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1. Introduction

In the last decade, wearable activity trackers have become more and more popular to monitor heart rate (HR). 
However, HR can not be easily interpreted without the proper context. A measured HR value of 70 bpm could 
be considered high for an athlete while asleep, or low for someone that does not usually train, after a long walk. 
Several factors are known to affect HR: circadian rhythm will make the HR higher during the day and lower 
during the night; during physical activity (e.g. a long walk) the muscles will require more blood, causing the heart 
to beat faster (Stirling et al 2008); a high temperature, consequence of an infection or a flu, will cause the heart to 
beat faster; the need for mental performances, e.g. a student during an exam, also causes the heart to beat faster 
(Castaldo et al 2015); age, sex, and BMI also change the expected heart activity of the user (Shaffer and Ginsberg 
2017). To be able to interpret HR measures and understand their physiological meaning, is therefore necessary 
to build a model of the subject, and to estimate the resting HR (RHR) for that particular subject at that particular 
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Abstract
Objective: Wrist-worn wearable devices equipped with heart rate (HR) sensors have become 
increasingly popular. The ability to correctly interpret the collected data is fundamental to analyse 
user’s well-being and perform early detection of abnormal physiological data. Circadian rhythm 
is a strong factor of variability in HR, yet few models attempt to accurately model its effect on HR. 
Approach: In this paper we present a mathematical derivation of the single-component cosinor 
model with multiple components that fits user data to a predetermined arbitrary function (the 
expected shape of the circadian effect on resting HR (RHR)), thus permitting us to predict the user’s 
circadian rhythm component (i.e. MESOR, Acrophase and Amplitude) with a high accuracy. Main 
results: We show that our model improves the accuracy of HR prediction compared to the single 
component cosinor model (10% lower RMSE), while retaining the readability of the fitted model of 
the single component cosinor. We also show that the model parameters can be used to detect sleep 
disruption in a qualitative experiment. The model is computationally cheap, depending linearly 
on the size of the data. The computation of the model does not need the full dataset, but only two 
surrogates, where the data is accumulated. This implies that the model can be implemented in a 
streaming approach, with important consequences for security and privacy of the data, that never 
leaves the user devices. Significance: The multiple component model provided in this paper can be 
used to approximate a user’s RHR with higher accuracy than single component model, providing 
traditional parameters easy to interpret (i.e. the same produced by the single component cosinor 
model). The model we developed goes beyond fitting circadian activity on RHR, and it can be used to 
fit arbitrary periodic real valued time series, vectorial data, or complex data.
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time of the day. Once the expected RHR is calculated, the difference between the measures HR and the RHR can 
provide valuable insight about the user physiological health and well-being.

RHR is widely investigated in the literature because it is an independent predictor of cardiovascular and all-
cause mortality in men and women (Kristal-Boneh et al 2000, Fox et al 2007, Larsson et al 2019, Li et al 2019, Sar-
tipy et al 2019). However, these studies are focused on a single point measurements without evaluating the varia-
tion of RHR through the day that could provide more information about health status of the population. In Faria 
and Drummond (1982) detected a physiological response fluctuation during the day of RHR and resting temper-
ature, demonstrating a relationship with physical activity tasks. All the studies previously cited evaluated the car-
diovascular disease risk and all-cause mortality from RHR and not from HR because of RHR reflects the basal 
activation of the autonomic nervous system that is found to be a predictor of several pathologies. The variation of 
HR among days could be only due to the different physical activity performed in a specific day (Fossion et al 2018)  
and not from a real change in health status, that can be detected analyzing the daily fluctuation of RHR.

Physiological measures such as HR and RHR are continuous variables that are subject to the influence of 
external and internal stimuli, changing over a daily cycle of about 24 h with patterns that have been defined as 
circadian rhythms (Faria and Drummond 1982, Koukkari and Sothern 2006). The time series obtained from 
wrist IoT wearable device are often noisy (i.e. variations in the biological system that are not part of the deter-
ministic portion of the signal and that are derived from external errors such as instrument inaccuracy), short (to 
save battery) and sparse (i.e. unequal time intervals between observations, missing datapoints) (Fernández et al 
2003). Despite these time series problems and the fact that the real signal is not a simple sinusoidal, HR circadian 
rhythms analysis is usually performed using the cosinor method (Cornelissen 2014) with a single component 
because the resulting parameters can be easily interpreted. In particular, the cosinor curve with single comp-
onent provides three parameters that describe the circadian rhythm: (i) mid-line estimating statistic of rhythm 
(MESOR) is an estimation of central tendency of the distribution of values across the cycles of the circadian 
rhythm computed using a cosine function; (ii) amplitude is the difference between the peak and the mean value 
of a wave; (iii) acrophase is the time of the day at which the peak of the circadian rhythm occurs.

It was found that the shape of the HR as a function of the hour of the day significantly differs from a simple 
cosine: during the night the HR becomes slower for approximately 6 h, while during the day it rises for approxi-
mately 18 h, with three peaks corresponding to meals (Malik et al 1990, Nakagawa et al 1998). However, only a few 
studies in the literature propose a cosinor method with multiple-component to analyze periodic components 
in non-sinusoidal longitudinal time series (Fernández et al 2003, Cornelissen 2014). The result of the multiple-
component cosinor analysis includes several parameters which are not easy to interpreted in comparison to the 
three parameters provided by single-component cosinor. Despite the multiple-component model being found 
to be more suitable to approximate the signals waveform when it deviates from sinusoidal, the single-component 
cosinor model is still widely used to investigate physiological circadian rhythm because of its simplicity and read-
ability (Cornelissen 2014).

Some models have been proposed to fit the data more accurately. Leise proposed the use of wavelets (Leise 
and Harrington 2011, Leise 2017). Fossion proposed the use of multiscale adaptive analysis (Fossion et al 2017). 
Those approaches improve the goodness of fit, but fitting parameters are difficult to interpret, compared to the 
single component cosinor. An additional limitation of those methods is that they are only concerned with the 
frequencies present in the data, without requiring the signal to follow a specified shape.

With the wide adoption of fitness devices, concerns about the security and privacy of the data collected by 
these devices have been raised (Aktypi et al 2017, Fereidooni et al 2017). Among the principles of Privacy by 
Design are data minimisation, which states that only the data strictly necessary to perform the intended activities 
should be collected, and full functionality, which states that privacy should not impair the functionalities of the 
product (Cavoukian et al 2009). However, the standard approach of fitness companies is to upload all the user 
data to their servers for processing, and performing all the data analysis on the cloud, requiring access to users raw 
HR data. In practice, data minimisation is usually sacrificed in favour of full functionality.

1.1. Contributions of this paper
In this paper we present a mathematical derivation of the single-component cosinor model with multiple 
components that fits user data onto an arbitrary function (i.e. the model which describes the circadian rhythm of 
the population), thus enabling the prediction of the user’s circadian rhythm effect on RHR.

Unlike the cosinor model with multiple components provided by Cornelissen (2014), the model proposed 
in our study provides the same three easy-to-interpret parameters which can be derived from the cosinor model 
with single component (i.e. MESOR, amplitude, acrophase).

Our model allows to assign weights to every data point used for fitting the expected shape to the user data. 
This enables advanced analyses with arbitrary error models, like assigning less importance to data points col-
lected while the user was moving (expecting motion artifacts, as explained in Morelli et al (2017)). Using weights 
also it makes possible to implement real-time streaming analysis of the data, performing a new analysis as new 
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data arrives, assigning less importance to older data. In this study we show how to implement such a real-time 
strategy assigning exponentially decaying weights to old data, obtaining a circadian model that continuously 
changes with new data. We show how the three fitted parameters (i.e. MESOR, amplitude, acrophase) can be used 
to interpret behavioural and physiological changes.

The model presented in this paper is computationally light and, for this reason, it is suitable to be executed 
on a wearable device. The complexity of the accumulation phase is linear on the number of data points, while the 
complexity resolution phase depends on the number of frequencies used and not on the number of data points.

To the best of our knowledge, this the first study that provides an algorithm that fits the circadian rhythm by 
using a multiple component cosinor, forcing the data to fit a particular shape, i.e. the population average effect 
of RHR circadian rhythm, only leaving three free parameters (i.e. the same used by single one). Moreover, our 
algorithm allows to perform all the data sensitive calculations on the wearable device. As a consequence users 
raw HR data could be kept on the wearable device, while allowing companies to obtain the output of the analysis, 
implementing both the full functionality and the data minimisation Privacy by Design principles.

Predicting a user’s RHR is an important step to interpret the measured HR data: the residual between meas-
ured HR and estimated RHR can then be correlated with physical activity, and inference of valuable insight on 
this user’s well-being and health becomes possible.

1.2. Background
Short and sparse time series were historically analyzed by the single-component cosinor model. However, this 
model is not suitable for unevenly sampled, noisy time series (i.e. the one showing several outlier values), with 
missing data such as the data recorded by wearable HR trackers.

Cornelissen (2014) extend the single-component cosinor to a multiple-component model in order to analyze 
the time series in chronobiology. Instead of solving a system of three equations in three unknowns to define the 
parameters of the circadian rhythm curve (i.e. MESOR, amplitude, acrophase) there are 2c  +  1 parameters to esti-
mate (i.e. c refers to the number of harmonics selected to describe the circadian). This approach better approxi-
mates the signals waveform of the circadian rhythm compared to single-component cosinor model thanks to 
the higher number of cosinor components used to fit the model on the circadian rhythm curve. For example, a 
2-component cosinor model that describes periods of 24 and 12 h has been found to be well-suited to approxi-
mate the nightly drop of blood pressure (Halberg et al 1981). However, the parameters provided by this model 
result hard to interpret and to compare with the results provided from single- or other multiple- comp onent 
cosinor methods (Fernández et al 2003), e.g. a small change in the phase of an harmonic will result in drastic 
changes in the resulting shape of the function, and parameters like amplitude will be distributed among several 
components.

Fitting unevenly sampled data to sinusoidal functions can also be performed by least-squares spectral analy-
sis techniques, such as the Lomb–Scargle periodogram (Vander Plas 2018), or the Vaníček method (Taylor and 
Hamilton 1972). The setting of our problem is different, as in we are interested in fitting functions with a par-
ticular shape, that is not a simple sinusoidal, but an arbitrary combination of cosines, with fixed amplitudes and 
locked phases.

2. Methods

2.1. The mathematical model
2.1.1. Prior from general population
We model the prior of RHR over time A(h) with the sum of c cosines, as defined in the multiple-component 
cosinor in Cornelissen (2014). This equation can be rewritten using Euler’s complex exponential formula as 
equation (1). The number c of components to use is a free parameter:

A(h) = β +

c∑
k=1

αk
ei2πk(h+φk) + e−i2πk(h+φk)

2

= β +
c∑

k=1

α|k|

2
ei2πk(h+φk) +

c∑
k=1

α|−k|

2
ei2π(−k)(h+φ|−k|)

= β +

c∑
k=1

α|k|

2
ei2πk(h+φk) +

−1∑
k=−c

α|k|

2
ei2πk(h+φ|k|).

 

(1)

The parameters β, α, and φ correspond to the MESOR, amplitude, and acrophase, and can be found as 
explained in Cornelissen (2014).
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If we define ψ0 = 0, ψk �=0 =
α|k|

2 ei2πkφ|k| we can rewrite equations (1) as (2)

A(h) = β +

c∑
k=−c

ψkei2πkh. (2)

Note that we have defined ψ so that ψ−k is equal to the complex conjugate of ψk. Therefore, the number of real 
parameters has not changed.

Equations (1) and (2) are equivalent to cosinor analysis (Cornelissen 2014) and the Vaníček method (Taylor 
and Hamilton 1972). From the next section we introduce novel contributions.

2.1.2. Fitting user data with locked parameters
Single component cosinor can only accurately fit data modulated by a simple sinusoidal factor. Circadian effect 
on RHR is unlikely to be fully captured by such a simple function. Multiple component cosinor can fit data 
more accurately (Cornelissen 2014), but the resulting set of fitting parameters, (a MESOR; an acrophase and an 
amplitude for each component) can not be easily interpreted, making it difficult to interpret the parameters of 
each component. Moreover, fitting a model for each user with all the free parameters will fit shapes that might 
not be what circadian is supposed to be, and it will be difficult to get an idea of what is the phase and amplitude.

We use the A(h) model provided in the previous section as the prototype (and prior) for users RHR through-
out the day (circadian rhythm). However, every user has a different RHR at night, during the day, and might go to 
sleep and wake up at different times than most of the users (that generated the model). For this reason we define 
a refined version of the model where some parameters are let free to adapt to users data. In particular, equa-
tion (3) shows the formula that locks parameters of the c components only allowing three degrees of freedom 
(the same used in single component cosinor analysis: MESOR, amplitude, and acrophase). This is equivalent to 
single comp onent cosinor analysis, using a different function than a cosine:

U(θ, h) = θ0 + θ1(A(h − θ2)− β) = θ0 + θ1

∑
−c�k�c

ψkei2πk(h−θ2).
 (3)

The free parameters in equation (3) are θ0, the average RHR of the user; θ1, the amplitude of the oscillation of 
the user RHR with respect to the prior. Values of θ1 close to 1 indicate that the range of the RHR is similar to the 
prior, less than 1 indicate that the user RHR has a smaller range compared to the prior, etc; and θ2, the phase of the 
user circadian rhythm with respect to the phase of a cosine with period equal to one day. θ2 ranges between  −0.5 
and 0.5. Values of θ2 close to 0 indicate that the user is sleeping at midday.

The θ parameters allow to express the user RHR, U(h), as a vertical shift (θ0), horizontal shift (θ2), and a change in 
amplitude (θ1) of the population prior A(h).

2.1.3. Loss function
To find θ that best approximates U(h) for a particular user, we fit U(h) to the RHR data collected for that user, 
minimising the distance L between the data and U(h) as shown in equation (4), where y j  is the j th measure of 
RHR of the user, xj  is the time of the measure, and wj  is the weight assigned to the j th measure:

L(θ) =
∑

j

wj

∥∥yj − U(θ, xj)
∥∥2

. (4)

Finding the θ that minimises L is not trivial, because we use periodic functions that are not simple cosines, 
but a particular combination of cosines, defined by the α and φ parameters, that are not allowed to change. The 
literature of cosinor based rhythmometry does not offer any solutions, neither analytic nor numeric. Therefore, 
we developed an analytic solution to finding the θ that minimises L.

First, we introduce the following notation to further simplify formulae:

ζ = e−i2πθ2 (5)

Fd =
∑

j

wjyje
i2πdxj

 (6)

Sd =
∑

j

wje
i2πdxj .

 (7)
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We can now develop equation (4) using the definition of U in equation (3) into the following:

L(θ) =
∑

j

wjy
2
j + θ2

0

∑
j

wj + θ2
1

∑
k,m

φmφkζ
k+mSk+m

− 2θ0F0 + θ1

∑
m

φmζ
m (2θ0Sm − 2Fm)

 (8)

where the indices k and m range between  −c and c.
To minimize the loss we put to zero the partial derivatives with respect to θ0, θ1, θ2. We obtain the system in 

equation (9):



θ0S0 + θ1

∑
k φlζ

kSk − F0 = 0∑
m φmζ

m
[
θ0Sm + θ1

∑
k φkζ

kSm+k − Fm

]
= 0∑

m mφmζ
m
[
θ0Sm + θ1

∑
k φkζ

kSm+k − Fm

]
= 0.

 (9)

Substituting θ0 and then θ1 in the equations of the system (9) we find a polynomial in ζ:

0 =
∑
m,l,k

mφmφlφkζ
m+l+kΨm,l,k (10)

where

Ψm,l,k = FkSlSm + FkS0Sm+l − F0SkSm+l

− FmSlSk − FmS0Sk+l + F0SmSk+l.
 (11)

Since the indices m, l, and k range between  −c and c, and ∀m.Ψm,m,m = 0, the polynomial in equation (10) has 
degree 6c  −  2.

The roots of the polynomial in ζ can be found with spectral methods, i.e. using the eigenvalues of the com-
panion matrix (Edelman and Murakami 1995) to find an approximation, and then the solutions can be refined 
using the Newton–Raphson method.

From the roots of the polynomial we can determinate the values of θ2, and subsequently of θ1 and θ0, where 
the total derivative of L(θ) is zero. We compute L(θ) using equation (8) on these points to determine the absolute 
minimum.

Our model is based on the weighted least squares approach. Data do not need to respect the assumption of 
homoscedasticity, and weights can be designed to focus the analysis on certain areas of the data, e.g. give less 
weight to data collected in movement.

2.1.4. Engineering considerations
The system in equation (9) depends on data indirectly through the values of F and S. Moreover, also the square 
loss function can be expressed in term of these values (and the total sum of y2

i ). This means the whole algorithm 
does not require access to the full dataset, but only a limited set of values (namely the values of S, F and the sum of 
squares of y  values if we want to output an absolute value for the loss). All these values are moreover an additive 
function of data sets, that is for two disjoint set of values A = {xi, yi} and B = {xj, yj} Sk,A∪B = Sk,A + Sk,B 
and Fk,A∪B = Fk,A + Fk,B. This implies that it can be computed separately for each subset of samples, and then 
added together to obtain the total value: for example it can be accumulated directly in the user’s device, with big 
advantages in computational complexity, data transfer and privacy. In particular the asymptotic analysis of the 
algorithm complexity is the following (where N is the number of data points, c the number of components):

 •  The accumulation of data into the surrogate values S and F is O(N · c).
 •  To solve the polynomial we need to find eigenvalues of a 6c  −  2 sided matrix which requires O(c3) 

operations.
 •  To compute the loss for a given set of fit parameters we required O(c2) operations, which has to be repeated 

for each candidate solution, for a total of O(c3) operations.

The total complexity is thus O(c3 + Nc), in particular it only depends linearly on the size of data.

2.2. Experimental setting
To test the accuracy of our model of circadian effect on RHR against the traditionally used single component 
consior, we used the data collected by Biobeats, a corporate well-being company4, through their product Biobase, 
a stress management app that uses a wrist worn wearable device (Biobeam) to passively collect activity data 
(number of steps performed every 20 s), sleep phases by a triaxial accelerometer with a sample rate of 100 Hz, 
and heart beats by photoplethysmography sensors (i.e. Interbeat Interval durations are measured for 2 min every 
4 www.biobeats.com/

Physiol. Meas. 40 (2019) 095001 (10pp)
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30 min, with a sample rate of 50 Hz; and the average HR of 1 min of heart activity is measured every 10 min, 
with a sample rate of 25 Hz). To test our model we used a dataset collected by Biobeats from two pilots with 
financial sector organizations. Forty-seven individuals (F  =  52%, M  =  47%), with an age range of 20–63 years 
(M  =  29.29, SD  =11.38), agreed to participate to the experiment and wore a wrist worn wearable device that 
collected HR every 10 min, activity data (steps) every 20 s, and sleep phases every night, for four weeks. The 
number of HR measurements per user was in average 3471 (SD 2964).

All procedures performed in studies involving human participants were in accordance with the ethical stand-
ards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards.

2.2.1. Building a prior by fitting β and ψ on the general population
To build a prior for the RHR we proceeded as follows:

 •  for each user we kept only time series with at least 100 HR samples. After this preprocessing step dataset had a 
total of 163 179 HR measures; 

 •  we split the dataset using a leave-one-out strategy, training the prior on a dataset that did not include the user 
for which we wanted to calculate the θ parameters; 

 •  for each HR measure, we calculated the amount of steps taken by the user in the previous 5 min; 
 •  we removed from the dataset the HR points where the number of steps in the previous 5 min was larger than 

10. This step was carried out to ensure we estimate RHR, instead of HR that is influenced by the physiological 
request of physical activity. After this preprocessing step the number of HR datapoints decreased from 
163 179 to 132 498; 

 •  on each user we first performed cosinor analysis on a single component to find the Acrophase (every user will 
generally have different sleep habits); 

 •  we then aligned the data of all users, forcing all users to have the same phase as a cosine with period equal to  
1 d; and 

 •  finally, we used multiple-components cosinor on the phase aligned data from all users, using c  =  4 cosines, 
with period of 1 d, half a day, a third of a day, and a quarter of a day.

Figure 1 shows one of the priors fitted using the leave-out-out approach. In that case the values for β and ψ, from 
equation (2), are the following:

 •  β = 68.75; 
 •  ψ1 = 1.63; 
 •  ψ2 = 0.69e−i0.97π; 
 •  ψ3 = 0.13e−i0.06π; 
 •  ψ4 = 0.19ei0.49π.

β represents the population average. ψ1 describes the first of the four components cosinor fitting. The modu-
lus expresses how important is this component in the fitting, and the argument expresses the phase of this comp-
onent. ψ1 has argument equal to zero, because we explicitly aligned all users to a cosine. We can see that the first 
component captures 62% of the overall information, as the modulus of ψ1 is equal to 0.62 multiplied by the sum 
of the moduli of all ψ1, ψ2, ψ3, and ψ4.

2.2.2. Building the models of a user resting heart rate by fitting θ on the data of that user
To obtain the analysis of the user of interest, we proceeded as follows:

 •  for every HR measure, we calculated the number of steps in the 5 min preceding the timestamp of the HR 
measure; 

 •  we removed all the HR measures with a corresponding number of steps larger than 10. Therefore we removed 
all the HR measures that happened during, or immediately after, some physical activity; 

 •  with a rolling window approach, for every HR measure

 –  we applied exponential decay to the previous HR measures. The decay function is applied to the weights wi 
used in the loss function L. wi = e−∆t, where ∆t is the time, in days, between the datapoint i and the latest 
datapoint, that triggered the update of the model. Therefore, the weight approximately halves every day; 

 –  we then calculated the surrogates S and F, solved the polynomial in ζ, finding the θ parameters of 
equation (3) that minimise the loss function.

Physiol. Meas. 40 (2019) 095001 (10pp)
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Figure 2 shows θ0, θ1, and θ2, calculated at each HR measure.
The choice of using an exponential decay function over time ensures that recent data is weighted more than 

old data. This approach allows the model to evolve over time, reacting to changes in sleep habits and physiological 
status. An alternative approach could have been to consider measures in finite time moving windows. However, 
this latter approach could yield unpredictable results in presence of wide sections of missing data, a frequent situ-
ation in data from field experiments, caused by users forgetting to put the band back on after recharging it. An 
exponential decay approach ensures that even in presence of wide sections with missing data, a usable model is 
always available.

Figure 2 shows seven days of HR and sleep data of one of the users, and the estimated circadian parameters:

 •  the first graph shows the HR measures of the user as black dots, and the RHR as estimated by the circadian 
model as red dots. The x-axis is time expressed as UNIX-timestamps, the y -axes is HR in beats per minute; 

 •  the second graph shows the estimated MESOR, θ0, evolving over time, changing for every HR measure. The 
x-axis is time expressed as UNIX-timestamps, the y -axes is HR in beats per minute; 

 •  the third graph shows the estimated amplitude, θ1, evolving over time, changing for every HR measure. The 
x-axis is time expressed as UNIX-timestamps, the y -axes is the ratio between the amplitude of the user model 
and the amplitude of the population model. A value around 1 (the dotted horizontal line) indicates that the 
circadian amplitude is in line with the population average, values above 1 indicate that the amplitude is larger 
than the population average, values below 1 that the amplitude is below the population average; 

 •  the fourth graph shows the estimated acrophase, θ2, evolving over time, changing for every HR measure. The 
x-axis is time expressed as UNIX-timestamps, the y -axes is phase in days with respect to a cosine with period 
1 d, with range between  −0.5 and 0.5 d. The horizontal dotted line shows a phase of zero, indicating that the 
user sleeps at midday; and 

 •  the fifth graph shows the sleep data measures by the wearable, in the graph we show at what time the user 
went to bed and woke up, as a line. The horizontal dotted line indicates midnight. We did not use this data in 
our model, and is shown here as a reference for the sleep behaviour of the user.

Looking at the estimated circadian parameters, it can be seen that on the fourth night, slightly after timestamp 
= 1546 300 000, the MESOR increases and the amplitude decreases, indicating non optimal physical conditions 
of the user, and that the acrophase suddenly changes, increasing from the stable average. Observing the sleep data 
from the band it can be seen that on that same night the user suddenly changed sleep habits (from a healthy stable 
time to bed of about 11 pm, to 3 am). The lack of proper sleep can be seen in the HR data and is reflected in the 
changes in θ0 and θ1. The sudden change in the user sleep habit is reflected in the sudden change in θ2.

Figure 3 shows the data of one day of a user, with the fitted single component cosinor model and our circadian 
model. We can see that our model better captures the sudden change in HR when the user awakens, and the fact 
that the time awake is longer than the time asleep. More examples with the fitted circadian model of multiple 
users can be found in the supplementary materials (stacks.iop.org/PM/40/095001/mmedia).
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Figure 1. Shape of one of the priors fitted using a leave one out approach. The x-axis represents the time of the day, expressed in 
days: 0.5 indicates midday, 0.0 and 1.0 indicate midnight.
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2.2.3. Predict user’s resting heart rate
We applied the method described in the previous sections to obtain an evolving model of the users. We used those 
models to predict the next HR, given all the user’s previous HR datapoints. We compared the prediction accuracy 
of our model against the single component cosinor model.

The cosinor RMSE is 5.73 ± 2.39, our circadian model RMSE is 5.15 ± 1.07. Our circadian model RMSE is in 
average 10% lower than the cosinor RMSE. A paired t-test returns, 0.59 mean of the differences between cosinor 
RMSE and our circadian RMSE, with a 95% confidence between 0.02 and 1.15 (p-value  <0.05).

We also tested our model against the null hypothesis that simply using the previous HR measure to predict 
the current HR measure yields better results than modelling circadian effect on HR. The null hypothesis model 
has RMSE equal to 5.94 ± 1.38. A paired t-test returns a mean of differences between our circadian model RMSE 
and the null hypothesis model RMSE of 0.79, with a 95% confidence between 0.57 and 1.01 (p-value  <0.001). 
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Figure 2. A week of HR and sleep data of a user, and fitted circadian parameters. The first row shows the measured HR (black dots) 
versus the estimated RHR (red line); the second, third, and fourth rows show the evolution of θ0, θ1, and θ2 over time; the fifth row 
shows the measured sleep data.
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The paired t-test between cosinor RMSE and null hypothesis RMSE returns a non significant difference of means 
(p-value  >0.5).

The loss function L(θ) can be used to calculate the standard error, useful to have an estimation of the distribu-
tion of the predicted data. This information could be used to automatically analyse HR activity, finding anoma-
lous data points that could be caused by factors not modelled by circadian effect on RHR, such as physiological 
conditions.

3. Conclusion

In this paper we presented a novel mathematical model that can be used to approximate a user’s RHR. The 
model achieves the expressiveness of the multiple component cosinor, i.e. the model fits the data. At the same 
time the parameters of the model are easy to interpret parameters: MESOR, amplitude and acrophase, the same 
produced by the single component cosinor model. The model does not require uniformly sampled data, and 
allows to weight each datapoint independently. Hence, the results showed in this paper suggest that it is possible 
to accurately predict circadian RHR rhythm by using wrist worn PPG device permitting to make inference about 
health status of the people at home without the need of expansive devices. Moreover, our model allows the fitting 
to require a signal with a predetermined shape (a combination of sinusoud functions with fixed amplitudes 
and phases). We use this characteristic to force the shape of the expected effect of circadian rhythm on RHR, an 
operation not easily doable with the method used in the literature.

Continuously assessing the evolution of all the parameters of RHR circadian rhythm (i.e. MESOR, amplitude 
and acrophase) it is possible to make inference about all-cause mortality. In particular, it is possible to evaluate the 
quality of sleep-wake circadian rhythm from the wrist RHR. For example, low arousability, e.g. circadian rhythm 
with long sleep time duration, have been found to be a possible risk factor for sudden-infants-death-syndrome 
(SIDS) (Dvir et al 2018). A home used wrist-worn HR sensors device with an accurate circadian rhythm analysis 
showing increase in the sleep time duration (low arousability) might be used to prevent SIDS. Moreover, heart 
diseases could be induced by sleep disorder also in adulthood, i.e. too long (more than 8 h per night) or too short 
(less than 7 h per night) sleep duration). Hence, an accurate sleep time duration analysis may be used to screen 
heart diseases using simple home device (Shahar et al 2001).

The model provided in this study is computationally cheap, depending linearly on the size of the data. The 
computation of the model does not need the full dataset, but only two surrogates (F and S). This implies that the 
model can be implemented in a streaming approach, where the data is accumulated on the device, with impor-
tant consequences for security and privacy of the data, that never leaves the user devices. Moreover, this model is, 
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Figure 3. One day of HR (beats/minute) data of a user, with fitted single component cosinor (red line) and our model (green line), 
recalculating the models for every HR datapoint with exponential decay on data.
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to the best of our knowledge, the only computational model that can be used to predict users RHR and to analyze 
the data using the parameters traditionally used to describe the circadian modulation of physiological activity. 
The model we developed goes beyond fitting circadian activity on RHR, and it can be used to fit arbitrary peri-
odic real valued time series, but also vectorial data (e.g. gesture recognition from the accelerometer), or complex 
data. With an extension to the mathematical model it could be used to fit non periodic data using a linear combi-
nation of an arbitrary set of functions.
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