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Abstract
Objective.There have beenmany efforts to develop tools predictive of health deterioration in
hospitalized patients, but comprehensive evaluation of their predictive ability is often lacking to guide
implementation in clinical practice. In this work, we propose new techniques andmetrics for
evaluating the performance of predictive alert algorithms and illustrate the advantage of capturing the
timeliness and the clinical burden of alerts through the example of themodified early warning score
(MEWS) applied to the prediction of in-hospital code blue events.Approach. Different implementa-
tions ofMEWSwere calculated from available physiological parametermeasurements collected from
the electronic health records of ICU adult patients. The performance ofMEWSwas evaluated using
conventional and a set of non-conventionalmetrics and approaches that take into account the
timeliness and practicality of alarms aswell as the false alarmburden.Main results.MEWS calculated
using theworst-casemeasurement (i.e. values scoring 3 points in theMEWSdefinition) over 2 h
intervals significantly reduced the false alarm rate by over 50% (from0.19/h to 0.08/h)while
maintaining similar sensitivity levels asMEWS calculated from rawmeasurements (∼80%). By
considering a prediction horizon of 12 h preceding a code blue event, a significant improvement in the
specificity (∼60%), the precision (∼155%), and thework-up to detection ratio (∼50%) could be
achieved, at the cost of a relativelymarginal decrease in sensitivity (∼10%). Significance. Performance
aspects pertaining to the timeliness and burden of alarms can aid in understanding the potential utility
of a predictive alarm algorithm in clinical settings.

1. Introduction

Early warning systems (EWS) are tools that warn about physiological instabilities in patients at risk of
deterioration. They can play a crucial role in healthcare by enabling early and rapid intervention to help prevent
in-hospital all-cause catastrophic events. Emerging tools are based on complex algorithms that use statistical and
machine learning techniques to identify precursors of adverse events in single ormultimodal physiological
variables available at the bedside. However, the lack of comprehensive validation ofmany such tools to inform
their implementations is one of the reasons that are responsible for their limited adoption in clinical practice
(Damen et al 2016, Linnen et al 2019).

Methodological validation of EWSs is key to understanding their performance to predict clinical events.
Conventionalmetrics typically used to evaluate the performance of EWSs are often limited tomeasures of
sensitivity, specificity and discriminability (through concordance statistics), and often they are not evaluated in a
way that considers the dynamic nature of a score from continuous vital sign data. Thesemetrics are useful to
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evaluate the classification power of an EWSbutmay not describe important aspects of an EWS.Questions about
the frequency of high scores and the burden from score-based alarms, and about the extent, the pattern, and the
time frame over which EWS changes are observed before an adverse event cannot be answered by examining
conventionalmetrics alone. For example, an EWS that oftenwarns about an impending cardiac arrest too early
(e.g. a week) or too late (e.g. seconds)may have limited clinical utility. Yet, depending on the study design, such
warnings could be considered true predictions. Accuracy and timeliness of EWS changes are important
characteristics of performance to help understand the potential clinical utility.

In this study, we consider performancemetrics for clinical prediction indices and examine the types of
information they can provide. To focus on developing the approaches for validating EWS that are agnostic to
algorithms driving EWS, we conduct a case studywhere a simplemodified early warning score (MEWS)was
implemented to predict code blue events in ICUpatients.MEWSwas proposed as a screening tool to identify
inpatients at risk for deterioration and to trigger early evaluation and transfer to step-down or intensive care
(Subbe et al 2001). Views on the clinical usefulness ofMEWS remain rather controversial despite its common
use (Gao et al 2007, Alam et al 2014). The goal of this study is not to prove or disprove the predictive power of
MEWS in ICUpatients, sinceMEWSwas designed and has generally been evaluated for identifying patient
deterioration in broad hospital populations and not a predictive score for cardiac arrest in the ICU (Morgan and
Wright 2007). Rather, our goal is to explore analysismethods for these types of scores, andwe useMEWS as an
example due to its simplicity to calculate and frequent appearance in research studies evaluating its
performance.

2.Materials andmethods

2.1.Data
Demographics and vital signsmeasurements were extracted from the electronic health record (EHR) of patients
hospitalized between 1March, 2013 and 31December, 2017 at theUniversity of California San Francisco
(UCSF)Medical Center. Patients aged 18 years and older whowere admitted in the intensive care unit (ICU)
without a do-not-resuscitate order were included. For each patient, we collected the age, gender, and
measurements of heart rate (HR), systolic blood pressure (SBP), respiratory rate (RR), temperature (Temp), and
GlasgowComa Score (GCS). The studywas approved for research investigation by theUCSF institutional review
board.

Patients were split into case and control groups. Case patients (n=283 of 3410; 8.3%)were defined as those
with at least one in-hospital code blue event, including cardiopulmonary arrest (182 cases), acute respiratory
compromise (34 cases) and othermedical emergencies (67 cases), as documented and confirmed by the code
blue committee of themedical center. In order to control for any increased risk of another code blue event
following afirst occurrence, only data recorded between the time of ICU admission and the time of the first code
blue event were retained for analysis. Control patients (n=3127 of 3410; 91.7%)were defined as thosewho did
not experience a code blue event during their stay. Data recorded between the time of ICU admission and
discharge of control patients were extracted for analysis. Themedian length of ICU staywas 86.3 h in the case
group (IQR=245.9 h) and 160.9 h in the control group (IQR=193.2 h).

Vital signs were available on an irregular time interval. On average, a new vital sign (HR, SBP, RR, Temp)was
measured every 0.6 h in the case group and every 1.7 h in the control group. GCSwas less frequentlymeasured
than vital signs.

2.2.MEWS calculation
MEWS is derived using a set of point assignment rules applied to physiological parametermeasurements as
shown in table 1 (Subbe et al 2001) (some institutionsmay implementmodified versions of these rules and/or
use other/different physiological parameters such as urine output and oxygen saturation). TheAVPU (A, alert;
V, reacting to voice; P, reacting to pain; U, unresponsive) scale used inMEWS corresponds to distinct GCS

Table 1.Modified early warning score.

MEWS 3 2 1 0 1 2 3

Systolic blood pressure (mmHg) <70 71–80 81–100 101–199 �200

Heart rate (bpm) <40 41–50 51–100 101–110 111–129 �130

Respiratory rate (bpm) <9 9–14 15–20 21–29 �30

Temperature (°C) <35 35–38.4 �38.5

AVPU scorea Alert Reacting to voice Reacting to pain Unresponsive

a AVPU: A, alert; V, reacting to voice; P: reacting to pain; U, unresponsive.
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rangeswith overlap between some ranges (Kelly et al 2004, Romanelli and Farrell 2020). To derive a one-to-one
correspondence between both scales, we adopted the followingmapping: Alert=GCS 14–15; Reacting to
voice=GCS 10–13; Reacting to pain=GCS 4–9;Unresponsive=GCS 3.

When EHR is used as the source of physiological parametermeasurements, evaluatingMEWS at regular
intervalsmay be challenging since only a subset ofmeasurementsmight be available at any sampling time point.
Two approaches can generally be used to calculateMEWS. In afirst approach, scores are calculated at a
prescribed regular time interval andmissingmeasurements are imputed. In a second approach, scores are
calculated onlywhen a newmeasurement of one ormore parameters is available.

The details of howMEWS is calculated from irregularly sampled physiological parameters and howmissing
values are imputed is seldomdescribed in the literature (Subbe et al 2001, 2003, Churpek et al 2012, Cooksley
et al 2012, Fullerton et al 2012,Drower et al 2013, vanRooijen et al 2013, Bulut et al 2014, Kim et al 2015,
Mathukia et al 2015, Kruisselbrink et al 2016, Jayasundera et al 2018, Al-Kalaldeh et al 2019). A straightforward

Figure 1.Derivation of a regularly sampledMEWS fromphysiological parameters. First and second top panels illustrateMEWS values
calculated in one patient’s 24 h recording, using TMEWS=4 h andTMEWS=1 h, respectively.MEWSwas calculated using themedian
of physiologicalmeasurements within TMEWS.Missingmeasurements were imputed to calculateMEWS at 1 h intervals (blue arrows
indicate twoMEWSvalues calculated from imputed physiological values, derived by carrying forward the last availablemeasurement,
indicated in blue lines).
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approach is to calculate a newMEWS value every time a physiological parameter gets refreshed, carrying forward
the values of each parameter until a new value is available. This results in an irregularly sampledMEWS, referred
to hereafter asMEWSbase (this is a common approach of calculatingMEWS). Another approach is to calculate
MEWS at prescribed regular time intervals, TMEWS, using a statistical summary of the availablemeasurements
for a physiological parameter within a time interval.We calculatedMEWS and evaluated its performance for two
different lengths of TMEWS (2 and 12 h) and two different statistics: themedian (MEWSmedian) and theworst
value of the available physiologicalmeasurements within TMEWS (MEWSworst).When no newmeasurements are
available within TMEWS,MEWS can be calculated using imputed physiological parameter values.Missing data in
each physiological parameter were imputed by carrying forward the last recorded value until replacedwith a new
measurement. Figure 1 illustrates this approach.We implemented these variations ofMEWS calculation to test
if the proposed validation approaches could reveal whether and how theseMEWS implementations would lead
to different performances.

MEWSwas calculated in the case and control groups according to the rules in table 1. Except forGCSwhich
may not have been recorded for every patient,MEWSwas not calculated (and patient was excluded from the
analysis)when nomeasurements were available for a given vital sign in a patient’s data.

2.3. Performance evaluation
Wedescribe below two approaches for evaluating clinical prediction indices, usingMEWS as a convenient
example score to illustrate the concepts and themetrics introduced.

2.3.1. Patient-level evaluation
Inmany studies evaluating implementations ofMEWS, the number ofMEWS threshold crossings—given a
fixed threshold value—were collectively evaluatedwith regards to correct prediction of an event (Lee et al 2008,
Cooksley et al 2012, Fullerton et al 2012, Bulut et al 2014). That is, true predictions (or true positives) are clinical
events for whichMEWS crossed a threshold, regardless of howmany times this occurred.WhenMEWS crosses a
threshold in a patient who did not experience clinical deterioration during his/her hospitalization period it leads
to a false positive, regardless of the number of times the thresholdwas crossed. Clinical deterioration events for
whichMEWSdid not cross a threshold aremissed predictions (or false negatives). Finally, true negatives are

Table 2.Definition of a confusionmatrix in a patient-level evaluation ofMEWS.

Clinical event occurred No clinical event occurred

One ormore alarms triggered True positive False positive

No alarm triggered False negative True negative

Figure 2.Definition ofMEWS alarms, prediction horizon t = [tmin tmax] and lead time t0 = [tmax tevent]. An alarm is raised each time
MEWS exceeds a threshold (A). tevent is the time of a clinical event, e.g. a cardiac arrest. Alarms are considered early, on-time, late, and
missed if they respectively occur before the start of prediction horizon, within the prediction horizon, within the lead time, and after
the onset of the clinical event. Early, late andmissed alarms are false alarms (B).
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Table 3. Summary of proposedmetrics to evaluate a predictive alarm system.

Metric Definition Rationale Formula

Time-

dependent

sensitivity
t tS , 0

Proportion of events

preceded by at least

one alarmwithin a

prediction horizon

Thismetric quantifies

the proportions of

predicted events

given afixed time

windowwithin

whichMEWS scores

above a threshold are

considered true

alarms, and outside

of which they are

considered false

alarms

=t tS
N

N
, predicted events

events
0

N : Number of predicted eventspredicted events

N : Total Number of eventsevents

False positive

ratio (FPR)
Proportion of the

expected number of

control patients in

whomalarms are

triggeredwithin a

windowof a length

equal to the predic-

tion horizon

Thismetric estimates

the proportion of

control patients who

are likely to trigger a

false alarm. This esti-

mate is based on ran-

domized occurrences

of a timewindow

withinwhichMEWS

scores above a

threshold are

deemed false alarms

m =
å å= =

FPR

T

N M.

i
N

j
M

ij1 1ˆ

N: Number of control patients

M: Number of trials to estimate FPR (e.g.M=1000)
Tij: jth randomly selected timewindow from the control data of

the ith control patient

= ⎧
⎨⎩

T
an alarm is triggered within T

otherwise

1,

0,
ij

ij

Alarm rate (r) Number of alarms per

unit time

This is ameasure of the

burden of alarms,

including true and

false alarms

=r N

T
alarms

recording

N : Number of alarmsalarms in a patient recording data

T : Recording data durationrecording

Alarmpropor-

tion r( )
Proportion of score

samples triggering

an alarm

This ismeasure of the

alarmburden. It

quantifies the relative

number of score

samples triggering an

alarm

r = >N

N
MEWS k

MEWS 0

>N k: Number of MEWS samples above thrsholdMEWS k

N :MEWS 0 Number ofMEWS samples

False alarm rate

(r0)
Number of false

alarms per unit time

Measures the burden of

false alarms by esti-

mating their (hourly)
frequency. A high

ratemay lead to

alarm fatigue

=r case
N

T
0 falseAlarms( )

N : Number of false alarmsfalseAlarms

t
=

-⎧
⎨⎩

T
T for case patients

T for control patients

:

:
recording

recording

False alarmpro-

portion r0( )
Proportion of score

samples triggering a

false alarm

Measures the burden of

false alarms by esti-

mating their (rela-
tive) quantity. A high

proportionmay lead

to alarm fatigue

r =
N

N
0 falseAlarms

MEWS 0
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patients who did not experience clinical deterioration by the end of their hospitalization and inwhomMEWS
did not cross a threshed (table 2).

In a systemwhereMEWS threshold crossings translate intoMEWSalarms, the above definitions become
limited as they do not quantify the timeliness and burden of these alarms.We hereafter refer to the above
evaluation scheme as patient-level evaluation and propose an event-level evaluation by considering the timeliness
and the temporal distribution ofMEWS alarms to quantify the burden and practicality of notifications.MEWS
alarms can be defined as events triggered and cleared following a set of rules. Here, and to simplify subsequent
analysis, we define aMEWS alarm an instantaneous notification occurringwhenMEWS exceeds a given
threshold value (figure 2(A)).

2.3.2. Prediction horizon and lead time
The definition of a temporal windowpreceding the time of an event allows performance to be evaluated in
respect to an actionable timeframe.MEWS alarms have different clinical implications when they occur ‘too
early’ or ‘too late’.We therefore define two temporal windows, the prediction horizon and the lead time, to
quantify the timeliness of alarms. A prediction horizon is a timewindowpreceding the time of event (i.e. [tmin

tmax]where tmin<tmax<tevent), withinwhich alarms are deemed actionable, that is providing sufficient time
for caregivers to intervene (figure 2(B)). For code blue events, the length of a prediction horizon t = -t tmax min

could be defined according to typical ICUnurse’s shift (e.g. 12 h).
tmin is the earliest time (with respect to tevent) an alarm can contribute to true predictions. By varying tmin and

setting tmax=tmin+t,we can create a realistic and clinicallymeaningful characterization of the ability of
MEWS to predict code blue events in the ICU.Applying such definitions of tmin and tmax is a general approach
and allows performance characterization at a lead time before the onset of event, defined by tmax, where the lead
time is the interval of time [tmax tevent]. The duration of the lead time t0 serves as theminimum timewindow
required for an intervention to be effective. Any alarmoccurring within the lead time is a late alarm. It is
considered either a ‘short-notice’ or a redundant alert if it is preceded by one ormore alarms triggeredwithin the
prediction horizon. Alarms generated after event onset (tevent) are deemedmissed alarms. Early, late, andmissed
alarms are all false alarms.

2.3.3. Event-level evaluation
Given the definitions of prediction horizon and lead time, we derive a series of time-dependentmetrics to
evaluate the performance ofMEWS and the burden of alarms. Table 3 summarizes thesemetrics and their
definitions.

2.3.3.1. Time-dependent sensitivity
Alarms triggeredwithin the prediction horizon are defined as true alarms and alarms triggered outside of the
prediction horizon (before or after) as false alarms. To quantify the sensitivity ofMEWS given these definitions,
we consider an event to be successfully predicted if it was preceded by at least one true alarm (Notice that a
distinction ismade between a true alarm and a true positive. A ‘positive’ refers a code blue event just like it was

Table 3. (Continued.)

Metric Definition Rationale Formula

Work-up to

detection

ratio (WDR)

Ratio of the numbers

of true and false pre-

dictions to the num-

ber of true

predictions events

Measures the number

of patients whowill

receive aworkup

before one additional

adverse outcome can

be prevented

= m+
WDR

N

N
case FP

case

ˆ

Ncase:Number of case patients inwhomat least one alarmwas

triggeredwithin a prediction horizon

m : Estimated number of false positivesFPˆ

Time profile of

alarm

proportion

Normalized summary

histogramof alarms

with respect to

number of alarms

An estimate of the

probability of an

alarm triggered early,

on-time, late, or

missing an event

N/A

Time profile of

alarms per

event

Normalized summary

histogramof alarms

with respect to

number of events

Time profile of alarm

proportionwith

respect to events

N/A
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defined in the patient-level evaluation.)This sensitivity depends on the choice of t tand 0 and its formally
defined as the proportion of clinical events for which at least one alarmwas triggeredwithin the prediction
horizon:

=t tS
N

N
, 2.1

predicted events

events

, 0 ( )

where Npredicted events is the number of predicted clinical events and Nevents is the total number of clinical events.

2.3.3.2. Time-dependent specificity
Event-level specificitymetrics can be derived from case and control records.Wefirst propose to estimate the
false positive ratio (FPR) in the control group, defined as the ratio of the expected number of control patients in
whomalarms are triggeredwithin awindowof a length equal to the prediction horizon, to the total number of
control patientsN (Bai et al 2015). Let mFPRˆ be the expected the estimated value of FPR. mFPRˆ can be calculated
using a bootstrapping approach. For each control patient i (1 iN), we randomly sample awindowof length
t over its wholemonitoring time. This is repeated a sufficiently large number of timeM (e.g.M=1000). The
windows are then temporally sorted and indexed using their temporal order (the jthwindow is preceded in time
by the ( j−1)thwindow).We then calculate the number of windows inwhich one ormore alarms occurred
(triggeredwindows) to estimate the expected value of whether the patient counts as a false positive.

LetTij=1 (1 iN; 1 jM) if the jthwindow selected for the ith control patient gets triggered, and
Tij=0 otherwise. The expected number of control patients ‘triggering’ a jthwindow is:

åm =
=

T 2.2FP
j

i

N

ij
1

ˆ ( )

and its standard deviation is:

å
s

m
=

-

-
=

T

N 1
. 2.3FP

j i

N
ij FP

j
1

2

ˆ
( ˆ )

( )

The estimated value mFPRˆ and its standard deviation can then be calculated as:

å å å
m

m
= == = =

M

T

N M.
, 2.4FPR

j

M
FP
j

i

N

j

M
ij1 1 1ˆ

ˆ
( )

å
s

s
= =

M
. 2.5FPR

j

M
FP
j

1
2

ˆ
( ˆ )

( )

Othermetrics (accuracy, positive and negative predictive values and F1 score) can be calculated using the
same bootstrapping approach (see supplementarymaterial S1 (available online at stacks.iop.org/PMEA/42/
055005/mmedia)). To quantify the specificity ofMEWS in the case groups, we propose to calculate the
proportion and rate of alarms and false alarmswhich also quantify the alarmburden.

2.3.3.3. Alarm burden
The number of alarms generated during an ICU stay in case patients can be summarized by visualizing the
distribution of the alarms that occur ‘early’, ‘late’, and ‘on-time’, and alarms that were ‘missed’, with respect to
the prediction horizon and time of event. To quantify these distributions, alarms fromall case patients are
summedupwithin each of the four attributedwindows to create a time profile or alarms. This profilemay be
interpreted as the probability distribution of generating an alarm early, on-time, late, ormissing an event. The
number of alarms can further be normalized by the total number of alarms or by the total number of events
resulting in a time profile of alarms per event and a time profile of alarm proportions, respectively (Scully and
Daluwatte 2017).

Additionally, we calculate the rate of alarms and false alarms (r and r0, resp.), and the proportion of alarms
and false alarms (r and r ,0 resp.) tomeasure the burden of alarms and false alarms. r and r0measures the
number of alarms and false alarms, respectively, per unit time per patient.

2.3.3.3.1. Rate and proportion of alarms
For a given patient in the case or control group, r and r are given by:

=r
N

T
, 2.6alarms

recording

( )
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r = = >N

N

N

N
k, 0 13, 2.7alarms

MEWS

MEWS k

MEWS 0

 


( )

whereNalarms is the number ofMEWS above a threshold k andNMEWS is the number ofMEWS samples
(equivalently, the number ofMEWS above threshold k=0) in the patient recording.

2.3.3.3.2. Rate and proportion of false alarms
A false alarm is an alarm that occurs outside of the prediction horizon by the previous definitions. Hence, the
false alarm rate for a given patient in the case group is given by:

t
=

-
r case

N

T
. 2.8

falseAlarmsCase

recordingCase

0( ) ( )

With NfalseAlarmsCase is the total number of false alarms, andTrecordingCase the duration of the recording.Here, the
duration of the prediction horizon is subtracted from the total duration of recording since a false alarm cannot
occurwithin a prediction horizon by definition.

To calculate r0 for a control patient, we simply derive the average rate of alarms triggered for a control
patient:

=r control
N

T
, 2.9

falseAlarmsControl

recordingControl

0( ) ( )

where NfalseAlarmsControl is the total number of false alarms andTrecordingControl the duration of the recording in a
given control patient.

By substituting NfalseAlarmsCase and NfalseAlarmsControl in the numerator of equation (2.7)we get the proportion
of false alarms r case0( ) and r control0( ) in the case and control group, respectively.

2.3.3.4.Work-up to detection ratio (WDR)
Furthermore, we introduce theWDR ratio to evaluate the effectiveness ofMEWS.WDR is defined as the ratio of
the number of case patientsNcase inwhomat least one alarmwas triggeredwithin a prediction horizon
(equivalently the number of predicted events) and the number of control patients inwhoma randomwindowof
length t is triggered (i.e. the estimated number of false positives, mFPˆ ), to the number of predicted events:

m
=

+
WDR

N

N
. 2.10case FP

case

ˆ
( )

Conceptually,WDR is similar to the number needed to alert, defined as the number of alerts that need to be
reviewed to detect one potential adverse event (Moore et al 2009).WDRmeasures the number of required
workups to prevent one additional adverse outcome (equivalently, the number of case patients to be treated for
one of them to benefit from the treatment comparedwith a control patient).

Using (2.4), and (2.5),WDR and its standard deviation can be estimated as:

å
m

m
= + =

N
1 , 2.11WDR

i

N
i

case

1ˆ
ˆ

( )

Figure 3.ROC curve (left) and precision-recall (right) curve ofMEWSperformance evaluated for 14 discrete threshold levels
(k=0–13) using the patient-level evaluation approach. The area under the curve (AUC) is ameasure ofMEWSperformance. Dashed
lines represent chance level. Red dots indicate the performance ofMEWS at threshold k=4.
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3. Results

27 of 283 case patients (9.5%) and 6 of 3127 control patients (0.2%)were excluded from the analysis because
MEWS could not be calculated (due tomissing of one ormore vital signs) and/or because the duration of the
recordingwas less than the prediction horizon t = 12 h for the sensitivity to be evaluated in case patients and
FPR to be estimated in control patients. This led to 7%prevalence of code blue events.

MEWSbase was evaluated using the traditionalmetrics (AUC, accuracy, sensitivity, specificity, and precision).
We then evaluated the impact of calculatingMEWS from summary statistics of physiologicalmeasurements in
comparisonwithMEWSbase. Finally, we evaluateMEWSusing the proposedmetrics. The prediction horizon t
was set to 12 h—typical length of nursing shift—and the lead time t0 was varied between 0 and 6 h at 10 min
increments. Case patients for whom the length of ICU staywas less than the sumof lead time and seizure
prediction horizon (i.e. length of stay< t+12 h 0)were excluded from the relevant analysis since true
predictions could not be evaluated. The number of excluded patients increased linearly from0 (for t0 = 0) to
38 (for t0 = 6 h).MEWSwas evaluated for threshold values k varying between 0 and 13. Table 4 describes the
frequency of vital signs andGCSmeasurements and the proportion of imputed values in the dataset.

Table 4.Average sampling rate (measurements per hour) of physiological parameters and proportion ofmissing values in the case and
control groups.

GCS Temp SBP RR HR

Case Average sampling rate (1/h) 0.3 1 1.2 2 2.2

Proportion of imputed values 0.9 0.5 0.5 0.1 0

Control Average sampling rate (1/h) 0.1 0.4 0.5 0.7 0.8

Proportion of imputed values 0.9 0.6 0.4 0.1 0.1

Table 5.Performance ofMEWSusing patient-level and event-level evaluations.MEWS thresholdwas set to k=4.

Evaluation TPR FPR (std) NPV (std) PPV (std) ACC (std) F1 (std) WDR (std)

Patient-level 0.97 0.77 0.99 0.09 0.29 0.17 10.7

Event-level (t = 12 h, t0 = 0,M= 1000) 0.87 0.30 (0.14) 0.98 (0.00) 0.23 (0.12) 0.71 (0.13) 0.35 (0.13) 5.3 (1.94)

Note. TPR: True Positive Rate (Sensitivity); FPR: False Positive Rate;NPV:Negative Predictive Value; PPV: Positive Predictive Value; ACC:
Accuracy.WDR:Workup-to-detection ratio.

Figure 4.Performance ofMEWS calculated at irregular time points (MEWSbase) and at regular time intervals TMEWS=2 and 12 h
using themedian (MEWSmedian) and theworst value of physiologicalmeasurements within TMEWS (MEWSworst).MEWS threshold
was set to k=4.
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Figure 5. Sensitivity t tS , 0 ofMEWS evaluated for a prediction horizon t = 12 h and lead time t0 varied between 0 and 6 h at 10 min
increments.MEWSwas calculated at irregular time points (conventional orMEWSbase) and at regular time intervals TMEWS=2 h (A)
and 12 h (B) using themedian (MEWSmedian) and theworst value of physiologicalmeasurements within TMEWS (MEWSworst).MEWS
threshold was set to k=4.

Figure 6.Time profile of alarms and alarms per event calculated in case patients for 3 different calculationmethods ofMEWS and 2
values of TMEWS. (A)Proportion of early, on-time, and late alarms andmissed events. (B)Number of early, on-time and late alarms per
event and number ofmissed events.MEWS thresholdwas set to k=4. Prediction horizonwas set to t = 12 h and lead timewas set to
t =0 1 h.
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3.1. Patient-level and event-level evaluation ofMEWSbase
Table 5 shows the performance ofMEWSbase evaluated using classicmetrics applied to the patient-level and
event-level approaches (see sections 2.3.1 and 2.3.3, resp.).MEWS threshold kwas set to 4, a commonly used
threshold value (Subbe et al 2001, Burch et al 2008).

Using a patient-level evaluation, the high sensitivity ofMEWS (TPR=0.97)was significantly compromised
by low precision (0.09) and low specificity (FPR=0.77). Figure 3 depicts the performance ofMEWS for each of
the 14 possible threshold values using a Receiver operating characteristic (ROC) curve and the precision-recall
curve (PRC).

Using an event-level approachwith a prediction horizon t = 12 h and a lead time t0 = 0 h in the case group,
and 1000 randomwindows in the control group, a substantial improvement in the precision (∼155%), the FPR
(∼60%) and in theWDR (∼50%) could be achieved in the expense of a relativelymarginal decrease in
sensitivity (∼10%).

The performance ofMEWS calculated at regular time intervals was lower than that of theMEWSbase
(measured byAUC) regardless of the length of TMEWS and the statistic used (figure 4).MEWSmedian was less
affected by the length of TMEWS thanMEWSworst, which performance degraded using a TMEWS of 12 h compared
to a TMEWS of 2 h.

Figure 7. False alarm rate and proportion of false alarms in the case and control groups, and in the combined population for different
MEWS thresholds k, TMEWS=2 h, and two different value sets of the prediction horizon and the lead time: (A) t = 0 h, t0 = 0 h and
(B) t = 12 h, t0 = 1 h. Shadows indicate one standard deviation of themean.
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3.2. Time-dependent sensitivity
SettingMEWS threshold to k=4 and the prediction horizon to t = 12 h, therewas no significant change in the
sensitivity when the lead timewas varied between 0 and 6 h (see figure 5). The sensitivity ofMEWSmedian was
significantly lower than that ofMEWSworst andMEWSbase (t-test, p< 0.05)whenTMEWSwas set to 2 or 12 h, and
for different lead time values (see section 2.3.3.1).MEWSbase andMEWSworst showed comparable sensitivities
for either value of TMEWS.

3.3. Alarmburden
3.3.1. Alarm time profile
Figure 6 illustrates the distribution of the proportion of alarms and alarms per event (see section 2.3.3.3) across
four time periods. Regardless of the length of TMEWS and howMEWS is calculated,most alarmswere triggered
early, before the start of the pre-defined prediction horizon. The proportion ofmissed events is relatively lower
withMEWSbase thanwithMEWSMedian orMEWSworst, for both TMEWS values. Longer TMEWS results into higher
proportion ofmissed events and a lower rate of early and on-time alarms per event for bothMEWSMedian and
MEWSworst.

3.3.2. False alarm rate and proportion of false alarms (see section 2.3.3.3.2)
We set the values of prediction horizon t and lead time t0 to 0 in order to evaluate the effect of calculating
MEWSwith differentmethods on the burden of false alarms. The average false alarm rate and average
proportion of false alarms across patients were generally highest forMEWSbase and decayed exponentially with
increasing values of k (figure 7(A)). At k=4 andTMEWS=2 h, the average combined (case and control)
proportion of false alarm ro and the average combined false alarm rate r0 were significantly higher (t-tests, p
<0.05) forMEWSbase (19%and 0.19/h, resp.) compared toMEWSmedian (12%and 0.05/h resp.).MEWSworst
resulted in significantly lower r0 (0.08/h) but not ro (18%) comparedwithMEWSbase.

At t = 12 h and t0 = 1 h, both r0 and ro decayed similarly as for t = t0 = 0 h (figure 7(B)). For k4 any
improvement in r0 and ro is arguablymarginal. Highest values of r0 and ro were observed forMEWSbase
overall.

3.3.3. Rate and proportion of alarms (see section 2.3.3.3.1)
At t = 0 and t0 = 0, the average alarm rate decayed exponentially withMEWS threshold aswas the case of false
alarm rate.MEWSbase generates the highest alarm rate at anyMEWS threshold value comparedwith
MEWSmedian, andMEWSworst, which both led to comparable alarm rates for all values of k andTMEWS values and
larger alarm rates for longer TMEWS values. Average alarm rates were expectedly higher in the case group than in
the control group.

The proportion ofMEWS values above a given threshold (alarmproportion)was relatively comparable for
allMEWS calculationmethods andTMEWS values. Comparedwith conventionalMEWS, the alarm rate
decreased by∼70% (from13.68/patient-day to 4.08/patient-day) in the case group for TMEWS=2 h, and by
95% for TMEWS= 12 h (from13.68/patient-day to 0.37/patient-day). This translates into a reduction in the
hourly alarm rate from∼1 alarm every 1.7 h to∼1 alarm every 5.8 h, and to 1 alarm every 33 h, for TMEWS=2 h
and 12 h, respectively. Table 6 provides a summary of alarmproportions and alarm rates for k=4.

4.Discussion

The clinical importance of predictive alarm systems as riskmanagement tools to help prevent in-hospital patient
deterioration has been discussed in numerous systematic reviews (Robert et al 1999,McNeill and Bryden 2013,

Table 6.Number ofMEWS samples, alarm rate (r) and alarmproportion (r), in the case and control group. For differentMEWS calculation
methods. Average numbers shown.MEWS thresholdwas set to k=4.

MEWSBase MEWSMedian MEWSWorst

Case Control Case Control Case Control

Number ofMEWS samples (1/patient-day) 51.98 21.50 TMEWS (h) 2 14.17 9.61 14.17 9.61

12 5.70 2.10 5.70 2.10

r (1/patient-day) 13.68 4.08 TMEWS (h) 2 4.08 1.2 5.52 2.16

12 0.72 0.24 1.44 0.72

r (%) 0.46 0.19 TMEWS (h) 2 0.37 0.13 0.52 0.22

12 0.33 0.11 0.72 0.35
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Vincent et al 2018, Kramer et al 2019, Gerry et al 2020).Many of these reviews highlighted themethodological
weaknesses and questioned the true predictive power of these systems.Methodological and statistical
evaluations that consider among other aspects the temporal dynamic of themeasure profile (in the case of
continuousmonitoring), the timeliness of alarms, and frequency of false alarms can aid in this evaluation. In this
study, we investigated the performance awidely adapted EWS,MEWS, using a new set ofmetrics that capture
two critical aspects of any predictive alarm algorithm, namely the timeliness and the burden of alarms.We
adjusted the definition of sensitivity to take into account two clinically important time intervals, the prediction
horizon and the lead time. These parameters can help provide performance information thatmay bemore
informative on clinical utility, since an alarm is arguably useful if it’s actionable (occurs within a nursing shift)
and intervenable (provides aminimum time for an intervention to be effective). This proposed definition of
sensitivity informswhether a continuous predictive alarm algorithm can practically identify patients at risk of
deterioration and alert caregivers early enough to intervene. The characteristic curve of the sensitivity versus lead
time can guide the choice of operational lead time values.

This study aims at proposing a general framework ofmethods andmetrics for evaluating the performance of
early warning scoring and predictive algorithms. The intended framework is sought to engage researchers in
testing the predictive power of a proposed algorithmunder different conditions and alarmprotocols to emulate
the realmof real-word clinical setting. Parameters such as the prediction horizon and the lead time can be
applied universally to test the performance of any predictive alarm algorithmoperating on continuous data.
Moreover, a variety of alarm triggering strategies can be envisaged and tested to assess if they influence the
clinical burden.

4.1. Limitations
This study has limitations.While patients were selected consecutively to avoid a selection bias, some case
patients had significantly shorter recordings than others. Somemetrics (e.g. proportion of early alarms)may
have been biased for these patients leading to lower values thanwhat could be observed if recordings had the
same length. Estimating specificity-metrics (proportion of false alarms, false alarm rate) over recordings of equal
length rather would have introduced a patient selection bias. To overcome these limitations, an alternative
approachwould be to normalize the number of false alarms by the duration of time preceding the prediction
horizon (e.g. 10 false alarms triggeredwithin 1 hwould contribute the same proportion of early alarms as 100
false alarms triggeredwithin a 10 h timeframe).

Constraining the timeframe inwhich an alarm is counted a true alarm to a prescribed horizonwhile relaxing
the period of time alarms are labeled as false inherently biases the proportion of false to true alarms. The false
alarm ratemay not be affected if we assume that the probability of false alarmoccurrence is independent of time-
to-event. Such an assumptionmay not be (always) true though. For example, aMEWS system inwhich the
threshold is adjusted as information about the patients’ health statusmatures with the length of staymay result
in fewer (hourly) false alarms generated towards the end of stay than false alarms generated early after the
admission using the ‘default’ threshold value.

Performance results depend on alarmdefinition and protocol. Hadwe groupedmultiple threshold crossings
to formone alarm, for example by applying a lockout period after each alarm,withinwhich no alarmwould be
generated, the rate and proportion of alarms obtained (see table 6)would have likely been reduced since less
alarmswould have been generated. Such reduction could in fact be significant and lessens the alarmburden.
Studies which applied a lockout period demonstrated a decrease of 55% in alerts from a predivemodel for
cardiothoracic ICUpatients (King et al 2012). A recent study demonstrated that the number of alerts could be
reduced by 90%when a 15 min lockout periodwas applied to a prediction algorithm for ICUhypotension
events (Yoon et al 2020).

EHRdata are sparse with irregular time interval, itmay be challenging to design rules to group alarms that
result in appreciable difference. However, ifMEWSwas generated from continuous vital signs (i.e. frombedside
monitors), the number ofMEWS alarms generatedwould have differed significantly in both alarm approaches
andwould have led to significant difference in sensitivity and specificity results.

Finally, data imputation through forward carrying of the last available physiologicalmeasurement were not
constrained to expire after an amount of time in this study. It is worth noting that this practice is safe for
imputingmissing physiological parameter values that are slow changing in nature, such as temperature, orGCS
in the case ofMEWS, butmay not reflect the true underlying physiological state in the case of other parameters.
Limiting the time an imputed valuemay be carried forward can limit the effect ofmisrepresenting the
physiological state butmay result inmissing samples (in the case of regular sampling) if nomeasurements are
available after expiration of the imputed physiological parameter value.

A critical step in the development of a predictive algorithm is to statistically validate its performance. That is
to demonstrate it has an above-chance predictive power. A key question is whether an adverse event can be
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predicted andwhether an algorithm,which is presumed to performbetter than chance, does not have predictive
power but simply has not yet been tested against appropriate null hypotheses (Andrzejak et al 2009). Different
statistical approaches have been proposed to answer this question. These include analyticalmethods (e.g.
comparisonwith naïve predictors) andMonte Carlo basedmethods (e.g. alarm surrogates) (Schelter et al 2006,
Snyder et al 2008, Feldwisch-Drentrup et al 2011).

4.2.On the performance ofMEWS
The proposedmetrics were applied tomeasure and evaluate the performance of different implementations of
MEWS to predict code blue events. Here, we discuss new insights as provided by the proposed performance
metrics relating to the potential clinical performance ofMEWS that weremissing in prior literature (Fairclough
et al 2009,Heitz et al 2010, Tirotta et al 2017, Akgun et al 2018, Xie et al 2018, Jiang et al 2019, Ahn et al 2020,
Aygun et al 2020, Balshi et al 2020, Gerry et al 2020, Kumar et al 2020).

Althoughwe found that the sensitivity did not significantly changewith lead time values up to 6 h (see
section 3.2), it remains to be investigated if higher sampling rates of physiologicalmeasurements (e.g.
continuous vital sign recordings frompatientmonitors) can uncover trending changes inMEWS values that
may lead to higher sensitivities at short lead times. Additionally,measurements were sampled on average 2.5
timesmore frequently in patients of the case group than of the control group to presumably capture sudden
physiological changes that aremore likely to occur in the sicker patient. Higher sampling rates in the control
groupmay have led to different distributions ofMEWS alarms and therefore influenced the calculated
performance results. The effect of the sampling rate on the calculatedmetricsmay be less prominent for
MEWSmedian than forMEWSworst and conventionalMEWS sinceMEWSmedian is the least affected by a change in
datafluctuation thatmay be caused by increasing the number of samples within TMEWS.

Despite a high sensitivity (97%) observed using thewidely adopted patient-level evaluation approach, the
false positive rate and the precision of the conventionalMEWSwere remarkably poor at a threshold value of 4
(77%and 9%, resp; see section 3.1). One of ten patients who triggered an alarmhad a code blue outcome
(WDR∼10), while almost 8 of 10 patients were falsely identified as potentially high-risk patients (FPR=77%).
Judgingwhether these numbers are acceptable amounts tomainly evaluating the clinical burden associatedwith
a false alert for a particular application. Additionally, the rate of alarmswas highest for conventionalMEWS. By
calculatingMEWSover 12 hwindow, the alarm rate dramatically decreased. For example, withMEWSmedian,
one alarmwould be triggered every 33 h, instead of every 1.7 h in the case of conventionalMEWS. A substantial
reduction in the frequency of alarms in the ICUminimizes alarm fatigue (Blum andTremper 2010).

A direct comparison of these results with the performance ofMEWS reported in previous studiesmay not be
feasible since the datasets, the frequency ofmeasurements, and the outcomes analyzed vary amongMEWS
studies. Noticeably, studies that evaluated the effect ofMEWS implementation on cardiac and cardiopulmonary
arrests reportedmixed performance results (Subbe et al 2003, Jones et al 2011,Moon et al 2011, Churpek et al
2012). It’s worth emphasizing thatMEWSwas not designed to be a predictor of code blue events nor it is the
standard of care to useMEWS in ICU settings. It’s a screening tool to identify inpatients at risk for deterioration
and to trigger early evaluation and transfer to step-downor intensive care. The low precision and high false
positive rate in ICUpopulationwe analyzed do not necessarily indicate a deficiency ofMEWS.We simply used
MEWS as un exemplar of a clinical prediction index to examine characterization and performance evaluation
techniques, and not to examine the performance ofMEWS as a predictor of code blue events.

By adopting an event-level evaluation ofMEWSwhere only alarms triggeredwithin a defined nursing shift
period of 12 h are considered true alarms, performance levels changed significantly compared to those obtained
under patient-level evaluation. Notably, the number of workups required to detect a cardiac arrest dropped
significantly by close to 50%, from10.7 to 5.3 (see section 3.1). Less patients to evaluate translates to less
disruption of the clinical workflow and care cost saving. This improvement in performance is due to reducing
the probability of false positives by limiting false alarms to those occurring within nursing shifts in a control
recording as defined in the event-level evaluation (see section 2.3.3.2).Many control patientsmay have sporadic
false alarms, which under the proposed event-level evaluation are less likely to trigger randomly sampled
windows and lead to false positives. It is important to note that the proposed definition ofWDRdoes not
consider the burden of alerts leading to aworkup.Onemay define an alarm-levelWDR thatmeasures howmany
false alarms get triggered before a cardiac arrest gets detected (true alarm), which can be calculated as the total
number of true and false alarms to the number of true alarms. An efficient predictive system is one that
demonstrates a practically low level of alarms per outcome.

The prediction horizon is a parameter that can be selected based on the clinical relevance of an application.
The choice of 12 h nursing shift as a prediction horizon for the evaluation ofMEWS in this studywasmotivated
by the need to select an actionable timeframewithinwhichMEWS alerts should lead to intervention to
demonstrate the proposed performancemetrics.We used 12 h here because it is the typical duration of a nursing

14

Physiol.Meas. 42 (2021) 055005 KGadhoumi et al



shift inUShospital settings, including critical care (Stimpfel et al 2019). In an ICUunit, two teams of nurses—
one per shift—ensure around the clockmonitoring. AssumingMEWS threshold is adjustable by the attending
nurse,MEWS alerts could be evaluated relative to the nursing shift where theywere triggered. A nurse covering
themorning shiftmay set the threshold to different value than the nurse from the previous night shift.

Interestingly, conventionalMEWS led to similar sensitivity aswithMEWS calculated fromworst case values
(see section 3.2). The alarmburden, however, was less withMEWSworst thanwith conventionalMEWS (see
section 3.3). Despite a slightly lower proportion of on-time alarms and highermissed alarms,MEWSworstmay be
regarded as better choice than conventionalMEWS as itmaintains a high level of sensitivity and alleviates the
alarmburden. The probability distribution of generating alarms did not substantially differ betweenMEWS
implementations tested here, indicating that differentMEWS calculationmethods change the time distribution
of alerts but not their predictive power.

5. Conclusion

Comprehensive evaluation of predictive alarm algorithms to establish their true predictive power and clinical
usefulness is lacking. This study proposes approaches and technical considerations to quantify the performance
and practicality of predictive alarm algorithms in predicting adverse clinical events. UsingMEWS as a case study,
revisited classicmeasures of performance and tools that capture and illustrate the burden of alarms are presented
and compared to conventional approaches. The proposed approach addresses the incompleteness and
limitation of classicmeasures to incorporate key clinical considerations and suggestsmeasures andmethods that
capture the clinical burden and the timeliness of alarms to guide the judgment about the practicality and utility
of a candidate predictive alarm algorithm.

Work performed at theDepartment of Physiological Nursing, School ofNursing, UCSF, San Francisco, CA
and at theOffice of Science and Engineering Laboratories, Center forDevices andRadiological Health, Food and
DrugAdministration, Silver Spring,MD.

Conflicts of interest and source of funding

None declared
Reprints will not be ordered.

Funding

Thisworkwas supported in part by theNational Institutes ofHealth (grant R01HL128679) and by theCenter of
Excellence in Regulatory Science and Innovation (CERSI) grant toUniversity of California, San Francisco
(UCSF) and StanfordUniversity from theUS Food andDrugAdministration (U01FD005978). Its contents are
solely the responsibility of the authors and do not necessarily represent the official views of theHHS or FDA.

ORCID iDs

KaisGadhoumi https://orcid.org/0000-0003-4148-6118
ChristopherG Scully https://orcid.org/0000-0001-8244-0832
RanXiao https://orcid.org/0000-0002-3689-1680
DavidONahmias https://orcid.org/0000-0001-6159-1172
XiaoHu https://orcid.org/0000-0001-9478-5571

References

Ahn JH, Jung YK, Lee J-R, OhYN,OhDK,Huh JW, LimC-M,KohY andHong S-B 2020 Predictive powers of themodified early warning
score and the national early warning score in general ward patients who activated themedical emergency team PLoSOne 15 e0233078

Akgun F S, ErtanC andYucelN 2018The prognastic efficiencies ofmodified early warning score andmainz emergency evaluation score for
emergency department patientsNiger. J. Clin. Pract. 21 1590–5

AlamN,Hobbelink E L, van TienhovenA J, van deVen PM, JansmaEP andNanayakkara PWB2014The impact of the use of the early
warning score (EWS) on patient outcomes: a systematic reviewResuscitation 85 587–94

Al-KalaldehM, SuleimanK, Abu-Shahroor L andAl-MawajdahH2019The impact of introducing themodified early warning score
‘MEWS’ on emergency nurses’ perceived role and self-efficacy: a quasi-experimental study Int. Emerg. Nurs. 45 25–30

Andrzejak RG,ChicharroD, Elger C E andMormann F 2009 Seizure prediction: any better than chance?Clin. Neurophysiol. 120 1465–78
AygunH, Eraybar S,Ozdemir F andArmagan E 2020 Predictive value ofmodified early warning scoring system for identifying critical

patients withmalignancy in emergency departmentArch. IranMed. 23 536–41

15

Physiol.Meas. 42 (2021) 055005 KGadhoumi et al

https://orcid.org/0000-0003-4148-6118
https://orcid.org/0000-0003-4148-6118
https://orcid.org/0000-0003-4148-6118
https://orcid.org/0000-0003-4148-6118
https://orcid.org/0000-0001-8244-0832
https://orcid.org/0000-0001-8244-0832
https://orcid.org/0000-0001-8244-0832
https://orcid.org/0000-0001-8244-0832
https://orcid.org/0000-0002-3689-1680
https://orcid.org/0000-0002-3689-1680
https://orcid.org/0000-0002-3689-1680
https://orcid.org/0000-0002-3689-1680
https://orcid.org/0000-0001-6159-1172
https://orcid.org/0000-0001-6159-1172
https://orcid.org/0000-0001-6159-1172
https://orcid.org/0000-0001-6159-1172
https://orcid.org/0000-0001-9478-5571
https://orcid.org/0000-0001-9478-5571
https://orcid.org/0000-0001-9478-5571
https://orcid.org/0000-0001-9478-5571
https://doi.org/10.1371/journal.pone.0233078
https://doi.org/10.4103/njcp.njcp_58_18
https://doi.org/10.4103/njcp.njcp_58_18
https://doi.org/10.4103/njcp.njcp_58_18
https://doi.org/10.1016/j.resuscitation.2014.01.013
https://doi.org/10.1016/j.resuscitation.2014.01.013
https://doi.org/10.1016/j.resuscitation.2014.01.013
https://doi.org/10.1016/j.ienj.2019.03.005
https://doi.org/10.1016/j.ienj.2019.03.005
https://doi.org/10.1016/j.ienj.2019.03.005
https://doi.org/10.1016/j.clinph.2009.05.019
https://doi.org/10.1016/j.clinph.2009.05.019
https://doi.org/10.1016/j.clinph.2009.05.019
https://doi.org/10.34172/aim.2020.56
https://doi.org/10.34172/aim.2020.56
https://doi.org/10.34172/aim.2020.56


Bai Y, DoDH,Harris P R, Schindler D, BoyleNG,DrewB J andHuX 2015 Integratingmonitor alarmswith laboratory test results to
enhance patient deterioration prediction J. Biomed. Inform. 53 81–92

Balshi AN et al 2020Modified early warning score as a predictor of intensive care unit readmissionwithin 48 h: a retrospective observational
studyRev. Bras. Ter. Intensiva. 32 301–7

Blum JMandTremperKK 2010Alarms in the intensive care unit: toomuch of a good thing is dangerous: is it time to add some intelligence
to alarms?Crit. CareMed. 38 702–3

BulutM,CebicciH, Sigirli D, SakA,DurmusO, TopAA,Kaya S andUzK2014The comparison ofmodified early warning score with rapid
emergencymedicine score: a prospectivemulticentre observational cohort study onmedical and surgical patients presenting to
emergency department Emerg.Med. J. 31 476–81

BurchVC, TarrG andMorroni C 2008Modified early warning score predicts the need for hospital admission and inhospitalmortality
Emerg.Med. J. 25 674–8

ChurpekMM,YuenTC,HuberMT, Park S Y,Hall J B and EdelsonDP 2012 Predicting cardiac arrest on thewards: a nested case-control
studyChest 141 1170–6

Cooksley T, Kitlowski E andHaji-Michael P 2012 Effectiveness ofmodified early warning score in predicting outcomes in oncology patients
QJM 105 1083–8

Damen J A et al 2016 Predictionmodels for cardiovascular disease risk in the general population: systematic reviewBr.Med. J. 353 i2416
DrowerD,McKeanyR, Jogia P and Jull A 2013 Evaluating the impact of implementing an early warning score systemon incidence of in-

hospital cardiac arrestN.Z.Med. J. 126 26–34
Fairclough E,Cairns E,Hamilton J andKelly C 2009 Evaluation of amodified early warning system for acutemedical admissions and

comparisonwithC-reactive protein/albumin ratio as a predictor of patient outcomeClin.Med. 9 30–3
Feldwisch-DrentrupH, Schulze-Bonhage A, Timmer J and Schelter B 2011 Statistical validation of event predictors: a comparative study

based on thefield of seizure prediction Phys. Rev.E 83 066704
Fullerton JN, Price C L, SilveyNE, Brace S J and PerkinsGD2012 Is themodified early warning score (MEWS) superior to clinician

judgement in detecting critical illness in the pre-hospital environment?Resuscitation 83 557–62
GaoH et al 2007 Systematic review and evaluation of physiological track and trigger warning systems for identifying at-risk patients on the

ward Intensive CareMed. 33 667–79
Gerry S, Bonnici T, Birks J, Kirtley S, Virdee P S,Watkinson P J andCollinsG S 2020 Early warning scores for detecting deterioration in adult

hospital patients: systematic review and critical appraisal ofmethodologyBr.Med. J. 369m1501
Heitz CR,Gaillard J P, BlumsteinH,CaseD,MessickC andMiller CD 2010 Performance of themaximummodified early warning score to

predict the need for higher care utilization among admitted emergency department patients J. Hosp.Med. 5E46–52
Jayasundera R,NeillyM, SmithTOandMyint PK 2018Are early warning scores useful predictors formortality andmorbidity in

hospitalised acutely unwell older patients? A systematic review J. Clin.Med. 7 309
JiangX, Jiang P andMaoY 2019 Performance ofmodified early warning score (MEWS) and circulation, respiration, abdomen,motor, and

speech (CRAMS) score in trauma severity and in-hospitalmortality prediction inmultiple traumapatients: a comparison studyPeer J.
7 e7227

Jones S,MullallyM, Ingleby S, BuistM, BaileyM and Eddleston JM2011 Bedside electronic capture of clinical observations and automated
clinical alerts to improve compliance with an early warning score protocolCrit. Care Resusc. 13 83–8

Kelly CA,UpexA andBatemanDN2004Comparison of consciousness level assessment in the poisoned patient using the alert/verbal/
painful/unresponsive scale and theGlasgowComa ScaleAnn. Emerg.Med. 44 108–13

KimWY, Shin Y J, Lee JM,Huh JW,KohY, LimCMandHong SB 2015Modified early warning score changes prior to cardiac arrest in
general wardsPLoSOne 10 e0130523

KingA, FortinoK, StevensN, Shah S, Fortino-MullenMand Lee I 2012 Evaluation of a smart alarm for intensive care using clinical data
Annu. Int. Conf. IEEE Eng.Med. Biol. Soc. pp 166–9

KramerAA, Sebat F and LissauerM2019A review of early warning systems for prompt detection of patients at risk for clinical decline
J. TraumaAcute Care Surg. 87 S67–73

Kruisselbrink R et al 2016Modified early warning score (MEWS) identifies critical illness amongward patients in a resource restricted setting
inKampala, Uganda: a prospective observational studyPLoSOne 11 e0151408

KumarA, GhabraH,WinterbottomF, TownsendM,Boysen P andNossamanBD2020Themodified early warning score as a predictive
tool during unplanned surgical intensive care unit admissionOchsner J. 20 176–81

Lee L L, YeungKL, LoWY, LauY S, Tang SY andChan J T 2008 Evaluation of a simplified therapeutic intervention scoring system (TISS-
28) and themodified early warning score (MEWS) in predicting physiological deterioration during inter-facility transport
Resuscitation 76 47–51

LinnenDT, EscobarG J,HuX, Scruth E, LiuV and Stephens C 2019 Statisticalmodeling and aggregate-weighted scoring systems in
prediction ofmortality and ICU transfer: a systematic review J. Hosp.Med. 14 161–9

Mathukia C, FanW,VadyakK, BiegeC andKrishnamurthyM2015Modified early warning system improves patient safety and clinical
outcomes in an academic community hospital J. CommunityHosp. Intern.Med. Perspect. 5 26716

McNeill G andBrydenD 2013Do either early warning systems or emergency response teams improve hospital patient survival? A systematic
reviewResuscitation 84 1652–67

MoonA, Cosgrove J F, LeaD, Fairs A andCresseyDM2011An eight year audit before and after the introduction ofmodified early warning
score (MEWS) charts, of patients admitted to a tertiary referral intensive care unit after CPRResuscitation 82 150–4

MooreC, Li J,HungCC,Downs J andNebeker J R 2009 Predictive value of alert triggers for identification of developing adverse drug events
J. Patient Saf. 5 223–8

MorganR J andWrightMM2007 In defence of early warning scoresBr. J. Anaesth. 99 747–8
RobertG, Stevens A andGabbay J 1999 ‘Early warning systems’ for identifying new healthcare technologiesHealth Technol. Assess. 3 1–108
Romanelli D and FarrellMW2021AVPUScore 2020May 13 (Treasure Island, FL: StatPearls)
vanRooijenCR, de RuijterW and vanDamB2013 Evaluation of the threshold value for the early warning score on general wardsNeth. J.

Med. 71 38–43
Schelter B,WinterhalderM,Maiwald T, Brandt A, SchadA, Schulze-Bonhage A andTimmer J 2006Testing statistical significance of

multivariate time series analysis techniques for epileptic seizure predictionChaos 16 013108
Scully CG andDaluwatte C 2017 Evaluating performance of early warning indices to predict physiological instabilities J. Biomed. Inform. 75

14–21
SnyderDE, Echauz J, GrimesDB and Litt B 2008The statistics of a practical seizurewarning system J. Neural. Eng. 5 392–401

16

Physiol.Meas. 42 (2021) 055005 KGadhoumi et al

https://doi.org/10.1016/j.jbi.2014.09.006
https://doi.org/10.1016/j.jbi.2014.09.006
https://doi.org/10.1016/j.jbi.2014.09.006
https://doi.org/10.5935/0103-507X.20200047
https://doi.org/10.5935/0103-507X.20200047
https://doi.org/10.5935/0103-507X.20200047
https://doi.org/10.1097/CCM.0b013e3181bfe97f
https://doi.org/10.1097/CCM.0b013e3181bfe97f
https://doi.org/10.1097/CCM.0b013e3181bfe97f
https://doi.org/10.1136/emermed-2013-202444
https://doi.org/10.1136/emermed-2013-202444
https://doi.org/10.1136/emermed-2013-202444
https://doi.org/10.1136/emj.2007.057661
https://doi.org/10.1136/emj.2007.057661
https://doi.org/10.1136/emj.2007.057661
https://doi.org/10.1378/chest.11-1301
https://doi.org/10.1378/chest.11-1301
https://doi.org/10.1378/chest.11-1301
https://doi.org/10.1093/qjmed/hcs138
https://doi.org/10.1093/qjmed/hcs138
https://doi.org/10.1093/qjmed/hcs138
https://doi.org/10.1136/bmj.i2416
https://doi.org/10.7861/clinmedicine.9-1-30
https://doi.org/10.7861/clinmedicine.9-1-30
https://doi.org/10.7861/clinmedicine.9-1-30
https://doi.org/10.1103/PhysRevE.83.066704
https://doi.org/10.1016/j.resuscitation.2012.01.004
https://doi.org/10.1016/j.resuscitation.2012.01.004
https://doi.org/10.1016/j.resuscitation.2012.01.004
https://doi.org/10.1007/s00134-007-0532-3
https://doi.org/10.1007/s00134-007-0532-3
https://doi.org/10.1007/s00134-007-0532-3
https://doi.org/10.1136/bmj.m1501
https://doi.org/10.1002/jhm.552
https://doi.org/10.1002/jhm.552
https://doi.org/10.1002/jhm.552
https://doi.org/10.3390/jcm7100309
https://doi.org/10.7717/peerj.7227
https://doi.org/10.1016/j.annemergmed.2004.03.028
https://doi.org/10.1016/j.annemergmed.2004.03.028
https://doi.org/10.1016/j.annemergmed.2004.03.028
https://doi.org/10.1371/journal.pone.0130523
https://doi.org/10.1109/EMBC.2012.6345897
https://doi.org/10.1109/EMBC.2012.6345897
https://doi.org/10.1109/EMBC.2012.6345897
https://doi.org/10.1097/TA.0000000000002197
https://doi.org/10.1097/TA.0000000000002197
https://doi.org/10.1097/TA.0000000000002197
https://doi.org/10.1371/journal.pone.0151408
https://doi.org/10.31486/toj.19.0057
https://doi.org/10.31486/toj.19.0057
https://doi.org/10.31486/toj.19.0057
https://doi.org/10.1016/j.resuscitation.2007.07.005
https://doi.org/10.1016/j.resuscitation.2007.07.005
https://doi.org/10.1016/j.resuscitation.2007.07.005
https://doi.org/10.12788/jhm.3151
https://doi.org/10.12788/jhm.3151
https://doi.org/10.12788/jhm.3151
https://doi.org/10.3402/jchimp.v5.26716
https://doi.org/10.1016/j.resuscitation.2013.08.006
https://doi.org/10.1016/j.resuscitation.2013.08.006
https://doi.org/10.1016/j.resuscitation.2013.08.006
https://doi.org/10.1016/j.resuscitation.2010.09.480
https://doi.org/10.1016/j.resuscitation.2010.09.480
https://doi.org/10.1016/j.resuscitation.2010.09.480
https://doi.org/10.1097/PTS.0b013e3181bc05e5
https://doi.org/10.1097/PTS.0b013e3181bc05e5
https://doi.org/10.1097/PTS.0b013e3181bc05e5
https://doi.org/10.1093/bja/aem286
https://doi.org/10.1093/bja/aem286
https://doi.org/10.1093/bja/aem286
https://doi.org/10.3310/hta3130
https://doi.org/10.3310/hta3130
https://doi.org/10.3310/hta3130
https://doi.org/10.1063/1.2137623
https://doi.org/10.1016/j.jbi.2017.09.008
https://doi.org/10.1016/j.jbi.2017.09.008
https://doi.org/10.1016/j.jbi.2017.09.008
https://doi.org/10.1016/j.jbi.2017.09.008
https://doi.org/10.1088/1741-2560/5/4/004
https://doi.org/10.1088/1741-2560/5/4/004
https://doi.org/10.1088/1741-2560/5/4/004


Stimpfel AW, Fletcher J andKovnerCT 2019A comparison of scheduling, work hours, overtime, andwork preferences across four cohorts
of newly licensed registered nurses J. Adv. Nurs. 75 1902–10

SubbeCP,Davies RG,Williams E, Rutherford P andGemmell L 2003 Effect of introducing themodified early warning score on clinical
outcomes, cardio-pulmonary arrests and intensive care utilisation in acutemedical admissionsAnaesthesia 58 797–802

SubbeCP,KrugerM, Rutherford P andGemmel L 2001Validation of amodified early warning score inmedical admissionsQJM 94 521–6
TirottaD,GambacortaM, La ReginaM,Attardo T, LoGullo A, Panzone F,MazzoneA, CampaniniM andDentali F 2017 Evaluation of the

threshold value for themodified early warning score (MEWS) inmedical septic patients: a secondary analysis of an Italianmulticentric
prospective cohort (SNOOPII study)QJM 110 369–73

Vincent J L, Einav S, Pearse R, Jaber S, Kranke P,Overdyk F J,WhitakerDK,Gordo F,DahanA andHoeft A 2018 Improving detection of
patient deterioration in the general hospital ward environment Eur. J. Anaesthesiol. 35 325–33

XieX,HuangW, LiuQ, TanW, Pan L,Wang L, Zhang J,WangY andZeng Y 2018 Prognostic value ofmodified early warning score
generated in aChinese emergency department: a prospective cohort studyBMJOpen 8 e024120

Yoon JH, JeanselmeV,Dubrawski A,HravnakM, PinskyMR andClermontG 2020 Prediction of hypotension events with physiologic vital
sign signatures in the intensive care unitCrit. Care 24 661

17

Physiol.Meas. 42 (2021) 055005 KGadhoumi et al

https://doi.org/10.1111/jan.13972
https://doi.org/10.1111/jan.13972
https://doi.org/10.1111/jan.13972
https://doi.org/10.1046/j.1365-2044.2003.03258.x
https://doi.org/10.1046/j.1365-2044.2003.03258.x
https://doi.org/10.1046/j.1365-2044.2003.03258.x
https://doi.org/10.1093/qjmed/94.10.521
https://doi.org/10.1093/qjmed/94.10.521
https://doi.org/10.1093/qjmed/94.10.521
https://doi.org/10.1093/qjmed/hcw229
https://doi.org/10.1093/qjmed/hcw229
https://doi.org/10.1093/qjmed/hcw229
https://doi.org/10.1097/EJA.0000000000000798
https://doi.org/10.1097/EJA.0000000000000798
https://doi.org/10.1097/EJA.0000000000000798
https://doi.org/10.1136/bmjopen-2018-024120
https://doi.org/10.1186/s13054-020-03379-3

	1. Introduction
	2. Materials and methods
	2.1. Data
	2.2. MEWS calculation
	2.3. Performance evaluation
	2.3.1. Patient-level evaluation
	2.3.2. Prediction horizon and lead time
	2.3.3. Event-level evaluation
	2.3.3.1. Time-dependent sensitivity
	2.3.3.2. Time-dependent specificity
	2.3.3.3. Alarm burden
	2.3.3.3.1. Rate and proportion of alarms
	2.3.3.3.2. Rate and proportion of false alarms
	2.3.3.4. Work-up to detection ratio (WDR)


	3. Results
	3.1. Patient-level and event-level evaluation of MEWSbase
	3.2. Time-dependent sensitivity
	3.3. Alarm burden
	3.3.1. Alarm time profile
	3.3.2. False alarm rate and proportion of false alarms (see section 2.3.3.3.2)
	3.3.3. Rate and proportion of alarms (see section 2.3.3.3.1)


	4. Discussion
	4.1. Limitations
	4.2. On the performance of MEWS

	5. Conclusion
	Conflicts of interest and source of funding
	Funding
	References



