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Abstract
Objective.Task-adapted image reconstructionmethods using end-to-end trainable neural networks
(NNs)have been proposed to optimize reconstruction for subsequent processing tasks, such as
segmentation.However, their training typically requires considerable hardware resources and thus,
only relatively simple building blocks, e.g. U-Nets, are typically used, which, albeit powerful, do not
integratemodel-specific knowledge.Approach. In this work, we extend an end-to-end trainable task-
adapted image reconstructionmethod for a clinically realistic reconstruction and segmentation
problemof bone and cartilage in 3DkneeMRI by incorporating statistical shapemodels (SSMs). The
SSMsmodel the prior information and help to regularize the segmentationmaps as afinal post-
processing step.We compare the proposedmethod to a simultaneousmultitask learning approach for
image reconstruction and segmentation (MTL) and to a complex SSMs-informed segmentation
pipeline (SIS).Main results.Our experiments show that the combination of joint end-to-end training
and SSMs to further regularize the segmentationmaps obtained byMTLhighly improves the results,
especially in terms ofmean andmaximal surface errors. In particular, we achieve the segmentation
quality of SIS and, at the same time, a substantialmodel reduction that yields a five-fold decimation in
model parameters and a computational speedup of an order ofmagnitude. Significance.Remarkably,
even for undersampling factors of up toR= 8, the obtained segmentationmaps are of comparable
quality to those obtained by SIS from ground-truth images.

1. Introduction andmotivation

Knee osteoarthritis (OA) is a widely spread chronic and degenerative joint disease (Lawrence et al 2008) that can
be assessed fromquantitative image-based biomarkers such as the fraction of the apparent bone volume and the
total bone tissue volume (Eckstein et al 2006), which can be obtained frommagnetic resonance imaging (MRI).
AComparison of such biomarkersmight give further insights about the prevention and treatment ofOA. It is
themost common joint disorder with over 250million people affectedworldwide (Vos et al 2012)—80%of
which involve the tibiofemoral joint of the kneewith a high socio-economic burden.

Commonly used x-ray imaging provides fast and relatively low-cost acquisition, but only yields 2D
projectionswithmarginal soft tissue contrast leading to limited inter-rater concordance. Recent studies have
shown thatMRI-derived 3Dbone shape is amuch better bio-physical parameter for the assessment ofOA
(Hanik et al 2020, Ambellan et al 2021b, Ambellan et al 2021c). Amajor challenge for its clinical application is the
relatively long acquisition time of 3DMRI. Longer acquisition times can limit the achievable spatial resolution
due to possible patientsmotion during the scan, increase patient discomfort and ultimately inevitably comewith
associated higher healthcare costs. Undersampling the images in themeasurement space, the so-called k-space,
can accelerate the data acquisition but the reconstruction typically requires advanced regularizationmethods to
obtain images with diagnostic quality. In addition, precise segmentations of the anatomical features of interest
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are required both for the determination of the latterlymentioned biomarkers aswell as computer-based surgical
planning of interventions. Furthermore, any impairment in visual acuity can carry over to downstream tasks
such as tissue segmentation and, eventually, affect clinical decision-making. In the last years, deep learning (DL)
methods based on unrolled optimization (Monga et al 2021) have attracted great attention in the research field of
image reconstruction (Adler andÖktem2018, Aggarwal et al 2018,Hammernik et al 2018, Schlemper et al
2018a, Sriram et al 2020, Kofler et al 2021). Using task-adapted unrolled neural networks (NNs), the obtained
regularizationmethods cannot only be adapted to the data but also to the specific reconstructionmethods as well
as to a subsequent task such as image classification or image segmentation (Sun et al 2019, Calivá et al 2020, Adler
et al 2021, Sui et al 2021).

In this work, we propose a combination of a task-adaptedNNs-basedmethod and statistical shapemodels
(SSMs) for joint reconstruction and segmentation of undersampled 3DkneeMR images.We extend an
approach similar to Sui et al (2021) to a high-dimensional 3Dmulti-coilMRI reconstruction and segmentation
problem and further integrate SSMs to increase the quality of the obtained segmentationmaps.

2.Methods

The overallmethod consists of two stages. First, an end-to-end trained reconstruction- and segmentation
network is used to reconstruct the images from the undersampled k-space data aswell as to deliver afirst initial
guess of the segmentation. In addition, as a second step, a statistical shapemodel inwhich information about
shape anatomy is used is further employed to improve the initial segmentation.

2.1. Problem formulation and image reconstruction
InMRI, the data-acquisition process yields the Fourier transformof an imagewhose contrast is determined by
the parameters of theMR sequence and theMR-related parameters of the image, such as relaxation times.

Let x N
true Î withN=Nx ·Ny ·Nz denote the vector representation of such an unknown complex-valued

3DMR image andAI denote a 3Dmulti-coilMRI operator whichmaps the image to its corresponding
undersampled k-space data. The considered forward problem is given by

( )y A x e, 1I I true= +

where, yI denotes themeasured k-space data in presence of complex-valuedGaussian noise e. The operatorAI

has the form

≔ ( ) ( )A I F C, 2I N Ic Ä

where [ ]C C C, , N1 c
= ¼ T with ( )C c cdiag ,k k k

N= Î contains the stacked coil-sensitivitymaps,FI≔ SIF
denotes the composition of a 3DFFT operator and a binary sub-samplingmask that samples the k-space
coefficients indexed by I⊂ J= {1,K,N}with J denoting the entire set of k-space coefficients. The operation⊗
denotes theKronecker product and INc

anNc-dimensional identity operator. Because problem (1) is ill-posed,
image reconstruction approahces require the use of advanced regularization techniques. In the following, we
describe the here considered regularization scheme inmore details.

Let u Rec
Q denote aCNNwith trainable parametersΘwhich estimates a CNN-based image prior image xCNN

from the undersampled image, i.e. ≔ ( )ux xICNN
Rec
Q , ≔x A yI I I

H . Similar as in otherworks, (Hyun et al 2018, Sui
et al 2021, Kofler et al 2021), we formulate the reconstruction problem as

( )A x y x xmin
1

2 2
, 3I I

x
2
2

CNN 2
2   l

- + -

which, considering xCNN to befixed, has a unique solution that can be obtained by solving a linear system

( )Hx b, 4=

( )H A A I , 5I I Nl= +H

( )b A y x . 6I I CNNl= +H

Approximately solving (4) can for example be achievedwith a conjugate gradientmethodwithM iterations
whichwe here denote by f

M ,
CG

l, see e.g. (Hyun et al 2018, Kofler et al 2021) formore details. By

  ( )·Rec : , 7K N N
,

c lQ

( ◦ ◦ )( ) ( )f uy A y 8I M I I,
CG Rec l Q

H

wedenote the entire reconstruction networkwhich estimates a CNN-regularized and data-consistent solution
xRec from themulti-coil k-space data  ·yI

K NcÎ , which serves as input for the subsequentmulti-class

segmentation network u Seg
Y with parametersΨ.
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2.2. Network architectures
The basic component of the reconstruction and segmentation network is based on theU-Net (Ronneberger et al
2015)which has been extensively applied to image reconstruction (Jin et al 2017,Hyun et al 2018,Hauptmann
et al 2019, Kofler et al 2018, Sriram et al 2020, Kofler et al 2021) as well as to image segmentation problems
(Ambellan et al 2019b). As inKofler et al (2018), we hyper-parameterize aU-Net by the number of encoding
stages, the number of convolutional layers per stage and the number offilters which is initially applied to the
input images by E, C andK, respectively. Based on preliminary experiments, we identified amodel configuration
of E3 C2 K16 to be powerful enough for the task of image reconstruction, while for the segmentation network,
similar as in Ambellan et al (2019b), a networkwithmore trainable parameters corresponding to E4C2 K32, was
required to yield accurate segmentationmaps. In addition, both networks differ in the shape of the kernels which
are 3× 3× 3 and 5× 5× 3 for the reconstruction and the segmentation network, respectively. The number of
CG-iterations for solving problem (3) in Rec Θ,λ is set toM= 12.

The choice of the reconstruction and segmentation networks is based on a trade-off between the available
computational hardware, i.e. a 48 GBGPU, and the expressiveness of the respective networks in terms of
number of trainable parameters. In general, other studies have observed that increasing the number of trainable
parameters is beneficial for the task of image reconstructionwith unrolledmethods (Kofler et al 2022). However,
employing deeper networks increases thememory footprint of the end-to-endmethod. Thus, because the
reconstructionmodule ismodel-based (due to the use data-consistencymodule), sacrificing trainable
parameters for the reconstruction network seems to be favorable over reducing the number of trainable
parameters for segmentation network that performs amore difficult task (semantic segmentation).

Note that the considered reconstructionmethod corresponds to a special case of thewell-knownMoDL
approach (Aggarwal et al 2018), where the number of alternations isfixed to be one here due to the relatively high
dimensionality of the considered problem, i.e. the presence of a 3D acquisition operator withmultiple receiver
coils. This choice is a necessary trade-off chosen between computational requirements to be able to train the
entiremodel-based network ◦u RecSeg

,lY Q in an end-to-end fashion and using a sophisticated reconstruction
network as in Sui et al (2021).

2.3. Statistical shapemodels (SSMs)
AsCNNs lack explicit shape knowledge, we opt for SSM-based post-processing to circumvent anatomical
implausibilities in the segmentationmasks. SSMs are geometricmodels that describe a collection of semantically
similar shapes in a compact way. SSMs jointly represent an average shape ofmany three-dimensional objects as
well as their variation thereof (Ambellan et al 2019a). Given a shape population, SSMs offer a powerful
mechanism to efficiently capture the range of anatomical variation. To this end,main trends (a.k.a.modes) of
variation around a population-average shape are learned, such that the spanned shape-subspace closelyfits the
training instances (Kainmüller 2014).More precisely, there exists no closer k-dimensional approximation of an
input shapewithin the span of its collection than the unique representation as deviation from themean by a
linear combination ofmodes. During post-processing, we project the outcome of u Seg

Y onto SSMs of the femur
and tibia separately, thereby removing any unseen variation and returning the best approximation of the unseen
shapewithin our training set.However, especially for femur and tibiawe can assume that there is significantly
more variation among individuals in the joint region than at the bone shafts, i.e we expect our shape
approximation tofit the observed data better in the shaft than in the joint region. Therefore, when integrating
the SSMprediction, we putmore trust in theCNN in regionswith high-frequent variations (specifically the
cartilage interface rims), whereas we relymore on the SSM in regions, wherewe expect rather low-frequent
variations in shape.We employ the commonpoint distributionmodel that treats shapes as points in the high-
dimensional space of (stacked) vertex coordinates and captures their distribution via principal component
analysis (PCA). Further details and implementation can be found inKainmüller (2014), Ambellan et al (2019b),
andAmbellan et al (2021a), respectively.

2.4.Dataset and experimental set-up
To evaluate the proposedmethod, we used the open-accessOAI-ZIB dataset in Ambellan et al (2019b). It
consists of 507 3D kneeMR images from theOA initiative (http://nda.nih.gov/oai) of shape
Nx×Ny×Nz= 384× 384× 160 togetherwith their corresponding segmentationmaps of the femoral bone
and cartilage aswell as the tibial bone and cartilage. The segmentations provided by theOAI-ZIB dataset were
obtained asmanual segmentations performed by experienced users of the Zuse Institute Berlin (ZIB) starting
fromautomated segmentations whichwere obtained by themethod in Seim et al (2010). The employed data
covers the full spectrumof differentOAgrades, with amore pronounced focus towards severe cases. The images
from the subjects (age 61.87± 9.33 years, 262male and 245 female)whowerewith, or at risk, for symptomatic
femoral-tibial OA,were acquired on a Siemens 3TTrio scanner using a double echo steady state (DESS)
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sequence and have a resolution of 0.36× 0.36× 0.7 mm3. For further details, we refer to the supplementary
material of thework (Ambellan et al 2019b).

Note that the SKM-TEAdataset (Desai et al 2021) also poses an interesting basis for evaluation as it contains
raw k-space data.However, we opted to use theOAI-ZIB dataset from (Ambellan et al 2019b) as it additionally
contains segmentations of femur and tibia bones and is thus not limited to articular soft tissues. These bones in
fact pose distinct challenges (i) due to significantly lower signal strength and contrast to certain neighboring
tissues like tendons as well as (ii)due to their physical size extending outside the field-of-view, thus, covering
image regionswith higher vulnerability to artefacts like signal decay and nonlinear distortions. Another
interesting dataset is the recently publishedK2S-challange-dataset (Tolpadi et al 2023), which however, has two
major limitations: first, ground-truth segmentationwas carried outwithCNNs rather thanmanually and a
human reader quality rating served as an additional exclusion criterion. In other words, experts identified cases
that are convenient for aCNN-based segmentation. Second, the subject characteristics suggest a bias of the
dataset towards non-arthritic individuals that feature physiological bone and cartilage configurations. Contrary,
all segmentationmasks ofOAI-ZIB aremanually segmented and two thirds of them feature severe knee
osteoarthritis yielding various unique disease patterns. In addition, by using the dataset fromAmbellan et al
(2019b), we are able to directly compare the obtained segmentationmasks to the ones obtained from the
ground-truth images in Ambellan et al (2019b) and therefore asses howmuch the data-acquisition could in
principle be acceleratedwithout sacrificing segmentation accuracy.

The phase information of the images was simulated similarly as in Schlemper et al (2018b). From these
images, k-space data was retrospectively generated using three different undersampling factorsRä {8, 12, 16}.
Undersamplingmasks along ky and kzwere chosen according to a Poisson disk sampling pattern (Bridson 2007)
whichwas implemented usingSigPy (Ong and Lustig 2019). Coil-sensitivitymaps forNc= 18 coils were
simulated by employing 3DGaussian profiles using the functionmrisensesim inMuckley et al (2020),
version 1.0.0. Figure 1 shows a schematic representation of the retrospective k-space data simulation used for
this study. Our dataset  consisted of triples (yI, xf, st) of undersampled k-space data yI, ground-truth images xf
and target segmentationmasks st. As in Ambellan et al (2019b), the data was split into 227/26/254 images for
training/validation/testing.

2.5. Network training
End-to-end training of the entire network ◦u RecSeg

,lY Q was carried out byminimizing a convex combination of
themean squared error (MSE) and theDICE similarity coefficient (DSC)-based loss function


 

( )
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[( ) ( ( ) )

( ( ( ( )) ))] ( )
( )
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y s
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forα= 1/3, 2/3, 1whichwas also used in Sui et al (2021). Thereby, forα= 1, the regularization is learned to be
optimal with respect to the subsequent segmentation task given by u Seg

Y , while for 0< α< 1, also the
reconstruction-error with respect to the L2-norm isminimized. Similar as in otherworks, e.g. (Sun et al 2019,
Tolpadi et al 2023), Rec Θ,λ and u Seg

Y were separately pre-trained for the corresponding tasks, i.e. byminimizing
theMSE- and theDSC-based loss functions, respectively, and by training for 36 epochs with the ADAM-
optimizer (Kingma andBa 2014)with learning rates of 10−4 and 10−5, respectively. For eachα, the entire
network ◦uRec ,

Seg
lQ Y was fine-tuned for further 16 epochs by decreasing the respective initial learning rates by a

factor offive. Due toGPU-memory constraints, training had to be performed on image patches of shape
N N N 256 256 160x y z¢ ´ ¢ ´ ¢ = ´ ´ . Pre-training took about two days for each sub-network, while the end-to-
endfine-tuning took further two days for eachα. TheGPU-memory allocation amounted to approximately
18 GB/27 GB for pre-training Rec Θ,λ and u Seg

Y , respectively, and 47 GB forfine-tuning the network

◦uRec ,
Seg

lQ Y .All experiments were run on anNVIDIARTXA6000with a 48 GBGPU.As no validation is needed
to train SSMs, bothwere trained on thewhole training set.

2.6. Experiments and evaluation
In the followingwe evaluate theNNs-basedmethod in terms of reconstruction quality aswell as accuracy of the
estimated segmentationmasks.More precisely, we investigate the impact of the single components of the
proposed pipeline aswell as the training scheme, i.e.

(1) The importance of end-to-end training overmodel-agnostic decoupled pre-training.

(2) The importance of employing the statistical shapemodels.
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For the obtained reconstructions, we report the peak signal-to-noise ratio (PSNR), normalized rootmean
squared error (NRMSE) and structural similarity indexmeasure (SSIM) (Wang et al 2004), while for the
segmentationmaps, we provide surface distance-basedmetrics which providemore insightful differentiation of
tissue shape in addition to theDSC.More precisely, themetrics used to assess the quality of the obtained
segmentations are given by

· ∣ ∣
∣ ∣ ∣ ∣

( )B A

B A
DSC 100

2
10=

Ç
+

⎛

⎝
⎜

⎞

⎠
⎟∣ ∣ ∣ ∣ ( )a b b aASD

1

N N
min min 11

A B b
i

a
j

i 1

N

B
2

j 1

N

A
2

A B

å å=
+

- + -
¶ ¶ = Î¶ = Î¶

¶ ¶

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ ( )a b b aMSD max max min , max min , 12
a A b B b B a A

2 2= - -
Î¶ Î¶ Î¶ Î¶

whereA denotes the set of ground-truth voxels andB denotes the resulting segmentationmask,∂A and∂B
represent the boundary ofA andB, i.e. the set of voxels with at least one neighbor being not part of the respective
segmentationmask. The number of voxels on the boundaries∂A and∂B is written asN∂A andN∂B, respectively.
The segmentation accuracy is evaluated for femoral/tibal bone (FB/TB) and femoral/tibial cartilage (FC/TC)

Figure 1.A schematic illustration of the retrospective k-space data generation process aswell as the used end-to-end trainable
reconstruction and segmentation network ◦uRec ,

Seg
lQ Y (red) and the SSMs-based post-processing. The undersampled k-space data is

retrospectively simulated according to (1). The input of the network is the zero-filled reconstruction. After a fewwarm-up iterations
for approximately solving the normal equations, the 3DU-Net u Rec

Q is applied to obtain theCNN-prior xCNN. The image xCNN is used
to regularize the reconstruction problem (3)which is then approximately solved using a conjugate gradientmodule. From this data-
consistent solution, a further 3D segmentation network u Seg

Y is applied to estimate a segmentationmask. The reconstruction and
segmentation network can be trained to jointly reconstruct the images from the undersampled k-space data and subsequently segment
the reconstructions, while the SSM-based post-processing (blue) is a subsequent step that improves the obtained segmentations.

5

Phys.Med. Biol. 69 (2024) 095022 AKofler et al



using theDSC, average surface distance (ASD) andmaximumdistance (MSD). All thesemeasures are symmetric
and allow to assess the global, volumetric (DSC) aswell as the local, boundary-related (ASD,MSD) segmentation
quality. Asmethods of comparison, we use themultitasking learning (MTL) approach in Sui et al (2021) and SIS
(Ambellan et al 2019b). Since ourwork extendsMTL by incorporating SSMs, we abbreviate it byMTL+SSM.
Further, similar toCalivá et al (2020), we evaluate the impact of the joint end-to-end training (E2E) over the
decoupled training (DT). Note that whileMTL and our approach have the same overall number of 17821797
trainable parameters for the segmentation network, the SIS pipeline has 81203846 trainable parameters.

3. Results

3.1. Reconstruction results
Table 1 summarizes the results of the obtained image reconstructions for the baselineMTLmethodwithDT and
E2E training forα ä {1/3, 2/3, 1} andRä {8, 12, 16}. These reconstructions also serve as input for the
subsequent SSM and the entire SIS pipeline. By comparing E2Ewithα= 1 toDT,we see that the quality of the
obtained reconstructions tends to decrease with increasingα. For E2Eα= 1/3 andα= 2/3, the quality of the
obtained reconstructions is on the other hand comparable toDT.

3.2. Segmentation results
Table 2 summarizes the quality of the obtained segmentationmaps forMTL, our proposed approachMTL
+SSMandMTL+SIS. Obtaining the segmentations with the differentmethods takes=0.1 s, 30 s and 10 m,
respectively. Figure 2 shows an example of images and corresponding segmentationmasks obtainedwith the
NNs-basedmethod, once for theDT and for the E2E forα= k/3 for k= 1, 2, 3.We again clearly see how the
joint end-to-end training forα= 1 improves the segmentationmasks over the ones obtained byDT although
the obtained reconstruction exhibit a slightly lower PSNR,NRMSE and SSIM. In this particular example, the
wrongmisclassification in the region of the tibia, which is visible forDT (actually for allR) could be corrected by
E2E for allα, which however introduced some artefacts towards the border of the image.

By evaluating table 2 and comparing the segmentations obtained fromMTL forDT and E2Ewithα= 1, we
see that although the segmentation quality tends to slightly increase in terms ofDSC (except for TC), the ASD
andMSDquite consistently increased.

Our proposed combination ofMTL+SSMs significantly improved the obtained segmentationmaps and
shows a consistent improvement of E2E compared toDTwith respect to allmeasures. An example showcasing
typical differences between results ofMTL,MTL+SIS and the proposedMTL+SSM is given infigure 3 clearly
showing that shape knowledge can be used to enhance the outcome ofMTL. Further, by comparing the
segmentationmaps provided by theMTL+SSM for E2E to the ones obtained byMTL+SIS, we see that the
results are very similar,meaning thatMTL+SSM shows nearly the same performance as SIS, which is takes 20
times longer thanMTL+SSM for obtaining the segmentations. Finally, we point out that the segmentation
metrics obtained by the SIS for an undersampling factor ofR= 8 are close to the oneswhichwere reported in
table 5 inAmbellan et al (2019b), i.e. on the ground-truth images. This result remarkably implies that with the
proposedMTL+SSM, it is possible to accelerate the scanning process by a factor ofR= 8 on the one hand and to
accelerate the segmentation process compared to SIS on the other hand, without sacrificing segmentation
accuracy.

Table 1.Reconstruction results for undersampling factorsR = 8, 12, 16 obtainedwith the investigated baselineMTLby decoupled training

(DT) aswell as the joint end-to-end training (E2E)with the loss function in (9) for { }, , 11

3

2

3
a Î .

DT E2E, 1

3
a = E2E, 2

3
a = E2E,α = 1

PSNR 38.89 ± 2.99 39.12 ± 3.06 38.84 ± 2.99 38.18 ± 3.06

R = 8 NRMSE 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.21 ± 0.01

SSIM 0.82 ± 0.04 0.82 ± 0.04 0.82 ± 0.04 0.80 ± 0.04

PSNR 36.16 ± 2.75 36.35 ± 2.84 36.12 ± 2.76 35.52 ± 2.87

R = 12 NRMSE 0.21 ± 0.01 0.21 ± 0.01 0.20 ± 0.01 0.23 ± 0.01

SSIM 0.78 ± 0.05 0.78 ± 0.05 0.79 ± 0.05 0.76 ± 0.05

PSNR 34.23 ± 2.59 34.46 ± 2.68 34.26 ± 2.57 33.74 ± 2.73

R = 16 NRMSE 0.22 ± 0.01 0.23 ± 0.01 0.22 ± 0.01 0.25 ± 0.01

SSIM 0.76 ± 0.06 0.76 ± 0.06 0.76 ± 0.05 0.74 ± 0.06
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Table 2. Segmentation accuracy ofMTL (Sui et al 2021), ourMTL+SSMandMTL+SIS (Sui et al 2021)+(Ambellan et al 2019b) for bothDT and E2E training strategies, whereα = 1 for undersampling factorR = 8 for E2E. The first row
shows results of the segmentation network u Seg

Y ofMTL trained alongwith the reconstructionNN. Themiddle part shows results with u Seg
Y as above followed by SSM-based post-processing as in SIS, correcting errors as shown in figure 3.

The lower part shows results for the SIS segmentation pipeline incorporating statistical shape knowledge applied to the reconstructed images.

DT E2E,α = 1

R = 8 DSC (%) ASD (mm) MSD (mm) DSC (%) ASD (mm) MSD (mm)

MTL FB 95.7 ± 2.82 2.81 ± 2.21 57.20 ± 15.20 98.3 ± 0.94 3.36 ± 3.56 55.87 ± 18.66

TB 92.8 ± 3.65 2.80 ± 1.47 45.05 ± 20.28 94.1 ± 1.87 15.51 ± 1.87 63.50 ± 5.58

FC 87.6 ± 2.40 0.21 ± 0.09 8.75 ± 12.21 89.2 ± 2.53 0.60 ± 0.72 13.50 ± 19.61

TC 80.7 ± 5.84 3.41 ± 3.41 41.64 ± 26.77 66.0 ± 7.43 29.77 ± 5.03 70.14 ± 5.69

MTL+SSM(Ours) FB 98.1 ± 0.47 0.25 ± 0.08 4.21 ± 2.24 98.5 ± 0.32 0.19 ± 0.05 3.36 ± 1.78

TB 93.7 ± 3.75 0.88 ± 0.54 14.10 ± 6.16 97.6 ± 1.28 0.32 ± 0.18 5.24 ± 3.33

FC 87.6 ± 2.40 0.21 ± 0.06 5.47 ± 2.45 89.2 ± 2.53 0.18 ± 0.05 5.37 ± 2.43

TC 83.8 ± 4.27 0.25 ± 0.11 5.03 ± 2.12 85.5 ± 4.45 0.22 ± 0.10 4.86 ± 1.98

MTL+SIS FB 98.4 ± 0.31 0.21 ± 0.05 3.88 ± 1.51 98.4 ± 0.31 0.20 ± 0.05 3.35 ± 1.52

TB 98.1 ± 0.59 0.26 ± 0.16 4.77 ± 3.22 98.1 ± 0.67 0.27 ± 0.20 4.87 ± 3.31

FC 89.4 ± 3.94 0.17 ± 0.07 5.37 ± 2.25 89.5 ± 3.85 0.17 ± 0.07 5.37 ± 2.27

TC 84.5 ± 4.21 0.23 ± 0.10 5.45 ± 2.62 84.6 ± 4.29 0.22 ± 0.10 5.32 ± 2.32
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Figure 2. Images and segmentation for different undersampling factorsR = 8, 12, 16 obtained byMTLwithDT aswell as joint end-

to-end training (E2E) using the the loss function in (9) for { }, , 11

3

2

3
a Î . E2E partially improves the obtained segmentation

compared toDT in terms of partially wrongly segmented regions in the tibia (yellow arrows). However, residual artefacts at the lower
tibia shaft, whichwe attribute to the necessity to train on patches, were either not entirely removed correctly or further amplified
(orange arrows). However, using the proposedMTL+SSM—as shown in a second step later—can easily account for this issue and
successfully removes the remaining segmentation artefacts.

Figure 3.Exemplary comparison between segmentation outcomes of the jointly trained 3DU-Net u Seg
Y ofMTL (left), u SSMSeg +Y of

the proposedMTL+SSMapproach (middle) and the outcome of the SIS pipeline applied to the images obtained byMTL (right) for an
undersampling factor ofR = 8, showcasing typical artefacts appearingmainly at the lower tibia shaft including cavities in the tibia,
‘melting’ of the tibia and its cartilage aswell as parts of the tibia beingmisclassified as femoral bone. Incorporated shape knowledge as
inMTL+SSMand SIS can efficiently handle this problem.
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4.Discussion

In the following, we discuss the results obtainedwith the proposedMTL+SSMmethod aswell as similarities and
differences to some other recently publishedworks.

4.1. Image reconstruction
From table 1we can assess the effect of the end-to-end training in the obtained intermediate reconstructions
which serve as input for the subsequent segmentation pipelines. Table 1 indicates that the joint training of the
reconstruction and the segmentation networks has a slight negative influence on the obtained reconstruction in
terms of PSNR, SSIM andNRMSE. The extent of this influence clearly depends on the hyper-parameterα
which, as can be seen from the loss-function in (9), balances between the importance of the segmentationmask
and the quality of the reconstruction.However, we see that the influence ofα is perhaps less pronounced than
expected, since the obtained reconstructions only slightly differ in terms of the reportedmeasures aswell as
visually, see figure 2. This result canmost probably be explained by the fact that the reconstructions are
constraint by the chosenmodel used for regularization, i.e. they are the solutions of the variational problem (3).
Additionally, an interplay of the the regularization parameterλ and the hyper-parameterα could be responsible
for the perhaps unexpectedly small difference between the obtained reconstructions for E2E for the different
choices ofα. On the other hand, from the point-wise error images infigure 2we clearly see that the fully task-
adapted joint training, i.e. E2Ewithα= 1, yields somewhat noisier reconstructions with potentially sharper
edges whichmight thus be better suitable for the subsequent segmentation task, which suggests that the obtained
reconstructions at least up to some point differ in terms of local image features.

4.2. Image segmentation
Fromfigure 2 it is visible how the joint end-to-end training improves the obtainable segmentation in terms of
underestimation of the tibia (R= 8) aswell asmisclassification of the tibia (R= 12 andR= 16). However,
residual artefacts in the region of the lower tibia shaft seem to remain despite the joint end-to-end training.
These residual artefacts can possibly be attributed to the necessity to train on patches, which is a compromise
necessary to be able to use highly expressive networks for the reconstruction/segmentation. However, from
figure 3, we see that these residual artefacts can easily be corrected by employing the SSMs as afinal
regularization step. By carefully evaluating table 2, we canmake the following observations. First, by comparing
MTL forDT versus E2Ewithα= 1, we can see that employing end-to-end training quite consistently improves
the obtainable segmentationmapswith respect to allmeasures except for TC (which is also consistent with the
visual results shown infigure 2). This result proves the superiority of the segmentationmaps obtained by end-to-
end training over decoupled training. Second, by comparingMTLwith E2E,α= 1 to the proposed combination
ofMTL+SSMwith E2E,α= 1, we see that the employed SSMcan compensate for the residual artefacts in the
lower shaft of the tibia (66%DSC versus 85.5%DSC) and additionally significantly improves the distance-based
metrics ASD andMSD. Finally, the comparison of the proposedMTL+SSMwith E2E toMTL+SISwith E2E,
both forα= 1, reveals that bothmethods perform comparably well in terms of allmetrics. However,MTL
+SSMyields the segmentationmaps in only approximately 30 s compared to the 10 m required by the
computationallymore demanding SIS pipeline, which alternates betweend the application of 2D and 3DCNNs
and thefitting of statistical shapemodels. Thus, the proposedmethod yields an undersampling of approximately
20 times in terms of image processing time. Figure 3 shows an example that visually confirms the observations
made from table 2.

4.3. Relatedworks
The approach presented inCalivá et al (2020) shares our application example but assumes a single-coil data
acquisition. It consists of a single 3DU-Net which processes a zero-filled reconstructionwith a shared encoder
path and two distinct decoder branches, which address the reconstruction and the segmentation, respectively.
However, the employed reconstruction network (merely a 3DU-Net) does not employ anymethod for ensuring
data consistency (DC) of the solution, which is typically used in today’s state-of-the-artmethods for image
reconstruction, see e.g. Ongie et al (2020).

Thework in Sun et al (2019)uses a joint data-consistent reconstruction and segmentation approach for 2D
brainMRI, where the physics-informed (single-coil) reconstructionmethod (Schlemper et al 2018a) is followed
by a 2DU-Net for segmentation. They report improved results in both the segmentation and the reconstruction
taskwhen compared to decoupled training. Similarly, the authors in (Karkalousos et al 2023) propose amulti-
task learning network for joint image reconstruction and segmentation in 2DbrainMRI, by also involving the
use ofmultiple receiver coils. Thereby, the application of a data-consistent reconstruction network based on
cascades of independently recurrent inferencemachines (Karkalousos et al 2022) and anAttentionU-Net
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(Oktay et al 2018) are alternated several times to yield afinal reconstruction and segmentation.However, end-
to-end training of reconstruction networks similar to (Schlemper et al 2018a), (Aggarwal et al 2018),
(Hammernik et al 2018), (Karkalousos et al 2022), (Geng et al 2023) that are based on algorithmunrolling
(Monga et al 2021) andwhich often alternate several times betweenCNN- andDC-blocks, becomes
computationally prohibitive for large reconstruction problems, e.g. the here considered 3D andmulti-coil
acquisitions. As an alternative, one can considermethods inwhich only one singleNN-based image-prior is
obtained and used for regularization, see e.g. (Hyun et al 2018, Kofler et al 2021). This choice of architecture for
the reconstructionmodulewas for example used in thework (Sui et al 2021), followed by aU-Net for image
segmentation of liver and renal lesions in 2DMRI.

Thework inAcar et al (2022) compares several reconstruction and segmentation networks for joint training.
They introduce a training stabilization technique by successively increasing undersampling across training
epochs. In their experiments, the globalMRI reconstruction suffers from joint training but the quality in the area
of diagnostic interest improves. However, none of the discussedmethods incorporates shape knowledge into
their frameworks.

Finally, thewinners of theK2S-challenge (Tolpadi et al 2023) use a similar approach to Sui et al (2021), but
with noDC-module andwith two nnU-Nets (Isensee et al 2021) instead ofU-Nets. Interestingly, the challenge
organizers reported that thewinning approach yields the bestmetrics with respect to the segmentation task,
while the intermediate reconstructions, which, by not employing anyDC-module, are not enforced to be data-
consistent, were outperformed by several other teams. This suggests that, aiming for accurate segmentations
with themethod in Isensee et al (2021) seems to be somewhat necessarily contradictory to obtaining data-
consistent reconstructions that can be additionally analyzed by radiologists. Further, we note that allmentioned
methods employ a relatively simpleU-Net for the task of segmentation, while there nowadays exitsmore
sophisticated and complexmodels. For example, themethod inAmbellan et al (2019b) alternatingly applies
2D/3D-U-Nets andfittings of SSMswhich act as a regularizationmethod and allow for an effective region of
interest restriction. These SSMs solely rely on the shape of the anatomyunder study but not on the underlying
imagingmodality.

4.4. Limitations
Clearly, themain limitation of the proposedmethod is given by the required hardware components necessary
for end-to-end training. Despite the use of a relatively powerful GPUwith 48 GB ofmemory, training could only
be carried out on patches of the entire images, whichwe believe to be the reason for the residual artefacts visible
infigures 2 and 3 forMTL.However, we point out that theremight be several possibilities to address this issue,
both froma implementation point of view, e.g. applying activation checkpointing, or by different choices in the
architecture design, e.g. 2.5DU-Nets (Zimmermann et al 2023) instead of 3DU-Nets for the reconstruction
network. Additionally, we point out that due the lack of raw k-spacemeasurements in theOAI-ZIB data, the k-
space data for this study had to be retrospectively simulated, which limits the potential impact of this study from
a practical and clinical perspective.

4.5.Outline and futurework
Although the presented approach yields accurate results in terms of segmentation accuracywhich are close to the
ones that can be obtained by SIS from the ground-truth images, we can identify several research directions which
might beworth to be pursued. Based on the visible success of the end-to-end training strategy, itmight be
desirable to include the regularization by the employed SSMs as an additional blockwhich can be be
backpropagated through and thus allows for the end-to-end training of the reconstruction network, the
segmentation network as well as the regularization by the SSMs. To be able to achieve this, which necessarily
comes at the cost of additional hardware requirements, itmight be necessary to further investigate what
compromises can or have to bemade for the choice of the reconstruction and segmentation networks.
Addressing these questions would reduce the needed hardware requirements to be able to train suchmethods
and ultimately increase their applicability to different problems as well as to different datasets.

Further, we note that our baseline segmentation network consists of a relatively simple 3DU-Net. Other
recent andmore evolvedmethods, such as the anomaly-aware 3DU-Net presented inWoo et al (2024), could
also be applied to further extend themethod.

Another aspect that could be addressed is the employed sampling pattern.While in this workwe employed a
sampling pattern based on Poisson disk sampling (Bridson 2007), other patterns, e.g. pseudo-Gaussian sampling
could also be employed (Pandit et al 2016). Nevertheless, note that while an adaptation to different sampling
patterns on aCartesian grid can easily be accomplished, for an extension to non-Cartesian sampling patterns
such as radial (Lauterbur 1973) or spiral (Meyer et al 1992), onewould need to appropriately address the
resulting challenges concerning themore complex image reconstruction block. Last, we note that although the
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approachwas presented for the reconstruction and the segmentation ofMR images focusing on femoral as well
as tibial bone and cartilage, themethod’s structure is general. Thus, we expect it to be applicable for the
reconstruction and segmentation of other organs and structures aswell.

5. Conclusion

Weproposed a combination of task-adaptedNNs-based approach and statistical shapemodels for a realistic 3D
multi-coil kneeMRI reconstruction and segmentation problem fromundersampled k-space data and compared
it to aMTL (Sui et al 2021) aswell as to a shape-informed segmentation (SIS) pipeline (Ambellan et al 2019b).

Our experiments suggest that it is still possible to further improve over end-to-end trainable task-adapted
NNs such asMTLby incorporating SSMs. Further, the segmentationmasks of the proposedMTL+SSMare on
parwith the ones of the segmentation pipeline (SIS) but are obtained in only 30 s compared to 10 m. Last, we
report that for an undersampling factor ofR= 8,MTL+SIS as well as the proposedMTL+SSMare able to
segment the undersampled images nearly as accurately as SIS from the ground-truth images (see (Ambellan et al
2019b) table 5).
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