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Abstract

Objective. There have been many efforts to develop tools predictive of health deterioration in
hospitalized patients, but comprehensive evaluation of their predictive ability is often lacking to guide
implementation in clinical practice. In this work, we propose new techniques and metrics for
evaluating the performance of predictive alert algorithms and illustrate the advantage of capturing the
timeliness and the clinical burden of alerts through the example of the modified early warning score
(MEWSY) applied to the prediction of in-hospital code blue events. Approach. Different implementa-
tions of MEWS were calculated from available physiological parameter measurements collected from
the electronic health records of ICU adult patients. The performance of MEWS was evaluated using
conventional and a set of non-conventional metrics and approaches that take into account the
timeliness and practicality of alarms as well as the false alarm burden. Main results. MEWS calculated
using the worst-case measurement (i.e. values scoring 3 points in the MEWS definition) over 2 h
intervals significantly reduced the false alarm rate by over 50% (from 0.19/h to 0.08 /h) while
maintaining similar sensitivity levels as MEWS calculated from raw measurements (~80%). By
considering a prediction horizon of 12 h preceding a code blue event, a significant improvement in the
specificity (~60%), the precision (~155%), and the work-up to detection ratio (~50%) could be
achieved, at the cost of a relatively marginal decrease in sensitivity (~10%). Significance. Performance
aspects pertaining to the timeliness and burden of alarms can aid in understanding the potential utility
of a predictive alarm algorithm in clinical settings.

1. Introduction

Early warning systems (EWS) are tools that warn about physiological instabilities in patients at risk of
deterioration. They can play a crucial role in healthcare by enabling early and rapid intervention to help prevent
in-hospital all-cause catastrophic events. Emerging tools are based on complex algorithms that use statistical and
machine learning techniques to identify precursors of adverse events in single or multimodal physiological
variables available at the bedside. However, the lack of comprehensive validation of many such tools to inform
their implementations is one of the reasons that are responsible for their limited adoption in clinical practice
(Damen etal 2016, Linnen et al 2019).

Methodological validation of EWSs is key to understanding their performance to predict clinical events.
Conventional metrics typically used to evaluate the performance of EWSs are often limited to measures of
sensitivity, specificity and discriminability (through concordance statistics), and often they are not evaluated ina
way that considers the dynamic nature of a score from continuous vital sign data. These metrics are useful to

©2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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Table 1. Modified early warning score.

MEWS 3 2 1 0 1 2 3

Systolic blood pressure (mmHg) <70 71-80 81-100 101-199 >200

Heart rate (bpm) <40 41-50 51-100 101-110 111-129 >130
Respiratory rate (bpm) <9 9-14 15-20 21-29 230
Temperature (°C) <35 35-38.4 >38.5

AVPU score® Alert Reacting to voice Reacting to pain Unresponsive

* AVPU: A, alert; V, reacting to voice; P: reacting to pain; U, unresponsive.

evaluate the classification power of an EWS but may not describe important aspects of an EWS. Questions about
the frequency of high scores and the burden from score-based alarms, and about the extent, the pattern, and the
time frame over which EWS changes are observed before an adverse event cannot be answered by examining
conventional metrics alone. For example, an EWS that often warns about an impending cardiac arrest too early
(e.g. aweek) or too late (e.g. seconds) may have limited clinical utility. Yet, depending on the study design, such
warnings could be considered true predictions. Accuracy and timeliness of EWS changes are important
characteristics of performance to help understand the potential clinical utility.

In this study, we consider performance metrics for clinical prediction indices and examine the types of
information they can provide. To focus on developing the approaches for validating EWS that are agnostic to
algorithms driving EWS, we conduct a case study where a simple modified early warning score (MEWS) was
implemented to predict code blue events in ICU patients. MEWS was proposed as a screening tool to identify
inpatients at risk for deterioration and to trigger early evaluation and transfer to step-down or intensive care
(Subbe et al 2001). Views on the clinical usefulness of MEWS remain rather controversial despite its common
use (Gao etal 2007, Alam et al 2014). The goal of this study is not to prove or disprove the predictive power of
MEWS in ICU patients, since MEWS was designed and has generally been evaluated for identifying patient
deterioration in broad hospital populations and not a predictive score for cardiac arrest in the ICU (Morgan and
Wright 2007). Rather, our goal is to explore analysis methods for these types of scores, and we use MEWS as an
example due to its simplicity to calculate and frequent appearance in research studies evaluating its
performance.

2. Materials and methods

2.1.Data

Demographics and vital signs measurements were extracted from the electronic health record (EHR) of patients
hospitalized between 1 March, 2013 and 31 December, 2017 at the University of California San Francisco
(UCSF) Medical Center. Patients aged 18 years and older who were admitted in the intensive care unit ICU)
without a do-not-resuscitate order were included. For each patient, we collected the age, gender, and
measurements of heart rate (HR), systolic blood pressure (SBP), respiratory rate (RR), temperature (Temp), and
Glasgow Coma Score (GCS). The study was approved for research investigation by the UCSF institutional review
board.

Patients were split into case and control groups. Case patients (n = 283 0f 3410; 8.3%) were defined as those
with at least one in-hospital code blue event, including cardiopulmonary arrest (182 cases), acute respiratory
compromise (34 cases) and other medical emergencies (67 cases), as documented and confirmed by the code
blue committee of the medical center. In order to control for any increased risk of another code blue event
following a first occurrence, only data recorded between the time of ICU admission and the time of the first code
blue event were retained for analysis. Control patients (n = 3127 0f 3410; 91.7%) were defined as those who did
not experience a code blue event during their stay. Data recorded between the time of ICU admission and
discharge of control patients were extracted for analysis. The median length of ICU stay was 86.3 h in the case
group (IQR = 245.9 h) and 160.9 h in the control group (IQR = 193.2 h).

Vital signs were available on an irregular time interval. On average, a new vital sign (HR, SBP, RR, Temp) was
measured every 0.6 h in the case group and every 1.7 h in the control group. GCS was less frequently measured
than vital signs.

2.2. MEWS calculation

MEWS is derived using a set of point assignment rules applied to physiological parameter measurements as
shown in table 1 (Subbe et al 2001) (some institutions may implement modified versions of these rules and/or
use other/different physiological parameters such as urine output and oxygen saturation). The AVPU (A, alert;
V, reacting to voice; P, reacting to pain; U, unresponsive) scale used in MEWS corresponds to distinct GCS
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Figure 1. Derivation of a regularly sasmpled MEWS from physiological parameters. First and second top panels illustrate MEWS values
calculated in one patient’s 24 h recording, using Tyiews = 4 hand Typws = 1h, respectively. MEWS was calculated using the median
of physiological measurements within Tygyws. Missing measurements were imputed to calculate MEWS at 1 h intervals (blue arrows
indicate two MEWS values calculated from imputed physiological values, derived by carrying forward the last available measurement,
indicated in blue lines).

ranges with overlap between some ranges (Kelly et al 2004, Romanelli and Farrell 2020). To derive a one-to-one
correspondence between both scales, we adopted the following mapping: Alert = GCS 14-15; Reacting to
voice = GCS 10-13; Reacting to pain = GCS 4-9; Unresponsive = GCS 3.

When EHR is used as the source of physiological parameter measurements, evaluating MEWS at regular
intervals may be challenging since only a subset of measurements might be available at any sampling time point.
Two approaches can generally be used to calculate MEWS. In a first approach, scores are calculated at a
prescribed regular time interval and missing measurements are imputed. In a second approach, scores are
calculated only when a new measurement of one or more parameters is available.

The details of how MEWS is calculated from irregularly sampled physiological parameters and how missing
values are imputed is seldom described in the literature (Subbe et al 2001, 2003, Churpek et al 2012, Cooksley
etal2012, Fullerton et al 2012, Drower et al 2013, van Rooijen et al 2013, Bulut et al 2014, Kim et al 2015,
Mathukia et al 2015, Kruisselbrink et al 2016, Jayasundera et al 2018, Al-Kalaldeh et al 2019). A straightforward
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Figure 2. Definition of MEWS alarms, prediction horizon 7 = [t tmax] and lead time 7y = [fyax fevens- An alarm is raised each time
MEWS exceeds a threshold (A). ey, is the time of a clinical event, e.g. a cardiac arrest. Alarms are considered early, on-time, late, and
missed if they respectively occur before the start of prediction horizon, within the prediction horizon, within the lead time, and after
the onset of the clinical event. Early, late and missed alarms are false alarms (B).

Table 2. Definition of a confusion matrix in a patient-level evaluation of MEWS.

Clinical event occurred No clinical event occurred
One or more alarms triggered True positive False positive
No alarm triggered False negative True negative

approach is to calculate a new MEWS value every time a physiological parameter gets refreshed, carrying forward
the values of each parameter until a new value is available. This results in an irregularly sampled MEWS, referred
to hereafter as MEWSy, . (this is a common approach of calculating MEWS). Another approach is to calculate
MEWS at prescribed regular time intervals, Tygws, using a statistical summary of the available measurements
for a physiological parameter within a time interval. We calculated MEWS and evaluated its performance for two
different lengths of Tygws (2 and 12 h) and two different statistics: the median (MEWS,;egian) and the worst
value of the available physiological measurements within Tyews (MEWS01s). When no new measurements are
available within Tygws, MEWS can be calculated using imputed physiological parameter values. Missing data in
each physiological parameter were imputed by carrying forward the last recorded value until replaced with a new
measurement. Figure 1 illustrates this approach. We implemented these variations of MEWS calculation to test
if the proposed validation approaches could reveal whether and how these MEWS implementations would lead
to different performances.

MEWS was calculated in the case and control groups according to the rules in table 1. Except for GCS which
may not have been recorded for every patient, MEWS was not calculated (and patient was excluded from the
analysis) when no measurements were available for a given vital sign in a patient’s data.

2.3. Performance evaluation
We describe below two approaches for evaluating clinical prediction indices, using MEWS as a convenient
example score to illustrate the concepts and the metrics introduced.

2.3.1. Patient-level evaluation

In many studies evaluating implementations of MEWS, the number of MEWS threshold crossings—given a
fixed threshold value—were collectively evaluated with regards to correct prediction of an event (Lee et al 2008,
Cooksley et al 2012, Fullerton et al 2012, Bulut et al 2014). That is, true predictions (or true positives) are clinical
events for which MEWS crossed a threshold, regardless of how many times this occurred. When MEWS crosses a
threshold in a patient who did not experience clinical deterioration during his/her hospitalization period it leads
to a false positive, regardless of the number of times the threshold was crossed. Clinical deterioration events for
which MEWS did not cross a threshold are missed predictions (or false negatives). Finally, true negatives are
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Table 3. Summary of proposed metrics to evaluate a predictive alarm system.

Metric Definition Rationale Formula
Time- Proportion of events This metric quantifies §TT0 = %j‘:@m
dependent preceded by at least the proportions of
sensitivity one alarm withina predicted events Npredicted events: Number of predicted events
N prediction horizon given a fixed time Nouvenss: Total Number of events
window within
which MEWS scores
above a threshold are
considered true
alarms, and outside
of which they are
considered false
alarms
False positive Proportion of the This metric estimates fipp = Ziilzjﬂil B
ratio (FPR) expected number of the proportion of N-M
control patients in control patientswho ~ IN: Number of control patients
whom alarms are arelikely to trigger a M: Number of trials to estimate FPR (e.g. M = 1000)
triggered withina false alarm. Thisesti-  Lii: jth randomly selected time window from the control data of
window of alength mate is based on ran- the ith control patient o
equal to the predic- domized occurrences  T; L= L an alufm is triggered within Tj
tion horizon of atime window 0, otherwise
within which MEWS
scores abovea
threshold are
deemed false alarms
Alarm rate (1) Number of alarms per This is a measure of the r= TI:]:;I:—::ZS
unit time burden of alarms,
including true and Natarms: Number of alarms in a patient recording data
false alarms Trecording: Recording data duration
Alarm propor- Proportion of score This is measure of the p= %
tion (p) ::Zl}; lrersntrlggerlng :lz;nmti];lizctl}el:'ritlative Nuews > Number of MEWS samples above thrshold k
number of score Nuews > o Number of MEWS samples
samples triggering an
alarm
False alarm rate Number of false Measures theburdenof ~ r%(case) = m
@) alarms per unit time false alarms by esti- Npatseatarms: Number of false alarms
mating their (hourly) Trecording — T: for case patients
frequency. A high Ir= {T,m,d,-ng: for control patients
rate may lead to
alarm fatigue
Falsealarmpro-  Proportion of score Measures theburdenof ~ p° = ;W\&
'MEWS = 0
portion (p°) samples triggering a false alarms by esti-
false alarm mating their (rela-

tive) quantity. A high
proportion may lead
to alarm fatigue
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Table 3. (Continued.)

Metric Definition Rationale Formula
. Nease + /i
Work-up to Ratio of the numbers Measures the number WDR = %ENFP
St
detection of true and false pre- of patients who will . .
. o P P K Nease: Number of case patients in whom at least one alarm was
ratio (WDR) dictions to the num- receive a workup . e .. .
- triggered within a prediction horizon
ber of true before oneadditional . . .\
. fipp: Estimated number of false positives
predictions events adverse outcome can
be prevented
Time profile of Normalized summary  Anestimate of the N/A
alarm histogram of alarms probability of an
proportion with respect to alarm triggered early,
number of alarms on-time, late, or
missing an event
Time profile of Normalized summary ~ Time profile of alarm N/A
alarms per histogram of alarms proportion with
event with respect to respect to events

number of events

patients who did not experience clinical deterioration by the end of their hospitalization and in whom MEWS
did not cross a threshed (table 2).

In a system where MEWS threshold crossings translate into MEWS alarms, the above definitions become
limited as they do not quantify the timeliness and burden of these alarms. We hereafter refer to the above
evaluation scheme as patient-level evaluation and propose an event-level evaluation by considering the timeliness
and the temporal distribution of MEWS alarms to quantify the burden and practicality of notifications. MEWS
alarms can be defined as events triggered and cleared following a set of rules. Here, and to simplify subsequent
analysis, we define a MEWS alarm an instantaneous notification occurring when MEWS exceeds a given
threshold value (figure 2(A)).

2.3.2. Prediction horizon and lead time
The definition of a temporal window preceding the time of an event allows performance to be evaluated in
respect to an actionable timeframe. MEWS alarms have different clinical implications when they occur ‘too
early’ or ‘too late’. We therefore define two temporal windows, the prediction horizon and the lead time, to
quantify the timeliness of alarms. A prediction horizon is a time window preceding the time of event (i.e. [,
tmax] Where iy < tax < teyens)> within which alarms are deemed actionable, that is providing sufficient time
for caregivers to intervene (figure 2(B)). For code blue events, the length of a prediction horizon 7 = #.x — fmin
could be defined according to typical ICU nurse’s shift (e.g. 12 h).

tmin 1S the earliest time (with respect to f,,,,,;) an alarm can contribute to true predictions. By varying t,.,;, and
setting fax = fmin + 7, We can create a realistic and clinically meaningful characterization of the ability of
MEWS to predict code blue events in the ICU. Applying such definitions of #,,;, and #,,,,, is a general approach
and allows performance characterization at a lead time before the onset of event, defined by t,,,,,, where the lead
time is the interval of time [#,,2x fevens]- The duration of the lead time 7, serves as the minimum time window
required for an intervention to be effective. Any alarm occurring within the lead time is a late alarm. It is
considered either a ‘short-notice’ or a redundant alert if it is preceded by one or more alarms triggered within the
prediction horizon. Alarms generated after event onset (%,,.,,;) are deemed missed alarms. Early, late, and missed
alarms are all false alarms.

2.3.3. Event-level evaluation

Given the definitions of prediction horizon and lead time, we derive a series of time-dependent metrics to
evaluate the performance of MEWS and the burden of alarms. Table 3 summarizes these metrics and their
definitions.

2.3.3.1. Time-dependent sensitivity

Alarms triggered within the prediction horizon are defined as true alarms and alarms triggered outside of the
prediction horizon (before or after) as false alarms. To quantify the sensitivity of MEWS given these definitions,
we consider an event to be successfully predicted if it was preceded by at least one true alarm (Notice thata
distinction is made between a true alarm and a true positive. A ‘positive’ refers a code blue event just like it was
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defined in the patient-level evaluation.) This sensitivity depends on the choice of 7 and 7 and its formally
defined as the proportion of clinical events for which at least one alarm was triggered within the prediction
horizon:

N, predicted events
Nevents

ST —

) 2.1)
where Npredicred events 18 the number of predicted clinical events and Ny, is the total number of clinical events.

2.3.3.2. Time-dependent specificity
Event-level specificity metrics can be derived from case and control records. We first propose to estimate the
false positive ratio (FPR) in the control group, defined as the ratio of the expected number of control patients in
whom alarms are triggered within a window of alength equal to the prediction horizon, to the total number of
control patients N (Bai et al 2015). Let [i,, be the expected the estimated value of FPR. [izp, can be calculated
using a bootstrapping approach. For each control patient i (1 < i <N), we randomly sample a window of length
T over its whole monitoring time. This is repeated a sufficiently large number of time M (e.g. M = 1000). The
windows are then temporally sorted and indexed using their temporal order (the jth window is preceded in time
by the (j—1)th window). We then calculate the number of windows in which one or more alarms occurred
(triggered windows) to estimate the expected value of whether the patient counts as a false positive.

Let Tj; = 1 (1 <i<N; 1 <j < M)ifthejthwindow selected for the ith control patient gets triggered, and
T;j= 0 otherwise. The expected number of control patients ‘triggering’ a jth window is:

N
=T, @2
i=1

and its standard deviation is:

S
L \/Zi_l@—u;p)z

Opp = 2.3
PP N1 (2.3)
The estimated value [, and its standard deviation can then be calculated as:
M . N M

R _ Z]’:HJ‘I-ZP _ Zizlzjleij 2.4)

HEpR M NM > .

YR

N Zjil(o—léP)z 2.5)

[0) = _— .

FPR M

Other metrics (accuracy, positive and negative predictive values and F1 score) can be calculated using the
same bootstrapping approach (see supplementary material S1 (available online at stacks.iop.org/PMEA /42 /
055005/ mmedia)). To quantify the specificity of MEWS in the case groups, we propose to calculate the
proportion and rate of alarms and false alarms which also quantify the alarm burden.

2.3.3.3. Alarm burden
The number of alarms generated during an ICU stay in case patients can be summarized by visualizing the
distribution of the alarms that occur ‘early’, ‘late’, and ‘on-time’, and alarms that were ‘missed’, with respect to
the prediction horizon and time of event. To quantify these distributions, alarms from all case patients are
summed up within each of the four attributed windows to create a time profile or alarms. This profile may be
interpreted as the probability distribution of generating an alarm early, on-time, late, or missing an event. The
number of alarms can further be normalized by the total number of alarms or by the total number of events
resulting in a time profile of alarms per event and a time profile of alarm proportions, respectively (Scully and
Daluwatte 2017).

Additionally, we calculate the rate of alarms and false alarms (rand °, resp.), and the proportion of alarms
and false alarms (p and p° resp.) to measure the burden of alarms and false alarms. rand r” measures the
number of alarms and false alarms, respectively, per unit time per patient.

2.3.3.3.1. Rate and proportion of alarms
For a given patient in the case or control group, rand p are given by:

= Nalarms , (26)

T;’ecording
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Figure 3. ROC curve (left) and precision-recall (right) curve of MEWS performance evaluated for 14 discrete threshold levels
(k = 0-13) using the patient-level evaluation approach. The area under the curve (AUC) is a measure of MEWS performance. Dashed
lines represent chance level. Red dots indicate the performance of MEWS at threshold k = 4.
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where Ny, is the number of MEWS above a threshold k and Ny s is the number of MEWS samples
(equivalently, the number of MEWS above threshold k = 0) in the patient recording.

2.3.3.3.2. Rate and proportion of false alarms
A false alarm is an alarm that occurs outside of the prediction horizon by the previous definitions. Hence, the
false alarm rate for a given patient in the case group is given by:

N 'falseAlarmsCase

r0(case) = (2.8)

recordingCase — T

With Naiceatarmscase is the total number of false alarms, and Tecordingcase the duration of the recording. Here, the
duration of the prediction horizon is subtracted from the total duration of recording since a false alarm cannot
occur within a prediction horizon by definition.

To calculate ° for a control patient, we simply derive the average rate of alarms triggered for a control
patient:

'falseAlarmsControl

rO(control) = Ni, (2.9)

recordingControl

where Npiseatarmscontro 18 the total number of false alarms and TrcordingControl the duration of the recording in a
given control patient.

By substituting NprsearmsCase a30d NfalsealarmsControl in the numerator of equation (2.7) we get the proportion
of false alarms p®(case) and p°(control) in the case and control group, respectively.

2.3.3.4. Work-up to detection ratio (WDR)

Furthermore, we introduce the WDR ratio to evaluate the effectiveness of MEWS. WDR is defined as the ratio of
the number of case patients N, in whom at least one alarm was triggered within a prediction horizon
(equivalently the number of predicted events) and the number of control patients in whom a random window of
length 7 is triggered (i.e. the estimated number of false positives, fi.), to the number of predicted events:

Nase + ﬂFP

WDR = (2.10)

case
Conceptually, WDR is similar to the number needed to alert, defined as the number of alerts that need to be
reviewed to detect one potential adverse event (Moore et al 2009). WDR measures the number of required
workups to prevent one additional adverse outcome (equivalently, the number of case patients to be treated for
one of them to benefit from the treatment compared with a control patient).
Using (2.4), and (2.5), WDR and its standard deviation can be estimated as:

N A
s
fowpr = 1 + —Z’” ’, 2.11)

case
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Figure 4. Performance of MEWS calculated at irregular time points (MEWS,,,.) and at regular time intervals Tyjpws = 2and 12h
using the median (MEWS,;,cdian) and the worst value of physiological measurements within Typws (MEWS6,). MEWS threshold
wassettok = 4.

Table 4. Average sampling rate (measurements per hour) of physiological parameters and proportion of missing values in the case and

control groups.
GCS Temp SBP RR HR
Case Average sampling rate (1/h) 0.3 1 1.2 2 2.2
Proportion of imputed values 0.9 0.5 0.5 0.1 0
Control Average sampling rate (1/h) 0.1 0.4 0.5 0.7 0.8
Proportion of imputed values 0.9 0.6 0.4 0.1 0.1

Table 5. Performance of MEWS using patient-level and event-level evaluations. MEWS threshold was set to k = 4.

Evaluation TPR  FPR(std)  NPV(std) PPV(std)  ACC(std)  Fl(std) WDR (std)

Patient-level 097 077 0.99 0.09 0.29 0.17 10.7
Event-level (t =12 h, 7, =0,M=1000) 0.87  0.30(0.14)  0.98(0.00) 0.23(0.12)  0.71(0.13)  0.35(0.13)  5.3(1.94)

Note. TPR: True Positive Rate (Sensitivity); FPR: False Positive Rate; NPV: Negative Predictive Value; PPV: Positive Predictive Value; ACC:
Accuracy. WDR: Workup-to-detection ratio.

Owpr = (2.12)

case

3. Results

27 0f 283 case patients (9.5%) and 6 of 3127 control patients (0.2%) were excluded from the analysis because
MEWS could not be calculated (due to missing of one or more vital signs) and/or because the duration of the
recording was less than the prediction horizon 7 = 12 h for the sensitivity to be evaluated in case patients and
FPR to be estimated in control patients. This led to 7% prevalence of code blue events.

MEW Sy, was evaluated using the traditional metrics (AUC, accuracy, sensitivity, specificity, and precision).
We then evaluated the impact of calculating MEWS from summary statistics of physiological measurements in
comparison with MEWS, ... Finally, we evaluate MEWS using the proposed metrics. The prediction horizon 7
was set to 12 h—typical length of nursing shift—and the lead time 7 was varied between 0 and 6 h at 10 min
increments. Case patients for whom the length of ICU stay was less than the sum of lead time and seizure
prediction horizon (i.e. length of stay < 12 h 4 7) were excluded from the relevant analysis since true
predictions could not be evaluated. The number of excluded patients increased linearly from 0 (for 7, =0) to
38 (for 7y = 6h). MEWS was evaluated for threshold values k varying between 0 and 13. Table 4 describes the
frequency of vital signs and GCS measurements and the proportion of imputed values in the dataset.
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Figure 6. Time profile of alarms and alarms per event calculated in case patients for 3 different calculation methods of MEWS and 2
values of Tyigws. (A) Proportion of early, on-time, and late alarms and missed events. (B) Number of early, on-time and late alarms per
event and number of missed events. MEWS threshold was set to k = 4. Prediction horizon was set to 7 = 12 h and lead time was set to
To— 1h.
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Figure 7. False alarm rate and proportion of false alarms in the case and control groups, and in the combined population for different
MEWS thresholds k, Tyigws = 2 h, and two different value sets of the prediction horizon and the lead time: (A) 7 =0h, 7 =0hand
(B) 7 =12h, 7y = 1h. Shadows indicate one standard deviation of the mean.

3.1. Patient-level and event-level evaluation of MEWS, .

Table 5 shows the performance of MEWS,,,. evaluated using classic metrics applied to the patient-level and
event-level approaches (see sections 2.3.1 and 2.3.3, resp.). MEWS threshold k was set to 4, a commonly used
threshold value (Subbe et al 2001, Burch et al 2008).

Using a patient-level evaluation, the high sensitivity of MEWS (TPR = 0.97) was significantly compromised
by low precision (0.09) and low specificity (FPR = 0.77). Figure 3 depicts the performance of MEWS for each of
the 14 possible threshold values using a Receiver operating characteristic (ROC) curve and the precision-recall
curve (PRC).

Using an event-level approach with a prediction horizon 7 =12 hand alead time 7, =0 hin the case group,
and 1000 random windows in the control group, a substantial improvement in the precision (~155%), the FPR
(~60%) and in the WDR (~50%) could be achieved in the expense of a relatively marginal decrease in
sensitivity (~10%).

The performance of MEWS calculated at regular time intervals was lower than that of the MEWS, .
(measured by AUC) regardless of the length of Typws and the statistic used (figure 4). MEWS ., cqian Was less
affected by the length of Tygws than MEWS,, ., which performance degraded using a Tyews of 12 h compared
to a Typws of 2 h.
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Table 6. Number of MEWS samples, alarm rate (r) and alarm proportion (p), in the case and control group. For different MEWS calculation
methods. Average numbers shown. MEWS threshold was set to k = 4.

MEWSBase MEWSMedian MEWSWorst
Case Control Case Control Case Control

Number of MEWS samples (1/patient-day) 51.98 21.50 Tyews (h) 2 14.17 9.61 14.17 9.61
12 5.70 2.10 5.70 2.10

r(1/patient-day) 13.68 4.08 Tymews (h) 2 4.08 1.2 5.52 2.16
12 0.72 0.24 1.44 0.72

p (%) 0.46 0.19 Tavews () 2 0.37 0.13 0.52 0.22
12 0.33 0.11 0.72 0.35

3.2. Time-dependent sensitivity

Setting MEWS threshold to k = 4 and the prediction horizon to 7 = 12 h, there was no significant change in the
sensitivity when the lead time was varied between 0 and 6 h (see figure 5). The sensitivity of MEWS,; e dian Was
significantly lower than that of MEWS . and MEWS,, .. (t-test, p < 0.05) when Tygws was set to 2 or 12 h, and
for different lead time values (see section 2.3.3.1). MEWSy,,s. and MEWS,, . sShowed comparable sensitivities
for either value of Typws.

3.3. Alarm burden

3.3.1. Alarm time profile

Figure 6 illustrates the distribution of the proportion of alarms and alarms per event (see section 2.3.3.3) across
four time periods. Regardless of the length of Ty gws and how MEWS is calculated, most alarms were triggered
early, before the start of the pre-defined prediction horizon. The proportion of missed events is relatively lower
with MEWSy,s. than with MEW Sy sedian O MEWS, o150, for both Ty pws values. Longer Tygws results into higher
proportion of missed events and a lower rate of early and on-time alarms per event for both MEWSyeg;an and
MEWS,,orst-

3.3.2. False alarm rate and proportion of false alarms (see section 2.3.3.3.2)
We set the values of prediction horizon 7 and lead time 7, to 0 in order to evaluate the effect of calculating
MEWS with different methods on the burden of false alarms. The average false alarm rate and average
proportion of false alarms across patients were generally highest for MEWSy,,. and decayed exponentially with
increasing values of k (figure 7(A)). Atk = 4 and Typws = 2 h, the average combined (case and control)
proportion of false alarm p° and the average combined false alarm rate r° were significantly higher (t-tests, p
<0.05) for MEWS,, . (19% and 0.19/h, resp.) compared to MEWS . gian (12% and 0.05/h resp.). MEWS,
resulted in significantly lower 1°(0.08/h) but not p° (18%) compared with MEWSj .

At7 =12hand 7= 1h,both r° and p° decayed similarly asfor 7 = 7, =0h (figure 7(B)). For k > 4 any
improvementin 7°and p° is arguably marginal. Highest values of 7’ and p° were observed for MEWS .
overall.

3.3.3. Rate and proportion of alarms (see section 2.3.3.3.1)

At 7T =0and 1y =0, the average alarm rate decayed exponentially with MEWS threshold as was the case of false
alarm rate. MEWSy,,. generates the highest alarm rate at any MEWS threshold value compared with
MEWS 1 cdian> and MEWS,, ., which both led to comparable alarm rates for all values of k and Tygws values and
larger alarm rates for longer Trpws values. Average alarm rates were expectedly higher in the case group than in
the control group.

The proportion of MEWS values above a given threshold (alarm proportion) was relatively comparable for
all MEWS calculation methods and Tygws values. Compared with conventional MEWS, the alarm rate
decreased by ~70% (from 13.68 /patient-day to 4.08 /patient-day) in the case group for Tygpws = 2 h,and by
95% for Typws = 12 h (from 13.68 /patient-day to 0.37 /patient-day). This translates into a reduction in the
hourly alarm rate from ~1 alarm every 1.7 h to ~1 alarm every 5.8 h, and to 1 alarm every 33 h, for Tyigws = 2h
and 12 h, respectively. Table 6 provides a summary of alarm proportions and alarm rates for k = 4.

4. Discussion

The clinical importance of predictive alarm systems as risk management tools to help prevent in-hospital patient
deterioration has been discussed in numerous systematic reviews (Robert et al 1999, McNeill and Bryden 2013,
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Vincent et al 2018, Kramer et al 2019, Gerry et al 2020). Many of these reviews highlighted the methodological
weaknesses and questioned the true predictive power of these systems. Methodological and statistical
evaluations that consider among other aspects the temporal dynamic of the measure profile (in the case of
continuous monitoring), the timeliness of alarms, and frequency of false alarms can aid in this evaluation. In this
study, we investigated the performance a widely adapted EWS, MEWS, using a new set of metrics that capture
two critical aspects of any predictive alarm algorithm, namely the timeliness and the burden of alarms. We
adjusted the definition of sensitivity to take into account two clinically important time intervals, the prediction
horizon and the lead time. These parameters can help provide performance information that may be more
informative on clinical utility, since an alarm is arguably useful if it’s actionable (occurs within a nursing shift)
and intervenable (provides a minimum time for an intervention to be effective). This proposed definition of
sensitivity informs whether a continuous predictive alarm algorithm can practically identify patients at risk of
deterioration and alert caregivers early enough to intervene. The characteristic curve of the sensitivity versus lead
time can guide the choice of operational lead time values.

This study aims at proposing a general framework of methods and metrics for evaluating the performance of
early warning scoring and predictive algorithms. The intended framework is sought to engage researchers in
testing the predictive power of a proposed algorithm under different conditions and alarm protocols to emulate
the realm of real-word clinical setting. Parameters such as the prediction horizon and the lead time can be
applied universally to test the performance of any predictive alarm algorithm operating on continuous data.
Moreover, a variety of alarm triggering strategies can be envisaged and tested to assess if they influence the
clinical burden.

4.1. Limitations

This study has limitations. While patients were selected consecutively to avoid a selection bias, some case
patients had significantly shorter recordings than others. Some metrics (e.g. proportion of early alarms) may
have been biased for these patients leading to lower values than what could be observed if recordings had the
same length. Estimating specificity-metrics (proportion of false alarms, false alarm rate) over recordings of equal
length rather would have introduced a patient selection bias. To overcome these limitations, an alternative
approach would be to normalize the number of false alarms by the duration of time preceding the prediction
horizon (e.g. 10 false alarms triggered within 1 h would contribute the same proportion of early alarms as 100
false alarms triggered within a 10 h timeframe).

Constraining the timeframe in which an alarm is counted a true alarm to a prescribed horizon while relaxing
the period of time alarms are labeled as false inherently biases the proportion of false to true alarms. The false
alarm rate may not be affected if we assume that the probability of false alarm occurrence is independent of time-
to-event. Such an assumption may not be (always) true though. For example, a MEWS system in which the
threshold is adjusted as information about the patients’ health status matures with the length of stay may result
in fewer (hourly) false alarms generated towards the end of stay than false alarms generated early after the
admission using the ‘default’ threshold value.

Performance results depend on alarm definition and protocol. Had we grouped multiple threshold crossings
to form one alarm, for example by applying a lockout period after each alarm, within which no alarm would be
generated, the rate and proportion of alarms obtained (see table 6) would have likely been reduced since less
alarms would have been generated. Such reduction could in fact be significant and lessens the alarm burden.
Studies which applied alockout period demonstrated a decrease of 55% in alerts from a predive model for
cardiothoracic ICU patients (King et al 2012). A recent study demonstrated that the number of alerts could be
reduced by 90% when a 15 min lockout period was applied to a prediction algorithm for ICU hypotension
events (Yoon et al 2020).

EHR data are sparse with irregular time interval, it may be challenging to design rules to group alarms that
result in appreciable difference. However, if MEWS was generated from continuous vital signs (i.e. from bedside
monitors), the number of MEWS alarms generated would have differed significantly in both alarm approaches
and would have led to significant difference in sensitivity and specificity results.

Finally, data imputation through forward carrying of the last available physiological measurement were not
constrained to expire after an amount of time in this study. It is worth noting that this practice is safe for
imputing missing physiological parameter values that are slow changing in nature, such as temperature, or GCS
in the case of MEWS, but may not reflect the true underlying physiological state in the case of other parameters.
Limiting the time an imputed value may be carried forward can limit the effect of misrepresenting the
physiological state but may result in missing samples (in the case of regular sampling) if no measurements are
available after expiration of the imputed physiological parameter value.

A critical step in the development of a predictive algorithm is to statistically validate its performance. That s
to demonstrate it has an above-chance predictive power. A key question is whether an adverse event can be
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predicted and whether an algorithm, which is presumed to perform better than chance, does not have predictive
power but simply has not yet been tested against appropriate null hypotheses (Andrzejak et al 2009). Different
statistical approaches have been proposed to answer this question. These include analytical methods (e.g.
comparison with naive predictors) and Monte Carlo based methods (e.g. alarm surrogates) (Schelter et al 2006,
Snyder et al 2008, Feldwisch-Drentrup et al 2011).

4.2. On the performance of MEWS

The proposed metrics were applied to measure and evaluate the performance of different implementations of
MEWS to predict code blue events. Here, we discuss new insights as provided by the proposed performance
metrics relating to the potential clinical performance of MEWS that were missing in prior literature (Fairclough
etal2009, Heitz et al 2010, Tirotta et al 2017, Akgun et al 2018, Xie et al 2018, Jiang et al 2019, Ahn et al 2020,
Aygun et al 2020, Balshi et al 2020, Gerry et al 2020, Kumar et al 2020).

Although we found that the sensitivity did not significantly change with lead time values up to 6 h (see
section 3.2), it remains to be investigated if higher sampling rates of physiological measurements (e.g.
continuous vital sign recordings from patient monitors) can uncover trending changes in MEWS values that
may lead to higher sensitivities at short lead times. Additionally, measurements were sampled on average 2.5
times more frequently in patients of the case group than of the control group to presumably capture sudden
physiological changes that are more likely to occur in the sicker patient. Higher sampling rates in the control
group may have led to different distributions of MEWS alarms and therefore influenced the calculated
performance results. The effect of the sampling rate on the calculated metrics may be less prominent for
MEWS,,cdian than for MEWS, .5 and conventional MEWS since MEWS . qi.n is the least affected by a change in
data fluctuation that may be caused by increasing the number of samples within Tygws.

Despite a high sensitivity (97%) observed using the widely adopted patient-level evaluation approach, the
false positive rate and the precision of the conventional MEWS were remarkably poor at a threshold value of 4
(77% and 9%, resp; see section 3.1). One of ten patients who triggered an alarm had a code blue outcome
(WDR ~ 10), while almost 8 of 10 patients were falsely identified as potentially high-risk patients (FPR = 77%).
Judging whether these numbers are acceptable amounts to mainly evaluating the clinical burden associated with
afalse alert for a particular application. Additionally, the rate of alarms was highest for conventional MEWS. By
calculating MEWS over 12 h window, the alarm rate dramatically decreased. For example, with MEWS e dian
one alarm would be triggered every 33 h, instead of every 1.7 h in the case of conventional MEWS. A substantial
reduction in the frequency of alarms in the ICU minimizes alarm fatigue (Blum and Tremper 2010).

A direct comparison of these results with the performance of MEWS reported in previous studies may not be
feasible since the datasets, the frequency of measurements, and the outcomes analyzed vary among MEWS
studies. Noticeably, studies that evaluated the effect of MEWS implementation on cardiac and cardiopulmonary
arrests reported mixed performance results (Subbe et al 2003, Jones et al 2011, Moon et al 2011, Churpek et al
2012). It’s worth emphasizing that MEWS was not designed to be a predictor of code blue events nor it is the
standard of care to use MEWS in ICU settings. It’s a screening tool to identify inpatients at risk for deterioration
and to trigger early evaluation and transfer to step-down or intensive care. The low precision and high false
positive rate in ICU population we analyzed do not necessarily indicate a deficiency of MEWS. We simply used
MEWS as un exemplar of a clinical prediction index to examine characterization and performance evaluation
techniques, and not to examine the performance of MEWS as a predictor of code blue events.

By adopting an event-level evaluation of MEWS where only alarms triggered within a defined nursing shift
period of 12 h are considered true alarms, performance levels changed significantly compared to those obtained
under patient-level evaluation. Notably, the number of workups required to detect a cardiac arrest dropped
significantly by close to 50%, from 10.7 to 5.3 (see section 3.1). Less patients to evaluate translates to less
disruption of the clinical workflow and care cost saving. This improvement in performance is due to reducing
the probability of false positives by limiting false alarms to those occurring within nursing shifts in a control
recording as defined in the event-level evaluation (see section 2.3.3.2). Many control patients may have sporadic
false alarms, which under the proposed event-level evaluation are less likely to trigger randomly sampled
windows and lead to false positives. It is important to note that the proposed definition of WDR does not
consider the burden of alerts leading to a workup. One may define an alarm-level WDR that measures how many
false alarms get triggered before a cardiac arrest gets detected (true alarm), which can be calculated as the total
number of true and false alarms to the number of true alarms. An efficient predictive system is one that
demonstrates a practically low level of alarms per outcome.

The prediction horizon is a parameter that can be selected based on the clinical relevance of an application.
The choice of 12 h nursing shift as a prediction horizon for the evaluation of MEWS in this study was motivated
by the need to select an actionable timeframe within which MEWS alerts should lead to intervention to
demonstrate the proposed performance metrics. We used 12 h here because it is the typical duration of a nursing
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shift in US hospital settings, including critical care (Stimpfel et al 2019). In an ICU unit, two teams of nurses—
one per shift—ensure around the clock monitoring. Assuming MEWS threshold is adjustable by the attending
nurse, MEWS alerts could be evaluated relative to the nursing shift where they were triggered. A nurse covering
the morning shift may set the threshold to different value than the nurse from the previous night shift.

Interestingly, conventional MEWS led to similar sensitivity as with MEWS calculated from worst case values
(see section 3.2). The alarm burden, however, was less with MEWS, . than with conventional MEWS (see
section 3.3). Despite a slightly lower proportion of on-time alarms and higher missed alarms, MEWS,,sc may be
regarded as better choice than conventional MEWS as it maintains a high level of sensitivity and alleviates the
alarm burden. The probability distribution of generating alarms did not substantially differ between MEWS
implementations tested here, indicating that different MEWS calculation methods change the time distribution
of alerts but not their predictive power.

5. Conclusion

Comprehensive evaluation of predictive alarm algorithms to establish their true predictive power and clinical
usefulness is lacking. This study proposes approaches and technical considerations to quantify the performance
and practicality of predictive alarm algorithms in predicting adverse clinical events. Using MEWS as a case study,
revisited classic measures of performance and tools that capture and illustrate the burden of alarms are presented
and compared to conventional approaches. The proposed approach addresses the incompleteness and
limitation of classic measures to incorporate key clinical considerations and suggests measures and methods that
capture the clinical burden and the timeliness of alarms to guide the judgment about the practicality and utility
of a candidate predictive alarm algorithm.
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