ACCEPTED MANUSCRIPT The following article is Open access

A scan-specific quality control acquisition for clinical whole-body (WB) MRI protocols

, , , , , , , , , , and

Accepted Manuscript online 22 April 2024 © 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-6560/ad4195

10.1088/1361-6560/ad4195

Abstract

Objective: Image quality in whole-body MRI (WB-MRI) may be degraded by faulty radiofrequency (RF) coil elements or mispositioning of the coil arrays. Phantom-based quality control (QC) is used to identify broken RF coil elements but the frequency of these acquisitions is limited by scanner and staff availability. This work aimed to develop a scan-specific QC acquisition and processing pipeline to detect broken RF coil elements, which is sufficiently rapid to be added to the clinical WB-MRI protocol. The purpose of this is to improve the quality of WB-MRI by reducing the number of patient examinations conducted with suboptimal equipment.
Approach: A rapid acquisition (14 seconds additional acquisition time per imaging station) was developed that identifies broken RF coil elements by acquiring images from each individual coil element and using the integral body coil. This acquisition was added to one centre's clinical WB-MRI protocol for one year (892 examinations) to evaluate the effect of this scan-specific QC. To demonstrate applicability in multi-centre imaging trials, the technique was also implemented on scanners from three manufacturers. 
Main Results: Over the course of the study RF coil elements were flagged as potentially broken on five occasions, with the faults confirmed in four of those cases. The method had a precision of 80 % and a recall of 100 % for detecting faulty RF coil elements. The coil array positioning measurements were consistent across scanners and have been used to define the expected variation in signal. 
Significance: The technique demonstrated here can identify faulty RF coil elements and positioning errors and is a practical addition to the clinical WB-MRI protocol. This approach was fully implemented on systems from three manufacturers and partially implemented on a third. It has potential to reduce the number of clinical examinations conducted with suboptimal hardware and improve image quality across multi-centre studies.

Export citation and abstract BibTeX RIS

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

10.1088/1361-6560/ad4195