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Abstract
Objective.This paper investigates how generativemodels, trained on ground-truth images, can be used
as priors for inverse problems, penalizing reconstructions far from images the generator can produce.
The aim is that learned regularizationwill provide complex data-driven priors to inverse problems
while still retaining the control and insight of a variational regularizationmethod.Moreover,
unsupervised learning, without paired training data, allows the learned regularizer to remainflexible
to changes in the forward problem such as noise level, sampling pattern or coil sensitivities inMRI.
Approach.Weutilize variational autoencoders that generate not only an image but also a covariance
uncertaintymatrix for each image. The covariance canmodel changing uncertainty dependencies
caused by structure in the image, such as edges or objects, and provides a newdistancemetric from the
manifold of learned images.Main results.Weevaluate these novel generative regularizers on
retrospectively sub-sampled real-valuedMRImeasurements from the fastMRI dataset.We compare
our proposed learned regularization against other unlearned regularization approaches and
unsupervised and supervised deep learningmethods. Significance.Our results show that the proposed
method is competitive with other state-of-the-artmethods and behaves consistently with changing
sampling patterns and noise levels.

1. Introduction

Compressed sensingmagnetic resonance imaging (MRI) provides the benefits ofMRIwith faster acquisition
times, providing accurate reconstructions from sparsely sampled k-space data. Sophisticatedmathematical
reconstruction techniques allow for high-quality images to be producedwith just a subset of the fullMRI
measurements, which are quicker to obtain. This reduces costs but can also improve image quality by reducing
motion artifacts.Mathematically, we seek to recover theMRImagnitude image, Î = x d, fromobserved
measurements, Î = y m. The two are related by a linear forwardmodel,  A: giving the equation
Ax= y. InMRI,A is composed of a Fourier transform and a subsampling operator that takes just a subset of the
Fourier data. This is an ill-posed inverse problem,wheremeasurements are incomplete and somultiple
solutionsmay exist.

This difficulty can bemitigated by incorporating prior information; we consider this to be given in the form
of a regularizer,, in a variational regularization framework (Lustig et al 2007, Knoll et al 2011, Xu and
Noo 2022)

+ d Ax y xarg min , , 1
x

( ) ( ) ( )

where ´  ¥ d: 0,[ ] is a similaritymeasure, ensuring that the reconstructed imagematches the data, and
 ¥ : 0,[ ] is a regularization termwhich is small if the image satisfies some desired property.

We extend recent work, including (Bora et al 2017,Dhar et al 2018, Tripathi et al 2018, Duff et al 2021,
Habring andHoller 2022) that consider the use of a generativemachine learningmodel as part of the regularizer,
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called generative regularizers. A latent generativemodel is designed to take a sample from a distribution in a low-
dimensional latent space and generate data similar to the training distribution. Commondeep generative
models include variational autoencoders (VAEs) (Kingma andWelling 2014), generative adversarial networks
(GANs) (Goodfellow et al 2014) and normalizing flows (Rezende andMohamed 2015). The generativemodel is
trained on high-quality data, obtained from fully sampledmeasurements, with no knowledge of the forward
model,A, or any sub-sampled data. The idea of generative regularizers is to penalize inverse problem solutions
that are dissimilar to the learned distribution on ground truth, or high-quality reconstructed, images.

The generative part of a VAE consists of a network, such that for any point Î = z n, within the learned
latent space, the network outputs a distribution on the image space

= Sq qS p x z x G z z; , 2G, ( ∣ ) ( ( ) ( )) ( )

for parameterized functions q  G : andS q
´: d d, d dim≔ ( ). In a standardVAEmodel,Σθ is

taken to be amultiple of the identitymatrix, i.e.Σθ(z)≔ ρI, where the predicted variance, ρ, is either fixed or
learned. This assumes that the reconstruction error of the generated image is independent and identically
distributed for all pixels. In reality, parts of an image, such as the background, will be easy tomodel whereas
sharp edges and other high frequencies are harder tomodel accurately. Similarly, as images are commonly piece-
wise smooth, there are often local correlations in the errorsmade by themodel. Awell-known issuewithVAEs is
their tendency to produce smooth images (see e.g. Ruthotto andHaber (2021)), missing the sharp edges that
exist in real data. In this work, we consider the effect of amore expressive covariancematrix,Σθ, in a generative
regularizer.

1.1. Contributions
Wepropose an adaptive generative regularizer where edge and correlations in the data aremodeledwith a
structured covariance network.We demonstrate the strength of thismodel by reconstructing kneeMRI images
from retrospectively sub-sampled real-valued data from the fastMRI dataset (Zbontar et al 2018). Our
contributions are outlined below.

• An adaptation of the structured covariancemodel introduced byDorta et al (2018) formagnitude images
from the fastMRI dataset of kneeMR images.

• An extension of the denoising example fromDorta et al (2018) for use in inverse problemswith a non-trivial
forwardmodel, producing a novel generative regularizer.

• Ademonstration of how the prior provided by theVAEwith structured covariance can be explicitly visualized.
We see that the structured covariancemodel has learned long-range correlations between pixels, taking into
account image structure.

• An ablation study to compare three different options for the decoder covariance,Σθ(z):Σ is a fixed constant
multiplying the identitymatrix,Σ is a diagonalmatrix with a learned diagonal and the proposed structured
covariance whereΣ is dense.We show themost flexible, dense covariancemethod, produces the best inverse
problem results.

• Comparisons of our proposed regularizer with a variety of regularizers: the unlearned total variation (TV)
(Rudin et al 1992) and least squares with early stoppingmethods. Alsowith three unsupervisedmethods: a
deep image prior approachwith a pre-trained generator fromNarnhofer et al (2019), the original Compressed
Sensing usingGenerativeModels work by Bora et al (2017) and a Plug-and-Playmethod byRyu et al (2019).
Finally, with a state-of-the-art, learned, end-to-endmethod, variational networks (VNs) (Hammernik et al
2018).We demonstrate that ourmethod is competitive with the state-of-the-artmethods, yet offers superior
generalization to unseen noise statistics and sampling patterns.

2. Relatedwork

Deep learning approaches to image reconstruction in inverse problems is a growing field (Arridge et al 2019).
There are several supervised deep learning approaches (Wang et al 2016,Hammernik et al 2018,Hyun et al 2018,
Oh et al 2018,Quan et al 2018, Zhu et al 2018,Mardani et al 2019) that require datasets of subsampled
measurements pairedwith high-quality reconstructions.With any change in the forwardmodel, e.g. a different
k-space sampling pattern, or noise level, new data needs to be acquired andmodels retrained. Furthermore, with
thesemethods, care needs to be taken to ensure the image reconstruction is consistent with the observed
measurements and thesemethods can also be unstable to small perturbations in themeasured data (Antun et al
2020). In contrast, deep image priors (Narnhofer et al 2019,Ulyanov et al 2020), have no data requirements and
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instead use an untrained convolutional neural network as a prior for the inverse problem. The prior is implicit
and comes from the architecture choices, another choice tomake, but also requires regularization in the formof
early stopping to prevent over-fitting to the potentially noisy data.

We choose to take an unsupervised approach,wherewehave example ground truth images but nopaired data.
The imagemodeling, for training the regulariser, and the forwardmodeling for the inverse problem
reconstruction, are completely decoupled.Wemodel the images using a generativemodel incorporating it as part
of a regulariser for the inverse problem reconstruction. There has been previouswork in this area (Bora et al2017,
Dhar et al2018, Tripathi et al2018,Duff et al 2021,Habring andHoller 2022), andweextend itwith the addition of
a structured image covariancenetwork.We train our generativemodelwithout paired training data andwithout
knowledge of the forward problemandpoint to the interestingworks ofZhang et al (2021) and Jalal et al (2021) for
examples of these settings.Other unsupervised approaches include plug-and-playmethodswhich iteratively call a
learneddenoiserwithin a larger optimizationor inference algorithm (Ryu et al 2019,Ahmad andBouman2020).

When choosing and training a generativemodel for use in inverse problems, the generativemodelmust be
able to produce awhole range of possible solutions. A common issuewithGANs (Goodfellow et al 2014) is, that
they do not capture the full distribution of images theywere trained on. This failure can be subtle (Arora et al
2018) and therefore difficult to identify. GANs also do not have an encoder, andfinding a latent space value that
corresponds to a particular image is a non-convex optimization problemwithmultiple localminima. In
comparison, aVAE ismore suitable for use in generative regularizers because they can reconstruct images across
the span of the training distribution althoughwith the consequence of fewer high frequencies.We consider
VAEs over other generativemodels such as normalizing flows or invertible neural networks, both of which have
been applied to inverse problems (Kingma andDhariwal 2018, Jalal et al 2021), because of the regularizing effect
of a lower dimensional latent space in theVAE.Dorta et al (2018) proposed the use of a structured covariance as
part of a VAE for denoising, and the novel addition of this work is the application toMRI reconstruction.

TheDorta et al (2018) approach parameterizes a dense covariance through theCholesky decomposition of
the corresponding precisionmatrix, the inverse covariancematrix,Sq

-1. Other approaches could include a
diagonal plus low-rank parameterization of the covariancematrix, as seen for a segmentation task inMonteiro
et al (2020).While we believe a low-rank approximationmay not give thefine detail required for image
reconstruction, a combination of the two approaches could be an avenue for future work.

3.Method

Webuild a probabilisticmodel for the reconstructed image, x, given an observation, y. First, we consider the
likelihood of themeasurement, y, given image, x, denoted p(y|x), and usually taken to be g y Ax I; , 2( ) for
additiveGaussian noise over the observations with standard deviation, γ.We choose a prior on the images x
given by a pre-trained generativemodel, pG,Σ(x|z) as in (2). Finally, let p be prior on the latent space used to
train the generator, usually  z I; 0,( ). Combining these parts, we have that

µ =S S p x z y p y x z p x z p z p y x p x z p z, , , 3G, G,( ∣ ) ( ∣ ) ( ∣ ) ( ) ( ∣ ) ( ∣ ) ( ) ( )

where the equality follows because y is independent of z given x.
Ideally, wewould seek tomarginalize out the latent vector, z, however this integral is intractable, except by

expensive sampling over the full distribution of  ; instead, we take amaximum a posteriori (MAP) estimate. By
taking logarithms,maximizing (3)with respect to x and z is equivalent to variational regularization (1)with

 
g

= -d Ax y Ax y,
1

2
4

2 2
2( ) ( )

and

   
= S +

-
+q

q Sq ⎜ ⎟
⎛

⎝

⎞

⎠
x z

x G z z
min log

2 2
, 5

z

z
2

2
2

( ) (∣ ( )∣)
( )

( )
( )

wherewe denote theweighted normby  -x x M xM
T2 1≔ and the determinant of amatrixΣ by |Σ|. Equation (4)

ensures that x explains the observation y, while the second term in (5) constrains x to be close to images in the
range of the generator.

3.1. VAEswith structured covariance
The generativemodel is trained tominimize the distance between the generated, pG,Σ( · ; θ), and training, pIm,
distribution. AVAE is derived by choosing the distancemeasure to be aKullback–Leibler divergence and then
maximizing a lower bound approximation to this distance (Kingma andWelling 2014). The intractable
distribution over the latent space, pG,Σ(z|x; θ), is approximated by an encoder
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y m s= y y y q z x z x x x; ; , diag 6z
2

,( ∣ ) ( ( ) ( ( ))) ≕ ( ) ( )

with neural networks m sy y, 2 , parameterizedwithweights,ψ. Following the derivation inKingma andWelling
(2014), training aVAEbecomes aminimizationwith respect toψ and θ of

 
S +q q yy   x G z z d pnll , , , 7x p z x zKL ,zIm , ( ( ( ) ( )) ( ∣ )) ( )( )

wherewewrite the negative log-likelihood as

 S = S + - +Sx G x Gnll , , log
1

2
constants 82( ) (∣ ∣) ( )

and the expectation over x is calculated empirically over the training set via sampling. The expectation over z is
also calculated empirically and formore details see the original paper (Kingma andWelling 2014).

3.2. Structure ofΣθ(z)
Using a densematrixΣθ is computationally infeasible for evenmoderate-sized images as it is expensive to
calculate both the log determinant and the inverse required for the norm.Weuse the computationally efficient
structured uncertainty prediction networks as developed byDorta et al (2018). For each point in the latent space,
an additional decoder, parameterized by θ, outputs a sparse lower triangularmatrix, Lθ(z), with the diagonal
constrained to be positive. This forms theCholesky decomposition of the precisionmatrix,Sq

-1, such that
S =q q q

-L L T 1( ) . TheCholesky decomposition is taken to be sparse: =qL 0i j,( ) if j≠NiwhereNi is the set of

neighbors of the pixel i. This leads to a sparse precisionmatrix,Sq
-1. A zero value at entry i and j inSq

-1means
these pixels are independent, conditioned on all other image pixels. The pixels could still be correlated and thus
this still allows for a dense covariancematrix. Indeedwewould not choose tomakeΣθ sparse because zero values
in the covariance indicate two uncorrelated pixels andwewish to allow dependencies across images. The local
sparsity structure is also amenable to parallelization on theGPU and formore details seeDorta et al (2018).
A pictorial view of the full network including an example sparse Choleskymatrix is given infigure 1.

3.3.Objective functions
This sparse Cholesky decomposition of the precisionmakes predicting a dense covariancematrix
computationally feasible. The negative log-likelihood from (7) becomes

 åS = - + -
=

x G L L x Gnll , , 2 log
1

2
9

i

d

ii
1

2
2( ) ( ) ( ) ( )

up to constant terms andwith, as above,Σ−1= LLT. The log determinant is now just a summation over the
diagonals of the Choleskymatrix, we have removed the densematrix inversion and there is no need to build the
full covariancematrix. This also simplifies the regularizer from (5), giving

 = S +q q ⎛
⎝

⎞
⎠

x x G z z zmin nll , ,
1

2
. 10

z
2
2( ) ( ( ) ( )) ( )

Moreover, sampling from the extendedVAE is possible by solving a sparse systemof equations to get a sample
= +q q

-x G z L z uT 1( ) ( ( ) ) where ~ u I0,( ).
We note that theminimization problems in (7) and (1)with (10) are notwell defined as they are not bounded

frombelow. Pixel values that can be determinedwith high accuracy e.g. those of a consistent black background,
can have extremely low variance and the log determinant termmay become large and negative.We both bound
the size of the diagonals of Lθ using a scaled tanh activation and added a very small amount of noise to the black
background to deal with this. Investigating other priors on Lθ is an interesting area for futurework.

4. Experiments

4.1.Dataset
TheNYU fastMRI knee dataset contains, amongst other data, 796 fully sampled kneeMRImagnitude volumes
(Zbontar et al 2018, Knoll et al 2020), without fat suppression. This data was acquired on one of three clinical 3T
systems (SiemensMagnetomSkyra, Prisma andBiographmMR) or one clinical 1.5T system, using a 15-channel
knee coil array and conventional Cartesian 2DTSE protocol employed clinically atNYUSchool ofMedicine.We
use the ground truth data from the fastMRI single coil challenge, where the authors used emulated single-coil
methodology to simulate single-coil data from themulti-coil acquisition. In addition, in the fastMRI dataset, the
images are cropped to a square, centering the knee.We extract 3872 training and 800 test ground truth slices
from this dataset, selecting images fromnear the center of the knee, resize the images, using the Python imaging
library (Clark 2015) functionwith an anti-aliasing filter, to 128× 128 pixels and linearly rescale each image to
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the range (0, 1). The training and test datasets correspond to the training and validation sets of the fastMRI
dataset and images from the same volume are always contained in the same dataset.

4.2. Forward problem
Our forward problem is inspired by the fastMRI single-coil reconstruction task; reconstructing images
approximating the ground truth fromunder-sampled single-coilMRdata (Zbontar et al 2018). The ground
truth images are Fourier transformed and subsampled. To this end, amask selects the points in k-space
corresponding to a sampling pattern.We use both radial and cartesian sampling patterns, selecting radial spokes
and horizontal lines in k-space, respectively.We use the operator discretization library (Adler et al 2017) in
Python and take the same radial subsamplingMRI operators as in Bungert and Ehrhardt (2020). Note that this is
a relatively simpleMRImodel, yet a good starting point to test the feasibility of the proposed approach.We
discuss its limitations in section 6.

4.3.Model architecture
See figure 1 for a comparison of theVAE and theVAEwith structured image covariance. All the networks are
built of resnet-style blocks, which consist of a convolutional layer with stride 1, a resizing layer, followed by two
more convolutional layers, and then aReLU activation function. The output of this process is then added to a
resized version of the original input to the block. The resizing layer is either a bilinear interpolation for an up-
sampling layer, increasing width and height by a factor of 2; convolutions with stride 2 for a down-sampling layer
or a convolutionwith stride 1 for a resnet block thatmaintains image size.We choose a latent space of size 100.
The generative network consists of a single dense layer outputting 8× 8 imageswith 16 channels before a resnet
blockwithout resizing to give 8× 8 images with 256 channels, then four up-sampling blocks are applied giving
image sizes 16× 16, 32× 32, 64× 64 and 128× 128with channels 512, 256, 128 and 64 and final another resnet
blockwithout resizing to reduce the channels down to one output image. The covariance network is identical
but outputs a 128× 128 imagewith 5 channels, fromwhich the sparse Choleskymatrix is formulated, based on

Figure 1.Comparison of the standardVAE (top) and the structured uncertainty prediction networks as developed byDorta et al
(2018) (bottom). TheVAEhas an encoder network that outputs a distribution, m sy y z x x; , diag 2( ( ) ( ( ))), which is then sampled
from to get a latent vector, z, which is passed to the generator network,Gθ(z). In addition to the usual generator, the proposed network
includes a network that takes latent vectors, z, and outputs theweights of a sparse lower triangularmatrix, Lθ(z). Thismatrix
corresponds to theCholesky decomposition of the inverse covariance for the generated image.
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code fromDorta et al (2018)4. The sparsity pattern is chosen such that the Choleskymatrix Lθ(z)i,j is non-zero
only if pixels i and j lie in the same 5× 5 patch. The encoder is reversed copy of the generator, with down-
sampling layers replacing the upsampling layers.We include drop-out layers during training.

4.4.Model training
Training theVAEwith structured covariance is done in a two-stage process. First the generatedmean,Gθ, and
the encoder, y xz, ( ), are trainedwith a standardVAE loss (Kingma andWelling 2014) i.e.Σθ= ρIwhere ρ is a
fixed hyperparameter. Theweights for themean decoder and the encoder are then fixed before the covariance
model is trained using the full structured noise loss given by (9). The choice of this two-stage training is two-fold:
firstly, it forces asmuch information as possible to be stored in theweights of themean, and not the covariances,
and secondly, it allows us to compare the effect of just changing the covariancemodels in the ablation study.
Models were built and trained in TensorFlow using anNVIDIARTX2080-8GBGPU. It took approximately 8 h
to train themeans and then 24 and 30 h for the diagonal and structured covariancemodels. The codewill be
available on publication.

4.5. Ablation study
Weconsider three variations on the structure ofΣθ(z):Σθ is afixed constantmultiplying the identitymatrix,Σθ

is a diagonalmatrix with a learned diagonal and our proposedmethodwhereΣθ is a densematrix.We call these
options:mean+identity,mean+diagonal andmean+covar*. Themean+identitymodel is just taken to be the
output of thefirst part of themean+covar* training described above. Formean+diagonal, we again take the
learned generatedmean,Gθ, and the encoder, y xz, ( ) from themean+identitymodel and then optimize (7) for
the covariance network, but choose the off diagonals of theCholeskymatrix, Lθ(z), to be zero, so that thefinal
covariancematrix is diagonal.

4.6. Proposed reconstructionmethod
For the proposedmethodmean+covar* and the versionsmean+identity andmean+diagonalwe choose a
variation on the above regulariser (10)

 l
m

= S +q q ⎛
⎝

⎞
⎠

x x G z z zmin nll , ,
2

. 11
z

2
2( ) ( ( ) ( )) ( )

The addition of the two regularization parametersλ andμ is in recognition that the optimization problem in
(10) is a non-convex problem.Weuse alternating gradient descent with backtracking line search (see e.g.
algorithm9.2 of Boyd andVandenberghe (2004))where gradient descent steps are taken, alternating in the x and
z space, with step size chosen to insure the objective decreases.We initialize at a rough reconstruction, given by
the adjoint of the forward operator, and the encoding of the adjoint for x and z, respectively. Regularization
parameters were selected via a grid search tomaximize the peak signal-to-noise ratio (PSNR).

4.7. Unlearnedmethod comparisons
Wecompare against TV regularization (Rudin et al 1992) implemented using the primal–dual hybrid gradient
method (Chambolle and Pock 2011), with the regularization parameter chosen tomaximize PSNR. As a
baseline, we also calculate the least squares solution,  -Ax yminx 2

2, optimized using gradient descent with
backtracking line search.

4.8.Data driven prior comparisons
For another example of a generative regulariser, we take our trainedmean generatorGθ and implement the
method of Bora et al (2017), minimizingwith respect to z the objective

   m= - +L z AG z y z
1

2
, 122

2
2
2( ) ( ) ( )

searching for an image in the range of the generator that bestmatches themeasurements. The regularization
parameter,μ, is chosen tomaximize PSNR.We also implement the approach ofNarnhofer et al (2019)which
takes a trained generator but then, after observing data, tweaks theweights of the network, optimizing

q Î -q* *z AG z y, argmin 2
2∣∣ ( ) ∣∣ , we call thisNarnhofer19.We use the samemean generator as in our other

experiments, gradient descent with backtracking for the z optimization andTensorFlow’s inbuilt Adam
optimizer for the networkweight update.We choose 1000 iterations tofind an initial value of z and then select
the number of iterations for the alternating z and θ updates via a grid search tomaximize the PSNR.

Finally, we take themethod of Ryu et al (2019), specifically their Plug-and-play alternating directionmethod
ofmultipliers (PnP-ADMM) algorithm, which takes an iterative ADMMapproach but replaces the proximal

4
https://github.com/Era-Dorta/tf_mvg
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function in the image spacewith a learned denoiser. Specifically, following the derivation in Boyd et al (2011)we
have

 
s h

Î + - +- -⎧
⎨⎩

⎫
⎬⎭

x Ax y x u varg min
1

2
,

1

2
, 13k

x
k k2 1 1( ) ( )

 
h

Î - - +- ⎧
⎨⎩

⎫
⎬⎭

u x v x xarg min
1

2
, 14k

x
k k 1 2

2 ( ) ( )

= + --v v x u . 15k k k k1 ( ) ( )

Thefirst equation (13) can be solved analytically and, in (14), instead of specifying a regularization term, the
whole term is replaced by a learned denoiser. The variablesσ and η are constants, x0 is a rough reconstruction
given by the adjoint operator and u0 and v0 are initialized at zero.We use the code implemented by the authors5

for both training the denoiser and for the iterations.We take their RealSN-DnCNNdenoiser using the default
settings, training on the fastMRI dataset as with the othermethods.When running the iterativemethod on
measured data, we choose the number of iterations tomaximize PSNR.

4.9. Supervised end-to-endmethod comparison
Finally, we also demonstrate comparisonswith aVN (Hammernik et al 2018). This is an end-to-end approach
that takes (5)with  = -ld Ax y Ax y,

2 2
2( ) and treats the regulariser as some unknown function.

Optimizing (5) by gradient descent will lead to updates of the form

a l= - - + + x x A Ax y x , 16t t t
T

t t1 ( ) ( ) ( )

whereAT is the adjoint ofA andαt is a step-size. The authors replace the unknown  xt( ) termwith a learned
component, inspired by a fields of expertsmodel (Roth andBlack 2009). Fixing the number of iterations and
unrolling leads to an end-to-endmethod that includes information from the forward and its adjoint.We use the
same network design and parameters as the original paper. The iterations are first initializedwith a rough
reconstruction given by the adjoint. The gradient of the regularizer consists of a convolutionwith 24filters,
kernel size of 11 and stride 1; a component-wise activation function; and then a convolution transpose with the
same dimensions to return an imagewith the same dimensions as the input. The activation function consists of a
weighted sumof 31 radial basis functionswith learnablemeans, variance andweights. All learnable parameters
are allowed to vary independently in each layer and the step sizeαt and parameterλ are also learned.We train
three variations on our data: 25 radial spokes with 0.05 and 0.0125 added noise and 125 radial spokes with 0.05
added noise.

5. Results

5.1. Ablation study
To compare the covariancemodelsmean+identity,mean+diagonal andmean+covar*, visualizations of samples
from the learned covariances are given infigure 2.We see that themean+diagonal places uncertainty in the right
locations, butwithout structure, the samples are speckled and grainy. Themean+covar*models canmatch some
of themissing structures from the generatedmean images.We note that these are random samples and therefore
not expected tomatch the residual precisely but rather illustrate statistical similarity.

Figure 3 compares the effectiveness of the three covariancemodels as generative regularisers. The same
observed datawas used for each reconstructionmethod for each image. The results formean+covar* give a
consistently higher PSNR value thanmean+diag andmean+identity andwe use thismethod throughout the rest
of the results section. These results support our hypothesis that learning amore flexible distancemeasure allows
us to better fit the data and gives a better regularizer for our inverse problem.

5.2. Prior introspection
Wecan explicitly examine the learned structured covariance, to visually assess the prior information passed to
the generativemodel. To do this, we take a test image, x, and use the encoder to give a latent vector, z, that
corresponds to the test image. From this we can calculate the structured covariance,S Îq

´z d d( ) , where
= d dim . Each rowof the covariancematrix corresponds to a pixel in the generated image, and the row can be

reshaped into an image, showing the correlations between the chosen pixel and all others. Two example images
with chosen pixels highlightedwith a star are shown infigure 4 and further examples are given in a
supplementary video6. Positive correlations are given in red, and negative correlations are in blue.We can see

5
https://github.com/uclaopt/Provable_Plug_and_Play

6
https://youtube.com/watch?v=_bi2D7rJ0OA
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that the structure of the edges is present, and that, despite the local structure of the precisionmatrix, longer-
range correlations have been learned.

5.3. Comparisonwith unlearnedmethods
Wecompare the proposedmethodwith TV and least squares reconstructions for a range of noise levels and the
number of radial spokes in the sampling pattern. Image examples can be seen in columns 2 and 3 offigures 5 and
6. Infigure 7, wesee that the results ofmean+covar* track TVbut with improvements across the range of radial
spokes and noise levels tested. Especially in the examples infigure 6 you can see the piece-wise constant shapes
typical of a TV reconstruction, whereas for the samemeasured datamean+covar* hasmanaged to reconstruct
more of thefine detail. As expected, due to the difficult nature of the inverse problem, the least squares
reconstruction does poorly. As a rough indicator, our un-optimized implementation took 1.8 s for
reconstructing one image using least squares, and 6.4 s using TV, for one choice of regularization parameter. For
one choice of the regularization parameter,mean+covar* took 78.2 s.

Figure 2.Comparing the covariancemodelsmean+diagonal andmean+covar*. The first column gives the ground truth, and the
second column a reconstruction in the range of theVAE generator. The third provides the residual that can be considered as one
sample of a zeromeanGaussian distributionwith unknown covariance. The final two columns give single residual samples fromour
learned covariancesmean+diagonal andmean+covar*models calculated using q

-L z uT 1( ( ) ) where u is one sample from  I0,( ) and
Lθ(z) is diagonal and lower triangular for themean+diagonal andmean+covar*models, respectively. Columns are rescaled for better
visualization.

Figure 3.Ablation study comparing generative regularisers based onVAEswith different noisemodelsmean+identity,
mean+diagonal andmean+covar*. The plots showPSNR values average over reconstructions of 50 test images. Themean PSNR is
given by the solid line and the standard deviation in the shaded box. The x-axismeasures the number of radial spokes in the sampling
pattern and themeasured datawas corruptedwith additiveGaussian noise of standard deviation 0.0125 on the left and 0.05 on the
right.
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Figure 4.Visualization of learned covariances between example pixels (yellow stars) and other pixel locations for themean+covar
model. Red indicates a high positive correlation, and blue is a strong negative correlation.

Figure 5.Example reconstructions of a test image for different amounts ofmeasured data: 5, 25, 45 and 125 radial spokes, all with
additive Gaussian noise with standard deviation 0.05. The columns give different reconstructionmethods. The PSNR values are added
inwhite and the red boxes indicate the settings the highlighted variational network has been trained on.

Figure 6.Example reconstructions of a test imagewith additive noise of different standard deviations: 0.2, 0.05 and 0.0125, all with a
sampling patternwith 25 radial spokes. The layout is as infigure 5.
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5.4. Comparisonwith other data-driven priors
ComparisonswithNarnhofer19,PnP-ADMM and range are given infigure 8 and columns 4 and 5 offigures 5
and 6.We see that the results of searching in the range of the generator saturate so that evenwith increased data
in the formof radial spokes, or better data in the formof less noise, the reconstructions do not see significant
improvement. The example image reconstructions reflect this; they showoverly smoothed images that,
although have the right structure, do not contain any of thefine detail of the ground truth. This could be because
the generativemodel is not expressive enough tomatch thisfine detail. Alternatively, it could be because the

Figure 7.Comparison of themean+covar*methodwith the training-freemethods TV and least squares. The plots show themean
PSNR values for reconstructions averaged over 50 test images, with the standard deviations given by the shaded area. The left plot
shows results frommeasured datawith additiveGaussian noise of standard deviation 0.05 and differing numbers ofmeasured radial
spokes. The right plot gives results where 25 radial spokes are used for each reconstruction but the standard deviation of the added
noise varies.

Figure 8.Comparison of themean+covar*methodwith range (Bora et al 2017) andNarnhofer19 (Narnhofer et al 2019), generative
regularizer approaches.We also comparewith thePNP-ADMMmethod (Ryu et al 2019). The experimental setup is asfigure 7.

Figure 9.Comparison of the unsupervisedmean+covar*methodwith the supervised variational networks (Hammernik et al 2018).
The experimental setup is asfigure 7 but in addition, the vertical lines depict the experimental settings the variational networks were
trained on.
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non-convex optimization has failed tofind a good enoughminimum tomatch themeasured data. The results of
Narnhofer19 aremuchmore detailed and very similar in PSNR values to ourmean+covar*. In the images, there is
some evidence of smoothing of details e.g. infigure 6. ThePnP-ADMMmethod did better for a higher number
of radial spokes whenwewould expect the adjoint to be similar to images in the training set of high-quality
reconstructions, however, it is still not competitive with our proposedmethod orNarnhofer19. Our un-
optimized implementation took 106.7 s forNarnhofer19 and 23.9 s for the rangemethod. ThePnP-ADMM
method took 0.025 s to run, terminating at a small number of iterations.

5.5. Comparisonwith supervised end-to-endmethods
Wenow comparemean+covar*withVNs (Hammernik et al 2018), trained end-to-end, using paired training
data obtained using particular noise and sampling settings. Figure 9 shows the PSNR results for 50 test images,
with vertical lines highlighting the settings where the networkswere trained. Example images are shown in
columns 6 and 7 offigures 5 and 6with the trained for setting highlighted in red.Wenote that theVNs achieve
the best results, in comparison to the othermethods, for the settings theywere trained on. This is as expected for
end-to-end reconstructions.We see that the results are less optimal the further from the trained for setting, with
some particularly poor results, e.g. infigure 5, while our unsupervisedmethod remains consistent. Also as
expected, theVNs are quick to implement once trained, taking 3.4 s for one image.

5.6. Generalization to a different sampling pattern
Finally, we test the generalization ability of themethods by changing the sampling pattern.Wemask horizontal
rows in the k-space, taking 16 (out of 128) center rows and a uniformly random selection of other rowswith a
given probability, p. Fully sampled images correspond to p= 1. Example sampling patterns and one example
reconstruction is given infigure 10.We see an improvement over TV formean+covar*. Narnhofer19 gives good
PSNRvalues but the images are potentially over-smoothed. For example, the vertical lines in the top left part of
the zoomed-in region are consistentlymissing from theNarnhofer19 reconstructions. TheVNhas not been
trained on this horizontal sampling pattern and although gives a reasonable reconstruction, seems to have some
artifacts, for example in the top right and bottom left of the image.

6.Discussion

The numerical results show that the generative regularizermean+covar* consistently outperforms TV, as shown
infigure 7, and is competitive with other unsupervised generativemodel regularization schemes, figure 8, over a
range of noise levels and sampling patterns. This is an important contribution, demonstrating a generative
model, trained on anMRI dataset, provides an effective prior for image reconstructionwith varying levels of
information. As part of the ablation study,figures 2 and 3, we demonstrated thatmodelsmean+diag and
mean+identity provided some regularization butmean+covar* provided themost flexibility tofit the data and
thus the best results. Searching in the range of the generator we saw evidence that the generator was not
expressive enough tofit the data and that the reconstructed images did not continue to improvewithmore or
higher-quality data, thismatches with similar results in Bora et al (2017), Duff et al (2021).

Figure 10.Example reconstructions of an image usingmeasured data takenwith different horizontal random sampling unseen in the
training of the variational networks. The first column gives the k-spacemask used to sample the data. The remaining columns give
reconstructions for the differentmethods.
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The generative regularizers presented are not end-to-endmethods and still require the use of an iterative
optimization scheme to reconstruct an image given an observation, furthermore, the optimization objective is
non-convex. Fortunately, this optimization is practically straightforward as the gradients can be calculated
automatically, e.g. using TensorFlow, and the optimization can be initializedwith the adjoint reconstruction.
The benefit of the unsupervised approach is that retraining is not required for different forwardmodels. Figure 9
shows that theVN end-to-endmethod (Hammernik et al 2018), although provides the best results on the
forwardmodel it was trained on, sees its success drop off as you test it on other forwardmodel settings. An
additional benefit of generative regularizers is that you can visually inspect the learned image prior andwe
demonstrate this infigure 4.

Training theCholeskyweights for the precisionmatrix proved tricky. As shown infigure 2, the structured
covariancemodel has learned some of the residual structure that we expect but at the expense of applying higher
variances across thewhole image. Thismaymake the structured covariancemodel too permissive, allowing it to
fit noise or artifacts from themeasurements.With an improvedmodel, we expect that the regularization
parameters in (11)would not be required, they could be set by the hierarchical Bayesian derivation. Futurework
could consider what additional priors or alternativemodeling schemes could help the learning of this structured
covariancemodel, such as described inDorta et al (2018).

Although this work demonstrates a data-driven approach to inverse problems that isflexible and powerful
there are several ways theMRI simulation could bemademore realistic. As discussed in section 4, our
experiments are inspired by the single coil fastMRI challengewhich usesmagnitude images and, as the name
suggests, a single-coil acquisition. In reality,modernMRI scans use amulti-coil acquisition and usually produce
complex images with a non-trivial phase. Amulti-coil acquisition could be incorporated into our framework
with a change of the forwardmodel, e.g. via a SENSE formulation (Pruessmann et al 1999).Modeling the
structures and correlations between the real and complex parts of anMR image is an interesting open problem
and subject to future work. Finally, the radialmaskswe used to simulate a radial sampling pattern, were just an
approximation of the actualMRphysics and futurework could consider bringing this closer to real-world
applications.

As inmostmachine learning approaches, we have assumed that the imageswewish to reconstruct are similar
to those in the training dataset used to train the generativemodel. This is not obvious inmedical imaging, where
damage, tumors, and illness can lead to different image presentations thatmay be far from those of healthy
volunteers used to create datasets.Modeling this, e.g. by sparse deviations (Dhar et al 2018,Duff et al 2021) away
from the range of a generativemodel, is an interesting area of future development.

Another consideration for futurework is to consider going beyond theMAP estimate and considering
quantifying uncertainty in the reconstructed image. One possible avenuewould be to produce a range of
reconstructions by sampling from the learned decoder for an optimized value of z. Further workwould be
required to interpret and present these results in ameaningful and theoretically justifiedway.

7. Conclusion

Generative regularizers provide a bridge between black-box deep learningmethods and traditional variational
regularization techniques for image reconstruction.We propose an adaptive generative regularizer thatmodels
image correlations with a structured noise network. The proposedmethod is trained unsupervised, using only
high-quality reconstructions and is thus adaptable to different noise and k-space sampling levels. Our results
show that generative regularizers aremost effective when the underlying generativemodel outputs both an
image but also a non-trivial covariancematrix for each point in the latent space. The covariance provides a
learnedmetric that guides where the reconstruction can or cannot vary from the learned generativemodel.We
demonstrated the success of this approach through comparisonswith other unsupervised and supervised
approaches.
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