. Section 2 reviews standard EIT concepts in anticipation
of section 3, which summarizes the overall strategy of the sensitivity volumemethod. Section 4 demonstrates this
sensitivity volumemethodwith example simulations resulting in orders-of-magnitude accelerated
computational time or orders-of-magnitude enhanced noise tolerance, compared to state-of-the-art EIT inverse
solvers. Finally, for comparison section 5 contextualizes other strategies in the literature for optimization of the
EIT inverse problem.

2. Standard EIT

The essential components of an EITmethod are reviewed herewith notation drawn fromTarantola (2005). The
description of the EIT problembegins with amodelm representing a conductivitymap of a sample. The
generalized forward EIT problem

=d F m , 1( ) ( )

relates thismodelm to a datasetd representing four-point (Vander Pauw 1958) or ‘tetrapolar’ (Ragheb et al
1992) resistancemeasurements that are taken according to ameasurement protocol of electrical contacts around
the sample edges (Holder 2005). A popular example is the empirical ‘Adjacent–Adjacent’ or ‘Sheffield’ protocol,
which uses pairs of neighboring current injection contacts in combinationwith pairs of neighboring voltage
measurement contacts (Brown and Seagar 1987, Kauppinen et al 2006). Only half of these are independent
(Buttiker 1988), and formwhat will henceforth be referred to as the adjacentmeasurement protocol.

Typically, the forward problem can be directly solved usingMaxwell’s equations in the formof Laplace’s
equationwith various boundary conditions to determine the dataset from themodel, as described, for example,
byHolder (2005).Wewill define an inverse problemmethod as the selection of themodel space, the data space,
and the inverse algorithmbywhich the data space ismapped back to themodel space.

Themixed-determined EIT inverse problem can be solved to linear order with consideration of noisy, non-
ideal datadobs and the selection of a referencemodelmref. The experimentally observed datadobs from the
forward problem in the presence ofmeasurement noisen can bewritten as (Braun et al 2017):

= + = +d F m n d n. 2obs ( ) ( )

For a subset ofmodels lyingwithin linear perturbationΔm=m−mref of a common referencemodelmref

(Grychtol andAdler 2013), the forward problem can be approximated to linear order as a deviation
Δd= dobs− dref from the inverted reference datadref= F(mref):

D = D +d J m n, 3( )

where the linearized forward operation is now represented by the Jacobianmatrix J, also referred to as the
sensitivitymatrix, (Polydorides and Lionheart 2002, Gómez-Laberge andAdler 2008)with elements:

=
¶
¶

ab
a

b
J

F

m
, 4

mref

( )

whereα ä {1,LD} indexes the dataset elements from1 to the dimensionD of the data spaceD, andβ ä {1,
LM} indexes themodel elements from1 to the dimensionM of themodel spaceM and the derivatives are
evaluated at the referencemodel coordinatesmref. Each Jacobian element Jαβ quantifies the sensitivity of theαth
data spacemeasurement to perturbations in theβthmodel space componentwith respect to the reference
model. For simplicity, in the remainder of this text d andmwill refer to the linearized difference coordinatesΔd
andΔm relative todref andmref, respectively, in the context of the linearized problem. Thiswork considers a
homogeneous referencemref, throughout. In general, prior knowledge can be utilized to producemore
meaningful case-specific references (Grychtol andAdler 2013). The EIT inverse problem, therefore consists of
mapping from an observed datasetdobs to somemodelm. In the linearized inverse problem, this is written as
m= J−gdobs, where J−g is the generalized inverse of the Jacobianmatrix J.

Singular value decomposition (SVD) of the Jacobian is a frequently used tool for analyzing and solving the
EIT inverse problem (Holder 2005). SVDdecomposes the Jacobian into two unitarymatrices (U,V)whose
respective columns are left and right singular vectors of J, and a diagonalmatrix (S) of singular values that are
ordered from largest to smallest. This decomposition is written as

=J USV , 5( )T

where the number of non-zero singular values in S is equivalent to the rank of the Jacobian (Press et al 2007).
When J is square, SVD can be used to form the following inverse of J:

2
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=- -J VS U . 61 1 ( )T

When J is not square, a portion of either the data or themodel space is not accessed. And depending on the
measurement protocol andmodel parameterization, some diagonal elements of Smay be zero or small,
requiring the formation of a generalized inverse. In this case, the reciprocals of those zero and small singular
values should be replacedwith zeros in the inverse of S. This replacement is referred to as truncated SVD ((T)
SVD). In (T)SVD a truncation point of k< rank(S) replaces the reciprocals of small singular values to suppress
the influence of noise in the inverse problem (Hansen 1990b). The Picard condition is one proposedmethod of
selecting the truncation point k using a knowndata noise level (Hansen 1990a). The result is the following
inverse solution in the presence of noise:

= -m V S U d , 7k k k
1 obs ( )T

wherem is the best possiblemodel reconstruction from the noisy datadobs, -V S Uk k k
1 T is the generalized inverse of

J, and the subscript k indicates truncation. This (T)SVD solution represents a fast and efficient way to solve the
linearized inverse problemusing standardmethods.

3. Components of sensitivity volumemethod

The strategy behind the proposed sensitivity volumemethod as a solution to the EIT inverse problem is
presented below. Thismethod is designed tominimize susceptibility to experimental noise andmaximize
computational efficiency, while also being agnostic to the geometry and dimension of the EIT problem. The
description of thismethod is broken down according to the component elements of the EIT problem, namely
model space and data space selection, contact number selection, and finally the choice of solver for the linearized
inverse problem. In the course of this description, the concept of a sensitivity vector is introduced to represent
thefidelity of a givenmeasurement to aweighted sumofmodel basis elements; a sensitivity volume figure of
merit is proposed to optimizemeasurement protocols for targeted features; and a distinguishability criterion is
generalized to assessfidelity in resolving these features.

3.1.Model space selection:M
Consider the fullmodel space 0M of the EIT problemwith dimensionM0. Typical EIT inversemethods
parameterize this fullmodel space as amesh defined over the volume of interest, with one independentmodel
coordinate permesh piece. Our strategy will be instead to choose amuch smallermodel subspace Ì 0M M

with dimensionM=M0 spanned by orthogonal basis functions comprised of linear combinations of these
mesh pieces and designed to target the features of interest. Prior knowledge of the system can be used either to
identify themost important features, for example, with proper orthogonal decomposition (POD) (Lipponen
2013), or, alternatively, to provide balanced resolution throughout, for example, with a harmonic polynomial
series appropriate to the geometry of interest, such as Legendre polynomials, Zernike polynomials, or Fourier
decomposition.

3.2. Contact number selection:C
Whereas standardEITmethods use thenumber of contactsC tofix the dimensionDof thedata spaceD, here an
increased contact numberC0will beused to define a larger data space 0D of dimensionD0 greater than strictly
necessary. Inside this expandeddata space, an optimal subspace Ì 0D D of dimensionD<D0 can be found,
according to the steps in the following section.Note that under thismethod, contacts donot have to be equally
spaced around the periphery, but can beplaced arbitrarily, for examplewith higher density near features of interest,
though formost commonapplications theneed for uniform resolutiondictates equal spacing of contacts.

Consider the dimensionalityD of a desired data space and the correspondingminimumnumber of contacts
C that spans that data space (Brown and Seagar 1987),

=
-

D
C C 3

2
, 8

( ) ( )

which can be inverted to yield the equivalent relation,

= + +C D
3

2

9

4
2 . 9⎡

⎢⎢
⎤
⎥⎥

( )

Here the ceiling function ⌈ · ⌉ ensures an integer number of contacts.
Since advantages of the sensitivity volumemethod come from increasing the dimensionality of the data

space and therefore increasing the contact number, it is important to quantify what increase in contact number
corresponds towhat increase in data space dimension. If the data space is expanded to dimensionD0 by a data
space inflation factor rD,

3
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=r D D, 10D 0 ( )

the number of contactsmust increase toC0.

= + +C r r D
3

2

9

4
2 . 11D D0

⎡
⎢⎢

⎤
⎥⎥

( ) ( )

This increase can be representedwith a contact number inflation factor rC; C0/C, which can be determined
from the above equations:

= + - +r
C

r
r

C C

3

2

3 9

4
. 12C D

D
2

( )

Note that with a large number of contacts, the relation between rD and rC simplifies to ~r rD C
2 meaning that the

data space inflates roughly quadratically with the contact number.
The larger the data space inflation factor rD, the likelier the inflated data space of dimensionD0= rDD can

contain a subspace of desired dimensionD that includes only themost independent and noise-robust
measurements. Note that the total number of possible four-pointmeasurementsDmax that can bemadewith
arbitrarily chosen contacts is of order C0

4( ) :

=
-

D C
C

C 4
, 13max 0

0

0

( ) !
( )!

( )

thus the search space for optimization increases geometrically with the contact number.Wewill refer to the list
of allDmax possible four-point datameasurements as themeasurement library, fromwhichDmeasurements will
be chosen to form the candidate protocols.

3.3. Sensitivity vectors:μ
Having identified themodel spaceM, the contact number and placement, and the full data space 0D with total
number of possiblemeasurementsDmax, the Jacobian can nowbe calculated from the forward problem. Let each
rowof the Jacobianmatrix J represent a sensitivity vectorμa inmodel space, composed of the sensitivity
coefficients defined in equation (4),

m = ¼J J J, , , . 14a a a aM1 2[ ] ( )

As illustrated infigure 1, each sensitivity vector represents the overall sensitivity of the ath datameasurement
=a D1 ... max{ } to the set ofβ= {1...M} orthonormal basis functions of the chosenmodel space. The overall

sensitivity of a givenmeasurement is thus proportional to themagnitude of its sensitivity vector.

3.4. Sensitivity volume: S(D)

The sensitivity volume is the keyfigure-of-merit introduced here in order to compare and optimize choice of
candidatemeasurement protocols. The sensitivity of a set ofD independentmeasurements selected from the
library ofDmax availablemeasurements can be quantified as theD-dimensional volume S(D) of a parallelotope

Figure 1. Sensitivity-vectors and sensitivity volumes. (a)Datameasurements dα of circular sample on left overlaidwithmesh show
current injection (arrows) and voltagemeasurement (+/−) electrodes associatedwithDmax differentmeasurement configurations.
(b) In a 2Dmodel space, the top choice of sensitivity vectors {μ1,μ2} subtends a larger 2D sensitivity volume S(2) than the bottom
{μ1,μ3}. (c) In the 3D case, the top sensitivity vectors {μ1,μ2,μ4} subtend a larger 3D volume S(3) than the bottom {μ1,μ3,μ4}.

4

Physiol.Meas. 45 (2024) 045004 CCOnsager et al



subtended by the chosenα= 1 ...D sensitivity vector rows of the Jacobianmatrix:

=S JJdet , 15D ( ) ( )( ) T

as illustrated infigure 1. Conceptually, the sensitivity volume can be thought of as the product

 m=
a

a
=

^S , 16D
D

1

∣ ∣ ( )

whereμα⊥ is the perpendicular component of sensitivity vectorαwith respect to all other vectors in the set. This
result is also identical to the product of theα= {1 ...D} singular values sα of the SVDdecomposition:

=
a

a
=

S s . 17D
D

1

( )( )

The geometricmean S of the singular values sα is then the average sensitivity permeasurement in the data space,
or theDth root of theD-dimensional sensitivity volume, henceforth referred to as the specific sensitivity or in
appropriate context simply the sensitivity of thatmeasurement protocol:

=S S . 18DD ( )( )

3.5.Data space selection:D
The data spaceDwill be chosen to have dimensionD thatmatches that of themodel spaceD=M, setting up an
exactly determined inverse problem. The underdetermined caseD<Mwould leave some of the desiredmodel
space features undefined, and the overdetermined caseD>Mwouldmeasure redundant information at the
cost of computational efficiency andmeasurement duration.With the sensitivity volume figure-of-merit
defined above, the strategy will then be to search for a data subspace Ì 0D D with dimensionD=Mwhose
measurement protocol is selected from themeasurement library to havemaximal sensitivity volume S(D)

according to the chosen basis functions of ourmodel spaceM.

3.6. Inverse solve selection: J−1

In the exact determined linearized inverse problem considered hereD=M, the Jacobian J is square and
invertible such that J−g= J−1. Thismakes the inverse solve in the absence of data noise computationally efficient
by eliminating the need for regularization, such as Tikhonov regularization, gradient damping, or total variation
regularization (Holder 2005,Menke 2012). Because of the increase in sensitivity S under the sensitivity volume
method, it is less likely that truncation of singular values will be required under SVD analysis,making direct
matrix inversion adequate inmany cases. But in the presence of noise that exceeds the Picard condition, a simple
regularization procedure, such as truncated (T)SVD, can still remove the influence of small singular values
overcome by noise (Hansen 1990a). Andwith the dimensionality of J greatly reduced, there remain significant
improvements in computational efficiency over T(SVD) of a standard Jacobian.

3.7.Distinguishability: z, and noise threshold:ηt
Todifferentiate between twomodel cases under increasing data noise, we generalize the distinguishability
criterion z proposed byAdler et al (2011), Yasin et al (2011) and also define a noise threshold for
distinguishability ηt. Consider the noiseless inversemodels {ma,mb} corresponding to two differentmodel
cases to be distinguished under noise. In the linear regime, noisy inverse solves will fall in a neighborhood
around thesemodels, described by the posteriormodel covariancematrixCm:

= - -C J C J , 19g g
m d ( )T

where the data covariancematrixCd= η2I represents, in this case, uncorrelatedGaussian experimental noise
with standard deviation η, and I is the identitymatrix.Whereas Adler et al identified a spatial cross-section of
interest for statistical analysis, here the analysis will be conducted along a segment inmodel space that connects
twomodel cases to be distinguished. A unit vector û can be defined along this segment connecting the two noise-
freemodels:

=
-
-

u
m m

m m
, 20b a

b a

ˆ
∣ ∣

( )

and the component of eachmodel’s covarianceCm projected along this direction is:

^ ^s s= = u C u. 21a b
T

m
2 2 ( )
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FollowingAdler et al, the standard deviation of themodel differenceσm becomes

s s s= + . 22m
2

a
2

b
2 ( )

The result is a generalization of Adler et alʼs distingushability z inmodel space:

s
=

-
z

m m
, 23b a

m

∣ ∣ ( )

where z= 1 represents the threshold for distinguishability, and statistical significance is defined as z> 2 per
mathematical convention (Cowan 1998).

A noise threshold ηt for distinguishability in the case of uncorrelatedGaussian noise can be determined by
solving equations (19)–(23) according to the condition z= 1:

h =
-
- -

m m

u J J u2
. 24t T g g

2 b a
2∣ ∣

ˆ ( ) ˆ
( )

T

Noise exceeding this threshold renders cases {ma} and {mb} indistinguishable, i.e.within a standard deviation
of noise of each other, and noise belowhalf ηtmeans the two cases can be discernedwith statistical significance.

4. The sensitivity volumemethod: demonstration

In the following, the sensitivity volumemethodwill be demonstrated in two simulated scenarios, a biomedical
one and an engineering one, with varying degrees of data noise to simulate experimental conditions. To illustrate
the advantage of the sensitivity volumemethod in both cases, the inverse problemwill be solved using two
measurement protocols with the same number ofmeasurements: one being the standard adjacentmeasurement
protocol and the other being the sensitivity volumemaximizedmeasurement protocol.

Thefirst demonstration is a simplified biomedical scenario representing interior chest imaging, whichmay
aid in cardiacmeasurements of stroke volume and ejection fraction that can diagnose dangerous cardiac
conditions such as heart failure and coronary syndrome (Zlochiver et al 2006, Proenca et al 2014, Rao et al 2018,
Putensen et al 2019). The second demonstration is a structural engineering example sincemaintenance
inspections of historical structures or enforcement of building codesmay require identifying the number of
reinforcement rods present in a concrete pillar. Various individual steps of the simulation employed the
EIDORSEIT package (Adler and Lionheart 2006), includingmesh building and plotting. The results of the
biomedical and engineering demonstrations are shown infigures 3 and 4, respectively.

4.1.Model space selection: demonstration
According to the sensitivity volumemethod, onefirst chooses a reducedmodel space (M<M0) that will have
sufficient feature resolution. Given the circular symmetry of this test problem, the results of POD fromAllers
and Santosa (Allers and Santosa 1991) and fromLipponen et al (2013) suggest that Zernike polynomials shown
infigure 2 defined over ameshwill provide an excellent empirical basis formodel space parameterization. The
orthonormal Zernike polynomial functions are defined on a unit disk in terms of polar coordinates qZ r,n

h( ),
with increasing radial order n= {0,KN} and angular order h= {− n,− n+ 2,K n− 2, n} representing
increasing resolutionwhereN is the highest polynomial order of the Zernike polynomials used
(Lakshminarayanan and Fleck 2011):


q

q

q
=

- <
Z r

F R r h h

F R r h h
,

cos for 0,

sin for 0,
25n

h n
h

n
h

n
h

n
h

⎧
⎨⎩

( )
( )

( )
( )

∣ ∣

∣ ∣

where Rn
h∣ ∣ is defined as

å=
- -

- -=
+ -

-
-

R r
n l

l l l
r

1
. 26n

h

l

l

n h n h
n l

0
2 2

2

n h
2

( ) ( )( ) ( ) ( )!

! ! !
( )∣ ∣

The normalization prefactor Fn
h is

=
d
+

+
F , 27n

h n2 1

1 h0
( )( )

where δh0 is the Kronecker delta function (Lakshminarayanan and Fleck 2011). Using this polynomial basis, any
conductivitymap can be represented as a linear combination of Zernike polynomials:
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å ås q s q q= +
= =- - + ¼

r r m Z r, , , , 28
n

N

h n n

n

n h n
h

0
0 , 2,

,( ) ( ) ( ) ( )

whereσ0(r, θ) is the reference, chosen here to be homogeneous.
For a given polynomial orderN, the dimensionMP of the polynomialmodel space up to and including that

order is:

= + +M . 29N N
P

1 2

2
( )( )( )

In practice, the orderN of the polynomial will be chosen large enough thatMP�M, and the specificM
polynomials for themodel space basis are chosen to suit prior knowledge of electrode symmetries and the
desired resolution of the problem at hand. Thus, themodel conductivitym is represented here as a vector of
lengthM describing the set of weights for each polynomialmn,h.

To deploy these continuous basis functions in afinite element solver, Zernike polynomials (Fricker 2023)
were projected onto afinemesh generated in EIDORSwithNetgen (Adler and Lionheart 2006). An
M0×M-dimensionalmappingmatrixZ transforms theM-dimensionalmodel vectorm in the polynomial basis
into aM0-dimensional vectormmesh on afinite elementmesh,

=m Z m. 30mesh ( )

The samemappingmatrixZmaps aD×M0-dimensional Jacobian Jmesh derived on afinite elementmesh into a
D×M-dimensional Jacobian J:

=J Z J, 31mesh ( )

where each ofM columns ofZ corresponds to themesh-element parameterization of each continuous Zernike
polynomial. As a result, the forward problem can bewritten as:

= =d Jm J m . 32mesh mesh ( )

For the biomedical example of a ‘normal’ versus ‘enlarged heart,’M= 27 independent standard Zernike
polynomials of increasing resolutionwere chosen up through orderN= 6. This uniform resolutionmodel space
is represented by all the polynomials plotted infigure 2 except for the bottom center n= 6; h= 0. For the
engineering example comparing 3 versus 6 reinforcement rods, prior knowledge that the systemof interest had
either 3-fold or 6-fold rotational symmetry allowed theM= 27-dimensionalmodel space to be constrained,
accordingly. Here, thismodel space is represented by the firstM= 27 standardZernike polynomial functions
that satisfy the 3- and 6-fold symmetry requirements, requiring the sampling of polynomials up to orderN= 12.
In both cases, a homogeneous constant backgroundwas used as a reference, and the higher conductivity test
features were given a 20% enhancement in the conductivity.

Figure 2.Zernike polynomials. Defined in equation (25), these form a basis for a reduced dimensionalmodel space of polynomials
MP, ranked from low to high resolution of radial order n and angular order hplottedwith EIDORS (Adler and Lionheart 2006).
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4.2. Contact number selection: demonstration
For both examples, the contacts are equally spaced at the circumference with the number of contacts set
according to equation (11). In order to haveD=M= 27measurements, wefind for the adjacentmeasurement
protocol that an uninflated rD= 1 data space (and uninflated contact number rC= 1) requiresC0= C= 9
contacts. For the sensitivity volumemeasurement protocol, an inflated data space with rD= 12 gives overall
dimensionD0= rDD= 324which requiresC0= 3C= 27 contacts per equation (11). It is observed that when
using Zernike polynomials as themodel space basis, an odd number of contactsC0 is preferred tominimize the
null space at themaximum radial order n=N.

4.3. Sensitivity vectors: demonstration
For the inflated data spacewithC0= 27 contacts, sensitivity vectors for both the biomedical and engineering
examples were calculated per equation (14) for all =D C 421, 200max 0( ) possiblemeasurements. These
calculations used the default EIDORS forward solver with the adjoint Jacobian (Vauhkonen et al 2001, Adler and
Lionheart 2006) on a homogeneous reference, alongwith appropriatemappingmatricesZ per equation (30) for
each scenario’smodel space. The resulting libraries ofDmax sensitivity vectors formedmeasurement search
spaces for the two respective cases.

4.4. Sensitivity volume: demonstration
Sensitivity volumeswere determined for each case per equation (17) for variousmeasurement protocols with
D=M= 27 sensitivity vectors chosen from the library ofDmax available. The sensitivity volumes are then
compared tofindwhichD out ofDmax specific vectorsmaximizes the sensitivity volume figure-of-merit S(D).
Various search algorithms can be implemented such as a greedy search (Williamson and Shmoys 2011), genetic
search (Press et al 2007), or simulated annealing (Press et al 2007) tofind thismeasurement protocol with
maximum sensitivity volume. In the examples below, amodified greedy searchwas implemented.

4.5.Data space selection: demonstration
Table 1 shows the sensitivity volume optimized protocol for data spacemeasurements for the biological and
engineering scenarios, respectively. Just over half of thesemeasurements (highlighted) have a similar
configurationwhereby the current injection electrode I+neighbors the positive voltageV+ electrode, the current
sink I−neighbors the negative voltageV−, and the inner/outer pairs are of the same type, either current or
voltage. Because the contacts of this frequent configuration are the same as an adjacent configuration but
functionally rotated analogous to aVan der Pauw conjugatemeasurement (Vander Pauw 1958), this contact
configurationwill be referred to as the ‘adjacent–conjugate’ configuration. But it should be pointed out that the
resultingmeasurements in the protocols do not follow a rotational symmetry like the adjacent or skip
measurement protocols and could not have been empirically guessed in advance. Furthermore, the biological
problemwith its uniform resolutionmodel results in a rather differentmeasurement protocol than the
engineering problemwith its 3/6-fold constrained symmetry, illustrating the dependence of themeasurement
protocol on themodel structure.

We reiterate that once an optimalmeasurement protocol is determined, there is no need to repeat the
sensitivity volume optimization. Because the computationally intensive steps of sections 4.3 through 4.5 are
performed in advance to generate the Jacobian for the optimized data space, the inverse solve can nowbe
extremely rapid, as fast as a simplematrixmultiplication.

4.6. Inverse solver selection: demonstration
To complete the sensitivity volumemethod, onemust solve the resultant exact determined inverse problem
(M=D). AMatlab codewaswritten to use (truncated) singular value decomposition (T)SVD to solve the
linearized, non-iterative inverse problem for orthogonal polynomialmodel spaces per equation (7). Datawas
simulated using EIDORS’ default forward solver and afinite elementmesh. Gaussian noise with standard
deviation ηwas added to the simulated data to emulate realistic experimental conditions.

4.7.Distinguishability and noise threshold: demonstration
In the biomedical example, our SVD solver was usedwith no truncation of singular values. Figure 3(a) shows the
‘input’ conductivitymaps in the forward problem for the ‘normal’heart (top) and the ‘enlarged’heart (bottom)
using an EIDORS derivedmesh. Reconstructed conductivitymaps of the noiseless (η= 0)normal and enlarged
heart are shown in color in the left of panel (b) for the standard adjacentmeasurement protocol, and the left of
panel (c) for the sensitivity volumemaximizedmeasurement protocol. The polynomialmodel space in
section 4.1 and the inverse solver described in section 4.6were used to produce reconstructed images from
simulated datasets using bothmeasurement protocols. In the absence of noise, all reconstructions show similar
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resolution, with the exception that the enlarged case for the adjacentmeasurement protocol shows artifacts with
residual oscillations at the periphery.

To investigate noise tolerance, themean results of 1000 simulated SVD inversions of normal and enlarged
hearts were generatedwith increased data noise η. As noise increases to the right infigure 3, the standard
adjacentmeasurements in the top rows generate average inversemaps that deviate further from the noiseless
reconstructions, and eventually become overwhelmed by the noise. By contrast, reconstructions using
sensitivity volume derivedmeasurements in the bottom rows canwithstand over an order ofmagnitudemore
noise than the adjacentmeasurements.

The results can be quantified using the distinguishability and noise tolerancemetrics of Subsection 3.7. The
distinguishability zwas calculated at each noise level η for reconstruction of both adjacent and sensitivity
maximizedmeasurement protocols. The distinguishability threshold is defined as z= 1, whereupon the normal
and enlarged cases become statistically indistinguishable, and ηt is the corresponding noise level threshold. For
z> 1, the average inversemaps begin to showdifferences from the noise-free scenario, and z= 2 represents the
threshold for statistically significant distinguishability (Cowan 1998). The noise threshold ηt for both cases is

Table 1.Measurement protocols for the biomedical and engineering examples, with current injection between I+ and I− electrodes and
voltagemeasurement across electrodesV+ andV−.More than half themeasurements (highlighted in grey) are of a similar configuration
whichwe define to as ‘adjacent–conjugate,’whereby each voltage electrode neighbors a current electrode, and the inner/outer pairs are
current/voltage electrodes.
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listed in table 2 and shows that the sensitivity volumemaximized dataset tolerates a factor of 25×more noise
than the adjacentmeasurement protocol, with the same number ofmeasurements. Table 2 also lists the increase
in relative sensitivity S/S0 of the sensitivity volumemeasurement protocol from equation (18) relative to that of
the adjacentmeasurement protocol.

In the engineering example, our (T)SVD solver was used for bothmeasurement protocols with a truncation
point of k= 18 singular values, as necessitated by smaller amplitudes of the singular values from the Jacobian
matrices. Figure 4(a) shows the forward problem inputmaps of 3 rods (top) and 6 rods (bottom). Reconstructed
conductivitymaps of the noiseless (η= 0) cases are shown in color in the left of panel (b) for the standard
adjacentmeasurement protocol, and the left of panel (c) for the sensitivity volumemaximizedmeasurement
protocol. Datasets generated using bothmeasurement protocols were reconstructed using the 3- and 6-fold
symmetric polynomialmodel space described in section 4.1.Once again, themean results of 1000 (T)SVD
inverse solves are generatedwith increasing noise η from left to right. In the reconstructions from adjacent
measurements in panel (b), small singular values in the (T)SVD inversion cause the noise to rapidly overtake any
meaningfulmodel features. In contrast, sensitivity volumemaximizedmeasurements in panel (c), canwithstand

Figure 3.Biological example: noise advantage of sensitivity volumemethod using theM = 27Zernike polynomialmodel space.
Reconstruction quality of a ‘normal heart’ and ‘enlarged heart’ in a simplified 2Dmodel of a chest cavity are compared. (a) From input
conductivitymaps on amesh (black andwhite), mean inversemaps following the color scheme (far right) are shownwith increasing
input noise level η from left to right fromboth (b) adjacentmeasurementsC = 9,D = 27 and (c) sensitivitymaximizedmeasurements
C = 27,D = 27. Calculations of distinguishability z show that the sensitivity volumemethod canwithstand (z > 1, green) over an
order ofmagnitude higher noise than the adjacentmeasurements before becoming indistinguishable (z < 1, red). On the conductivity
color scale on the right 10 represents the homogeneous reference. Images plotted using EIDORS (Adler and Lionheart 2006).

Table 2.Noise tolerance of sensitivity volumemeasurement protocol compared to adjacentmeasurement
protocol. Although the protocols differ in contact numberC, they have the same number of data space
measurementsD andmodel space dimensionsM. Nonetheless, the sensitivity volume protocol shows
significantly larger noise thresholds ηt and significantly larger sensitivity S/S0 normalized relative to the
adjacent case, exceeding an order ofmagnitude for the biomedical case (figure 3) and two orders ofmagnitude
for the engineering case (figure 4).

Measurement protocol
Biomedical case Engineering case

C D M ηt S/S0 ηt S/S0

Adjacent 9 27 27 0.13 × 10−6 1 0.011 × 10−6 1

Sensitivity 27 27 27 3.2 × 10−6 10.8 14 × 10−6 236
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three orders ofmagnitudemore noise before suchmodel obfuscation occurs, with the respective ηt values again
listed in table 2.

4.8. Iterative versus non-iterative solvers: optimizing computational speed
Thefinal advantage of the sensitivity volumemethod is to leverage the gain in sensitivity to achieve faster
computational time. A rapid refresh rate for tomographicmapping is important in applications where the
systemunder study is dynamically varying, such as a beating heart or a structural element under imminent
failure. Butwhen solving inverse problems in the presence of data noise, it is typically necessary to rely on an
iterative solver which can slow down the inversion algorithm.

Here, a standard iterative solver is challenged against the non-iterative sensitivity volumemethodwith the
same distinguishability problem for the biomedical and engineering cases, above. The noise threshold, and its
computation timeswere compared to the computation times of our non-iterative sensitivity volumemethod
under the same noise level. The iterative solver to be compared is the publicly available EIDORS iterativeGauss
Newton inverse solver (Adler and Lionheart 2006), which can conduct inverse solves in 100 or fewer iterations
with the regularizing hyperparameter set to 1× 10−7. For calculations of the EIDORS noise threshold, the
model covariancewas estimated from ensembles of 100 different inverse solves for different noise amplitudes η,
and the resulting noise thresholds are listed in table 3. The noise threshold of the iterative EIDORS regularized
inversionwith the adjacent data space, is always of the same order ofmagnitude and slightly less than the noise
tolerated by the non-iterative (T)SVD inversionwith the sensitivity volumemethod. Table 3 shows the
significant speed advantage of invertingwith the non-iterative sensitivity volumemethod over invertingwith a
regularized, iterative solver by comparing their computation times tc for the examples shown previously. The
sensitivity volumemethod produces results in approximately 1/600 000th the computation time of the EIDORS
inverse solver.

Figure 4.Engineering example: noise advantage of sensitivity volumemethod using the feature targeted, 3- and 6-fold symmetric
M = 27 polynomialmodel space. Reconstruction quality of 3 versus 6 reinforcement rods in the cross-sectionalmodel of a concrete
pillar are compared. (a) From input conductivitymaps on amesh (black andwhite), mean inversemaps following the color scheme
(far right) are shownwith increasing input noise level η from left to right fromboth (b) adjacentC = 9,D = 27 and (c) sensitivity
maximizedmeasurementsC = 27,D = 27. Calculations of distinguishability z show that the sensitivity volumemethod canwithstand
(z > 1, green)more than two orders ofmagnitude higher noise than the adjacentmeasurements before becoming indistinguishable
(z < 1, red). On the conductivity color scale on the right 10 represents the homogeneous reference. Images plotted using EIDORS
(Adler and Lionheart 2006).
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4.9. Inflated versus uninflated data spaces
In the sensitivity volumemethod, inflating the data space comes at a cost of addingmore contacts. Thus, it is
important to quantify the degree towhich an inflation of the data space leads to an improvement in the overall
sensitivity. A computational study of the sensitivity for a 2D circle was undertaken for various data space
inflation factors rD= 1, 3, 5, and 10with equally spaced circumferential contacts, a homogeneous reference, and
a Zernike polynomialmodel space, and the corresponding factor of increase in contact number rCwas
compared.

Infigure 5, the initial number of contactsC listed on the bottom axis will set the baseline data space
dimensionD per equation (8). Then this data spacewill be increased by the factor rD to the valueD0, requiring
that the contact number also be correspondingly increased toC0(rD) listed along the top axis offigure 5 per
equation (9). The inset offigure 5 compares the exact value bywhich the contact number is inflatedC0(rD)/C
(filled circles) alongwith the analytical expression for rC from equation (12) (solid lines), showing good

Figure 5.Normalized sensitivity improvement S/S0 versus contact numberC for different data space inflation factors rD. The bottom
horizontal axis sets the baseline number of contactsCwith no inflation of the data space, rD = 1.When the data space is inflated by the
factors rD = 3 (green), 5 (red), and 10 (blue), respectively, the number of contactsC0 required to generate these larger data spaces are
listed in the colored horizontal axes above the plot for each value ofC. The increase in sensitivity relative to the uninflated data space
S/S0 is plotted on the vertical axis. Power law curves according to equation (33) are overlaid as guides to the eye. Inset: Inflation factor
for the contact numberC0/C (dots) and rC from equation (12) (line) are plotted versus baseline contact numberC for the same data
space inflation factors rD showing good agreement. rC asymptotically approaches rD in the limit of largeC (horizontal dashed lines).

Table 3.Computational advantage of sensitivity volumemethod over default
EIDORS inverse solvers. Comparisons of computation times tc and noise
thresholds ηt show the sensitivity volumemethod can produce comparable
noise-tolerance to EIDORS but 600 000× faster.

Inverse Solver
Biomedical case Engineering case

tc ηt tc ηt

EIDORS 69 s 1.7 × 10−6 67 s 3.1 × 10−6

Sensitivity 110μs 3.2 × 10−6 110μs 14 × 10−6
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agreement. In particular, equation (12) predicts that the rC factor saturates at =r rC D for large contact number
(dashed horizontal lines), with this saturation evident already forC> 10.

The sensitivity improvement S is then plotted on the vertical axis offigure 5 relative to the adjacent
measurement protocol S0. The behavior reveals significant increase in the sensitivity ratio S/S0 by one-and-a-
half orders ofmagnitude as the data spaceD0 expands by increasing factors of rD, and this enhanced sensitivity is
most dramatic with the largest number of contacts. For convenience, the following empirical expression for the
sensitivity enhancement can serve as a guide to the eye, plotted as continuous curves in figure 5
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Note that large gains in sensitivity can be achievedwith only amodest inflation factor. As shown in the inset
for the case of rD= 3 and assuming an initialC= 11 contacts, the number of contacts only needs to be increased
by 65% toC0= 18 contacts to result inmore than an order ofmagnitude improvement in sensitivity S/S0. As
another example, for an initialC= 16 contacts common in EIT systems, an increase in contact number to
C0= 27will increase the signal-to-noise by a factor of×25. The sensitivity can be further increasedwith an
increase in the data space scaling factor to rD= 5 or rD= 10 corresponding to approximately twice (rC= 2) or
triple (rC= 3) the number of contacts.

As an aside, we note that without increasing the number of contacts (rD= rC= 1), the sensitivity volume
method does not show significant improvement over the adjacent or skip (Adler et al 2011) data sets in this
general case of a homogeneous disc, achieving atmost a 20% improvement in S/S0. Such gains showwhy the
adjacent data space has stood the test of time as a popular empirical rule for choosing a 2Ddata space. But in the
case of an inhomogeneous reference, a restrictedmodel space such as the engineering example offigure 4, or
irregular geometries, the sensitivity volumemethod is expected to showperformance advantages.

5. Alternate optimization strategies

Alternative EITmethod optimization efforts are categorized below according to the optimization parameter of
interest, and contextualized relative to the sensitivity volumemethod introduced above for comparison.

5.1.Model space selection:method comparison
The strategic choice of amodel space in the sensitivity volumemethodwas informed by prior workwithin the
EIT literature, wherein this choice has also been referred to as selection of the ‘model’ (Lipponen et al 2013),
choice of ‘conductivity basis functions’ (Tang et al 2002), or the ‘parameterization of the domain’ (Boyle et al
2012). Reduced dimensionalitymodel spaces can be constructed using prior knowledge (Vauhkonen et al 1997,
Tang et al 2002) to significantly decrease computation time (Gómez-Laberge andAdler 2008, Boyle et al 2012).
For example, Lipponen et al (2013)used POD to produce orthonormal functions that strongly resembled
Zernike polynomials, a known set of orthonormal polynomial functions used byAllers and Santosa as amodel
space basis for a 2D circular sample (Allers and Santosa 1991). In keepingwith the spirit of the above examples,
the sensitivity volumemethod, leverages the advantage of a reducedmodel space.

5.2. Contact selection:method comparison
Other EIT literature has sought to increase contact number (Coxson et al 2022) and vary contact placement (Yan
et al 2006, Smyl and Liu 2020, Karimi et al 2021) to optimize results. Additional works have used two-point
measurements or electrode segmentation schemes to select contacts (Polydorides andMcCann 2002, Kantartzis
et al 2013, Zhang et al 2016,Ma et al 2020) thatmay have some strictmathematical advantage, but are
disadvantageous for use in biomedical applications (Putensen et al 2019) orwith existing EIT hardware.
Although theseworks have considered the effect of contacts on the EIT problem, the proposed sensitivity
volumemethod offers a specificfigure ofmerit to optimize contact number and placement.

5.3. Sensitivity and EIT:method comparison
The use of the term ‘sensitivity’ in relation to EIT is borrowed from the common alias of the Jacobian as the
‘sensitivitymatrix’ (Holder 2005). The sensitivities of different prescribedmeasurement protocols have been
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compared by examining thematrices derived from singular value decomposition (Polydorides and
McCann 2002, Tang et al 2002, GrahamandAdler 2007, Kantartzis et al 2013). Other sensitivity-based figures of
merit are limited tomodel spaces comprised of the fullfinite elementmesh 0M (Grychtol et al 2019, Coxson et al
2022) or require subjective visual judgements (Kauppinen et al 2006, Paldanius et al 2022). The sensitivity
volume parameter proposed here, by contrast, is amathematically precise, objective scalar representing the
overall sensitivity of a set ofmeasurements.

5.4. Figures ofmerit for optimization:method comparison
In the optimization of EITmethods, it becomes necessary to develop figures ofmerit for quantitative
comparisons. Awide variety ofmetrics have been proposedwithin the EIT literature that are often case specific
(Graham andAdler 2006, 2007, Adler et al 2009, 2011, Yasin et al 2011, Grychtol et al 2016,Wagenaar and
Adler 2016, Thürk et al 2019) or cannot be applied until after an inverse solve is completed (Yorkey et al 1987,
Tang et al 2002, Coxson et al 2022). In comparison, the sensitivity volume figure-of-merit is unique,
unambiguous, consistent, and broadly applicable.

5.5.Data space selection:method comparison
Data space selection has been referred to as an ‘electrode selection algorithm’ (Coxson et al 2022), a
measurement ‘protocol’ (Holder 2005), an ‘electrode stimulation andmeasurement configuration’ (Grychtol
et al 2016), or an ‘electrode placement configuration’ (Graham andAdler 2007). These prior works often take
trial and error approaches (Adler et al 2011), are limited to highly specific cases (Ma et al 2020), or require
optimization ofmulti-stepmachine learning algorithms (Coxson et al 2022). In addition to the adjacent
measurement protocolmentioned in the introduction, skipmeasurements have grown in popularity as a data
space standard based on an empirical extrapolation of adjacent data space (Adler et al 2011, deCastroMartins
et al 2019, Adler andZhao 2023). In the sensitivity volumemethod, by contrast, increased data importance is
achieved by selecting current and voltage contacts not empirically, but according to amaximized figure-of-
merit.

5.6. Inverse solver:method comparison
The EIT literature seeks tomaximize computational efficiency in solving the inverse problem. To this end, small
model space dimensions have been recommended to reduce the ill-posed nature of the problem and decrease
computation time (Vauhkonen et al 1997, Tang et al 2002), despite the continued prevalence of largemodel
spaceswithM?D. In contrast, by solving an exact-determined problemM=D, the sensitivity volumemethod
quickly solves EITwith less regularization. A comparison computational efficiency (Yorkey et al 1987, Gómez-
Laberge andAdler 2008, Boyle et al 2012, Lipponen et al 2013) is shown in section 4 to demonstrate this
advantage.

The ill-posedness and inherently nonlinear nature of the EIT problemoften necessitates iterative solutions,
such as those available in the popular open sourceMatlab package EIDORS (Vauhkonen et al 2001, Adler and
Lionheart 2006, Graham andAdler 2006).Whereas the treatment in thismanuscript has focused on the
linearized problem,we note that the a priori calculations in the sensitivity volumemethod can also be
implemented prior to solving the nonlinear problem and provide the same advantages in noise robustness. It
should be noted that one does not need to use the reduced basismodel space for inversion. Onemaymerely use
the sensitivity volumemethod to generate ameasurement protocol with high sensitivity, and then use any
favored EIT inverse solver to convert those highly sensitive datameasurements to an image reconstruction.

5.7.Distinguishability and noise tolerancemetrics:method comparison
In addition to themetric proposed byAdler et al (2011), Yasin et al (2011), Adler andZhao (2023) and
generalized in section 3.7, othermeasures of distinguishability have been proposed in the EIT literature
(Vauhkonen et al 1997, Graham andAdler 2007, Adler et al 2009, Braun et al 2017). For example, Isaacson
(1986), Gisser et al (1988) defined distinguishability in terms of current patterns using all electrodes. But
hardware capabilities, current limits, and the inconvenience of optimization duringmeasurement limited use of
thesemaximal distinguishability patterns (Holder 2005). In contrast, the sensitivity volumemethod uses pair
drive current patterns and a priori calculations to optimizemeasurements for existing EIT systems and achieve
improvements in signal to noise.

6. Conclusions

Thismanuscript details a sensitivity volumemethod for optimizing the EIT inverse-problem for increased noise
robustness ofmeasurements and improved computational efficiency. The above analysis demonstrates the
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benefit of targeted selection ofmodel space, data space, and inverse solver for increased data importance by
leveraging prior information and introducing the sensitivity volumefigure ofmerit. The sensitivity volume
method chooses amodel space of targeted features inwhich to optimize and solve the EIT problem, identifies an
appropriate contact number to inflate the available data space, selects the data subspacewith the largest
sensitivity volume, andfinally, solves an exact-determined inverse problem. In the simulated examples
presented to illustrate ourmethods, we observed a factor of over two orders ofmagnitude improvement in noise
tolerance compared to a standard EITmodel space, data space, and inverse solver choice, or×600 000
improvement in computation time over iterative solvers with comparable fidelity. The proposed sensitivity
volumemethodmakes important steps towards the goal of rapid-refresh, noise-robust, high-resolution EIT
inversion.
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