Physics in Medicine & Biology lPE M

Institute of Physics and
Engineering in Medicine

PAPER « OPEN ACCESS You may also like

. . . . - Eiltered back-projection reconstruction for
Deep learning based direct segmentation assisted Ztiéhnuitfén proion CT Siong most liely
paths

by deformable image registration for cone-beam CT Quifones, J M Létang and S Rit
CT based auto-segmentation for adaptive *tote CBCT imacing or prosgte

radiotherapy dose calculation

rad |Othera py Y Chan, M Li, K Parodi et al.

- Quantification of confounding factors in
. . v . . MRI-based dose calculations as applied to
To cite this article: Xiao Liang et al 2023 Phys. Med. Biol. 68 045012 rostate IMRT
Matteo Maspero, Peter R Seevinck,
Gerald Schubert et al.

View the article online for updates and enhancements.

JOIN US | ESTRO 2024
In-Booth Talks, Demos,

& Lunch Symposium

Browse talk schedule > [ N . 22 1]

This content was downloaded from IP address 13.58.137.218 on 02/05/2024 at 01:51



https://doi.org/10.1088/1361-6560/acb4d7
https://iopscience.iop.org/article/10.1088/0031-9155/61/9/3258
https://iopscience.iop.org/article/10.1088/0031-9155/61/9/3258
https://iopscience.iop.org/article/10.1088/0031-9155/61/9/3258
https://iopscience.iop.org/article/10.1088/1361-6560/acccce
https://iopscience.iop.org/article/10.1088/1361-6560/acccce
https://iopscience.iop.org/article/10.1088/1361-6560/acccce
https://iopscience.iop.org/article/10.1088/1361-6560/aa4fe7
https://iopscience.iop.org/article/10.1088/1361-6560/aa4fe7
https://iopscience.iop.org/article/10.1088/1361-6560/aa4fe7
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstI-pkjnN7NBf042WumQJkb2bMZSWZ775BKew0DiZiqwWbz6ur6svzmGPZudI8EhjUvJwTunE1KeUx5M_zIrnS34iRtRCYbkiVyNfDDkwHXqrAd5cqXJ1Y6UQjQumT-3erNjHENVAiCTRaWg9rTCTUqp1ETf3jRAGUy_w1x8jsOhObRRQVwH0ko-vsuhwwDk-eEYjj6o8UQPUbpU9vdRdO5vmMZREQTAVfRTUXk1k97mdT0HOehvbpYIrvjAw4CvZxP7g9oUEnnIadZ99cv8g4aNUTpsDobNTgiY6WRHReHwiQStknc5iLbMTzB0j-3LWw6WrM64rYFqdZuSYbQpCfrScGbjg&sig=Cg0ArKJSzDv0YE6Qlq1G&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www2.sunnuclear.com/l/302621/2024-04-18/zjkv1

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
10 October 2022

REVISED
19 December 2022

ACCEPTED FOR PUBLICATION
19 January 2023

PUBLISHED
10 February 2023

MADE OPEN ACCESS
11 August 2023

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Phys. Med. Biol. 68 (2023) 045012 https://doi.org/10.1088/1361-6560/acb4d7

IPEM

Institute of Physics and
Engineering in Medicine

Physics in Medicine & Biology

PAPER

Deep learning based direct segmentation assisted by deformable
image registration for cone-beam CT based auto-segmentation for
adaptive radiotherapy

Xiao Liang ® , Howard Morgan, Ti Bai ® , Michael Dohopolski, Dan Nguyen® and Steve Jiang"

Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology, University of Texas Southwestern
Medical Center, Dallas, TX, United States of America
*Author to whom any correspondence should be addressed.

E-mail: steve.jiang@utsouthwestern.edu

Keywords: CBCT segmentation, direct segmentation, deformable image registration

Abstract

Cone-beam CT (CBCT)-based online adaptive radiotherapy calls for accurate auto-segmentation to
reduce the time cost for physicians. However, deep learning (DL)-based direct segmentation of CBCT
images is a challenging task, mainly due to the poor image quality and lack of well-labelled large
training datasets. Deformable image registration (DIR) is often used to propagate the manual contours
on the planning CT (pCT) of the same patient to CBCT. In this work, we undertake solving the
problems mentioned above with the assistance of DIR. Our method consists of three main
components. First, we use deformed pCT contours derived from multiple DIR methods between pCT
and CBCT as pseudo labels for initial training of the DL-based direct segmentation model. Second, we
use deformed pCT contours from another DIR algorithm as influencer volumes to define the region of
interest for DL-based direct segmentation. Third, the initially trained DL model is further fine-tuned
using a smaller set of true labels. Nine patients are used for model evaluation. We found that DL-based
direct segmentation on CBCT without influencer volumes has much poorer performance compared
to DIR-based segmentation. However, adding deformed pCT contours as influencer volumes in the
direct segmentation network dramatically improves segmentation performance, reaching the
accuracy level of DIR-based segmentation. The DL model with influencer volumes can be further
improved through fine-tuning using a smaller set of true labels, achieving mean Dice similarity
coefficient of 0.86, Hausdorff distance at the 95th percentile of 2.34 mm, and average surface distance
0f 0.56 mm. A DL-based direct CBCT segmentation model can be improved to outperform DIR-based
segmentation models by using deformed pCT contours as pseudo labels and influencer volumes for
initial training, and by using a smaller set of true labels for model fine tuning.

1. Introduction

Online adaptive radiotherapy (ART) is an advanced radiotherapy technology in which the daily treatment plan is
adapted to the patient’s changing anatomy (e.g. shrinking tumor, losing body weight), typically based on cone
beam computed tomography (CBCT) images. The online nature of the treatment demands high efficiency since
the patient is immobilized while waiting for treatment to start. The time-consuming process of segmenting the
tumor volumes and organs at risk (OARs) has become a major bottleneck for the widespread use of online ART,
warranting an urgent need for accurate auto-segmentation tools (Glide-Hurst et al 2021).

Auto-segmentation of CBCT images is a very challenging task, mainly due to poor image quality and lack of
training labels for deep learning (DL)-based methods. First, the greater presence of noise and artifacts on CBCT
images, such as capping, cupping, ring, and streaking artifacts, makes CBCT more difficult than CT for auto-
segmentation tasks (Lechuga and Weidlich 2016). Second, contouring of tumor volumes and OARs is not part of
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the common applications of CBCT-based image-guided radiotherapy. Therefore, unlike CT for treatment
planning, one cannot use the clinical contours generated from routine clinical practice to train DL models for
CBCT segmentation. Expert clinicians must retrospectively contour large sets of CBCT images specifically for
CBCT segmentation research, which is time consuming and challenging. Due to two major limitations, poor
image quality and lack of a well-labeled large set of training data, studies have shown that DL-based direct
segmentation on CBCT images produce poor segmentation results (Beekman et al2021, Léger et al 2020, Alam
etal 2021, Dahiyaetal 2021, Dai et al 2021).

Auto-segmentation on CBCT for ART is a unique task when planning CT (pCT) with manual contours are
available. Using pCT with manual contours as prior knowledge, some studies have shown that DL-based direct
segmentation could achieve improved results. A simple way to take advantage of pCT and its contours is to
directly mix them into a limited CBCT training dataset. This cross-domain augmentation of the training set was
effective for CBCT augmentation (Léger et al 2020). With a more complicated data augmentation strategy, one
study generated variant synthetic CBCT (sCBCT) images with one pair of pCT and CBCT of the same patient
where the generated data was used to train a CBCT segmentation model (Dahiya et al 2021). Similarly, some
other studies utilized artifact induction to convert pCT to sCBCT to make use of high quality CT manual
contours for CBCT segmentation (Schreier et al 2020, Alam et al 2021).

All the studies mentioned above use data augmentation methods to mitigate the lack of training labels on
CBCT, either by adding pCT with manual contours into the training set directly or by generating sCBCT with
contour labels from pCT with manual contours. While auto-segmentation results can be improved to some
degree by data augmentation, the biggest drawback of these methods is that neither CT nor sCBCT can truly
represent a real CBCT image. Therefore, a more robust and popular way to utilize pCT and its high quality
contours for CBCT auto-segmentation is through deformable image registration (DIR) methods. By deforming
pCT to CBCT, pCT contours can be propagated to CBCT. While traditional DIR methods including B-spline
and Demons algorithms (Gu et al 2009, Klein et al 2010, Fedorov et al 2012) are computationally intensive and
time consuming, DL-based DIR methods can be quick at inference, but usually require large amounts of training
data (Han et al 2021), which can be mitigated with methods like test-time optimization (TTO) (Liang et al 2022).
The biggest benefit of DIR-based segmentation is that the topological consistency of contours can be preserved
by smoothly deforming pCT contours, since most organs have small anatomical changes. However, when
anatomical changes are big, DIR-based contour propagation can be biased towards the original pCT contour
shape.

A combination of DL-based direct segmentation and DIR-based contour propagation can potentially
leverage the advantages of two methods. One way is to firstly use a DL-based model to direct segment easier
OARs in CBCT images, then subsequently use the segmentation results to constrain the DIR between pCT and
CBCT, and finally to propagate the target volumes and rest of OARs from pCT to CBCT (Archambault et al
2020). Another way is through joint learning of segmentation and registration. A typical way for joint
segmentation and registration is to predict segmentations on both moving and fixed images using unsegmented
moving and fix images as inputs (Estienne et al 2019, Xu and Niethammer 2019). Another way for joint learning
is to use the moving and fixed image, as well as moving segmentations as inputs to predict segmentations on the
fixed image (Beekman et al 2021). In those approaches for joint learning, DL-based direct segmentation and
DIR-based contour propagation are combined either through parameter sharing between the segmentation and
registration model, or through a joint loss function. However, the above-mentioned joint learning approaches
cannot significantly outperform DIR-based contour propagation for CBCT segmentation, and still requires a
large amount of segmentation labels on fix (CBCT) images for model training (Beekman et al 2021).

In this paper, we explore a new method to improve DL-based direct segmentation with the assistance of DIR
results, aiming to outperform the DIR-based methods for CBCT segmentation, without requiring a large well-
labeled training dataset. We propose to use pseudo labels for initial model training, where the pseudo labels are
deformed pCT contours. To help localize OARs and target, we propose to add deformed pCT contours as
influencer volumes through additional channels of the segmentation model. We then fine-tune the initially
trained model using a small set of training data with true labels.

2. Methods

2.1.Problem definition

In a fully supervised segmentation task, we can denote the training setas 2 = {(X, Y)}", where X € R denotes
trainingimagesand Y € {0, 1} denotes their corresponding pixel-wise labels. 2 denotes its corresponding
spatial domain. Given the labeled dataset D, the segmentation task intends to learn a function F with parameter
to map X to Y by minimizing the standard Dice loss:
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where sy = F(x|0) is the predicted probabilities by the CNNs, and cis a small constant added to prevent dividing
by0. sy € [0, 1], with 0 and 1 denoting background and foreground.

2.2.Pseudo label learning (Model,;sc,.40)

We generated pseudo labels for initial training of the model and firstly deformed pCT to its paired CBCT to geta
deformation vector field (DVF). We then used DVF to warp pCT’s contours to generate deformed contours,
which were the pseudo labels of CBCT. To address the pseudo label noise, we applied multiple DIR algorithms to
generate multiple sets of pseudo labels. By randomly selecting one type of pseudo label during each training
iteration, we could mitigate random errors coming from DIR algorithms. We applied three different DL-based
DIR algorithms: FAIM (Kuang and Schmah 2019), 5-cascaded Voxelmorph (Dalca et al 2019), and 10-cascaded
VTN (Zhao et al 2019) to generate pseudo labels y;, y», and ys, respectively. Given the dataset 2 = {(X, )}",
where X = {x} represents image and Y = {y;} represents pseudo labels, the segmentation model intends to learn
afunction Fwith parameter ,, formulated similarly to equation (1):

S [2Zpeﬂyi(p)Sep,(p)] Yo
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where s5, = F(x|6)) is the model predictionand i € {1, 2, 3}.

2.3. Influencer volumes (Model;, quencer)

To deal with the low image quality problem for direct CBCT segmentation, we proposed to add influencer
volumes as additional channels of input, as shown in figure 1. The architecture used in this experiment was a
typical U-Net architecture. Besides the CBCT image, deformed pCT contours were used as additional input
channels to constrain the region of interest for segmentation. The influencer volumes were used for shape and
location feature extraction. The shape and location features were independently extracted from the influencer
volumes for each level and combined with features extracted from CBCT images by multiplication. The
combined features were further concatenated with features from up-sampling layers. The output or labels
consisted of multi-organ segmentation masks derived from learned relations between the CBCT images and
influencer volumes. It is one network predicting all 19 structures.

Since deformed pCT contours were also used as pseudo labels for training, to avoid using the same deformed
pCT contours as input and output at the same time, we proposed to assign two different deformed pCT contours
as such by randomly picking two DIR methods to generate different deformed contours during each training
iteration. In this case, the input was X = {x, y;} and label was Y= {y;}, where i, j € {1, 2, 3} and i=j. We could
formulate the loss function in a similar style to equations (1) or (2):

|25, conpsu o) | + ¢
ming, Lpice(0i): =1 — e >
R ; D pei(P) + D2 oo (p)He
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where sy, = F(x, yj|9,~v) is the model prediction with image x and deformed pCT segmentation y;as input.

2.4. Fine-tuning with true labels (Modelgetune)

To further improve segmentation performance, we propose to fine-tune Model;, guencer Using a small training
dataset with true labels, to mitigate DIR errors that propagate through pseudo labels. And the workflow is shown
in figure 2.

2.5.Data

We retrospectively collected data from 137 patients with head and neck (H&N) squamous cell carcinoma treated
with conventionally fractionated external beam radiotherapy. Each patient’s data included a 3D pCT volume
acquired before the treatment course, OARs and target segmentations delineated and approved by radiation
oncologists on the pCT, and a 3D CBCT image. The pCT volumes were acquired by a Philips CT scanner (Philips
Healthcare, Best, Netherlands) with 1.17 x 1.17 x 3.00 mm” voxel spacing. The CBCT volumes were acquired
by Varian On-Board Imagers (Varian Medical Systems Inc., Palo Alto, CA, USA) with 0.51 x 0.51 x 1.99 mm?
voxel spacing and 512 x 512 x 93 dimensions. Among those 137 patients, 39 patients had true segmentation
labels on CBCT drawn by a radiation oncology expert. Nineteen structures that were either critical OARs or had
large anatomical changes during radiotherapy courses were selected as segmentation targets. These structures

3
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Figure 1. A U-Net architecture with influencer volumes trained with pseudo labels for CBCT segmentation. The input of the
architecture is image (CBCT volumes) and influencer volumes (19-channel segmentation masks). The output/label of the architecture
is a 19-channel segmentation masks representing 19 structures. In this workflow, both pseudo labels and influencer volumes are
deformed pCT structures, but with different DIR methods.

were: left brachial plexus (L_BP), right brachial plexus (R_BP), brainstem, oral cavity, constrictor, esophagus,
nodal gross tumor volume (nGTV), larynx, mandible, left masseter (L_Masseter), right masseter (R_Masseter),
posterior arytenoid-cricoid space (PACS), left parotid gland (L_PG), right parotid gland (R_PG), left superficial
parotid gland (L_Sup_PG), right superficial parotid gland (R_Sup_PG), left submandibular gland (L_SMG),
right submandibular gland (R_SMG), and spinal cord. Contour masks have the same size and resolution with
CBCT images.

To generate pseudo labels and influencer volumes, image registration was performed between pCT and
CBCT for the 98 patients without true CBCT segmentation labels. pCT is first rigid registered to its
corresponding CBCT through Velocity (Varian Medical Systems Inc., Palo Alto, CA, USA), and then deformedly
registered to the CBCT through our previously proposed DIR methods (Liang et al 2022): applying TTO to three
different state-of-the-art DIR models including FAIM, 5-cascaded Voxelmorph, and 10-cascaded VTN.
Subsequently, the pCT contours were warped accordingly to generate deformed pCT contours as pseudo labels
or influencer volumes for training. However due to DIR error in area with large anatomical changes or low
image quality, the pseudo labels which is deformed pCT contours are not as accurate as manual contours which
is gold standard. The remaining 39 patients with true CBCT labels which were manually delineated were

4



10P Publishing

Phys. Med. Biol. 68 (2023) 045012 X Liang et al
DIR method 1
v
Deformed structures 1 Manual I""“’“"’
19 stru'ctures 19 structures
[ | [ 1
Influencer volumes True labels

| |

- 283 3 3 3 3
ig i8¢ X1k
§-§4* g.-ﬁq—ﬁ‘e... B +
- B - W -
in g 4 A A b Y bl
e
v
S I 2 2 89 g 3 = S
1k £ 52 21 L E
3‘3‘3 'y =-g<347 0’5.3 R -
£-8°9 al ey I
£ 8 8 g8 8 - B
.................. Fve
v
g3 3 332 5 8§ g ¢
AR S 15 .8 Al LR
3.,.? 9t e R 24 e S+ @
g8 i e I & =
8 8 32 g 3 3 3 3 & o
i 4
§* g - g- é"%* §*§ ‘§‘§ Input Pooling
% = {1 x % x
2 & | ol e I g 3 Conv 3x3x3 Concatenate

Leaky RelU ] Upsample
Instance norm $€ Multiply
RelU

32x32x6x128 <+ 32x32x6x128

v
32x32x6x128
3!!32;61128
31:32;6:128

v
32x32x6x128

Figure 2. A U-Net architecture with influencer volumes fine-tuned with true labels for CBCT segmentation. The input of the
architecture is image (CBCT volumes) and influencer volumes (19-channel segmentation masks). The output/label of the architecture
isa 19-channel segmentation masks representing 19 structures. In this workflow, influencer volumes are deformed pCT structures
and true labels come from manual contours on CBCT.

grouped into 30 for model fine-tuning and nine for model testing. CBCT images and contour masks were
padded to size of 512 X 512 X 96and 512 x 512 x 96 X 19 from 512 x 512 x 93and 512 x 512 x 93 X 19,
respectively.

2.6. Experiments

Four experiments were performed for this work, and are illustrated in figure 3. First, we trained the U-Net model
on the 98 patients with pseudo labels by switching the training label among three types of pseudo labels without
any prior knowledge (Model,scudo) 01 adding any influencer volumes to study the performance of the direct
segmentation. Then, we added influencer volumes into U-Net and trained the network with pseudo labels to
observe the performance gained from adding influencer volumes (Modelifiyencer)- Both the influencer volumes
and pseudo labels were deformed pCT contours, but coming from different DIR algorithms. Finally, we fine-
tuned Model;, quencer 0N 30 patients with true labels to further improve segmentation accuracy (Modelg,etune)-
During the fine-tuning stage, we applied early stopping, layer freezing, and lower learning rate to prevent model
overfitting. Considering the error of pseudo labels might influence the accuracy of the model trained on pseudo
labels, we directly trained a segmentation model (Model,,,,c) with the same architecture of Model,,sc,.40 but with
true CBCT segmentation labels. However, due to limited amount of data available, only 30 patients with true
CBCT segmentation labels were used to train Model,, .. by starting from scratch. In this work, DIR-based
contour propagating was used as the baseline, since it is the most commonly used method in current clinical
practice for auto-segmentation in CBCT-based ART. We considered 10-cascaded VIN model with TTO as the
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Figure 3. Workflow of experiments.

state-of-the-art DIR baseline model (Modelp;g). All five models were tested on nine patients. Dice similarity
coefficient (DSC), Hausdorff distance at the 95th percentile (HD95), and average surface distance (ASD) were
used to evaluate segmentation accuracy with statistical tests calculated.

3. Results

3.1. Model trained on pseudo labels without influencer volumes

Model,,seudo €xhibited worse performance than Modelp;g, as shown in tables 1, 2, and 3, with all 19 structures
achieving lower DSC, higher HD95 and ASD scores with Model,, .40 This suggests that models depending on
CBCT images alone cannot derive reliable segmentation results. The main reasons for these inferior outcomes
are listed below based on our observations.

Firstly and most importantly, CBCT images have many artifacts and low soft tissue contrast compared to CT
images. Like the images shown in figure 4(a), some organs including the brainstem, esophagus, parotid gland,
and submandibular gland do not have a clear boundary from surrounding tissues, making segmentation more
difficult. However, those organs usually do not have significant anatomical changes, and the deformed pCT
contours are quite accurate.

Secondly, for some OARSs, superior and inferior ends sometimes produce large segmentation errors due to
the direct segmentation model’s inability to deal with certain geometry information if not provided with
guidelines, as shown in figure 4(b). For example, a consensus guideline for CT-based delineation of the
constrictor (Brouwer et al 2015) specified that the cranial border was defined as the caudal tip of pterygoid plates,
and the caudal border as the lower edge of the cricoid cartilage. However, Model,,cu4, failed to pick up this
border data from the training data directly, leading to delineation errors around the superior and inferior
borders.

Thirdly, target volumes and some OARs are extremely challenging to segment, even on CT. Target
delineation, like nodal clinical tumor volume, is more variable and therefore more difficult to predict than
OARs. The brachial plexus is difficult to localize on CT images and is identified with adjacent structures using
additional help from anatomic texts or magnetic resonance imaging. It is unsurprising to see that DIR-based
segmentation prediction has fairly good performance, since it uses pCT contours as a start point. However,
direct segmentation of those extremely difficult structures is prone to failure.

Fourthly, direct segmentation models are prone to inaccurate or incomplete labels in the training dataset.
For example, in figure 4(d), the manual contours are actually the left superficial parotid gland, but mislabeled as
parotid gland. In addition, some structures may be modified to represent avoidance structures and not
necessarily hold fast to the exact anatomic boundaries of that organ, such as with the oral cavity where the
portion overlapping the planning tumor volume is sometimes cropped out, leaving the manual segmentation of
oral cavity incomplete. We also found that some organs lack complete delineation in the superior—inferior
direction in the training dataset, because a complete delineation was unnecessary if a part of the organ was
distant from the target volume.

Fifthly, outliers in the testing dataset have a negative impact on model performance. Figure 4(e) shows two
outliers that we observed in the testing dataset. One test patient had a tracheostomy tube, however, no such
patients are in the training dataset. The presence of the tracheostomy tube leads to incorrect delineation of the

6



Table 1. Mean and standard deviation of DSC of 9 test patients for different auto-segmentation models. Modelpr is DIR only segmentation, which is baseline model in this study. Model,scuqo is direct DL segmentation using pseudo labels
for training. Model,;, is direct DL segmentation using true labels for training. Model;,ayencer is direct DL segmentation using both pseudo labels and influencer volumes for training. Modelgperune is derived from fine-tuning Model;,ayencer
with true labels. Paired sample T tests are conducted between the baseline model (Modelpr) and other models (Model yseudos Modelirue; Modelinfiyencers MOdelgnerune). Numbers in green and red means P-value < 0.05, otherwise P-

value > 0.05, which indicates that the model predicted segmentation with DSC in red is less accurate than Modelp, predicted segmentation, and vice versa for model predicted segmentation with DSC in green.

suiysiiand dol

T10S¥0 (£207) 89 101 ‘PO ‘sAYd

Structure Modelpg Modelseudo Modelye Model;nauencer Modelgnetune
L_BP 0.71+0.09 0.3410.10 0.38+0.08 0.71+0.07 0.72%0.08
R_BP 0.7310.05 0.40+0.10 0.34+0.10 0.7310.04 0.75+0.04

Brainstem 0.91+0.04 0.72+0.10 0.71+0.08 0.90+0.04 0.91+0.04
Oral cavity 0.95+0.01 0.60+0.15 0.57+0.21 0.95+0.01 0.95+0.01
Constrictor 0.831£0.03 0.72+0.12 0.70+0.20 0.85+0.02 0.86+0.01
Esophagus 0.83+0.06 0.62+0.12 0.56+0.20 0.83+0.07 0.83+0.07
nGTV 0.83+0.06 0.32+0.21 0.30+0.23 0.84+0.05 0.8410.06
Larynx 0.8910.05 0.73+0.04 0.67+0.12 0.8910.04 0.90+0.04
Mandible 0.89+0.05 0.87+0.04 0.88+0.03 0.90+0.04 0.91+0.04
L_Masseter 0.90+0.03 0.84+0.04 0.80+0.08 0.90+0.02 0.92+0.02
R_Masseter 0.9040.03 0.83+0.06 0.80+0.07 0.9040.04 0.90+0.05
PACS 0.78+0.03 0.66+0.09 0.65+0.07 0.79+0.02 0.81+0.02
L_PG 0.89+0.03 0.70+0.14 0.67+0.12 0.88+0.04 0.89+0.03
R_PG 0.91+0.01 0.7210.10 0.7210.08 0.90+0.02 0.91+0.01
L_Sup_PG 0.84+0.06 0.60+0.13 0.58+0.13 0.84+0.05 0.84+0.05
R_Sup_PG 0.86+0.03 0.50+0.14 0.60+0.07 0.85+0.02 0.86+0.02
L_SMG 0.8410.01 0.59+0.20 0.60+0.10 0.85+0.02 0.86+0.01
R_SMG 0.84+0.04 0.55+0.13 0.51+0.15 0.85+0.04 0.85+0.03
Spinal cord 0.86+0.05 0.75%0.06 0.80+0.05 0.86+0.05 0.89+0.04
Mean 0.85 0.63 0.62 0.85 0.86
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Table 2. Mean and standard deviation of HD95 of 9 test patients for different auto-segmentation models. Modelpg is DIR only segmentation, which is baseline model in this study. Model,;seydo is direct DL segmentation using pseudo labels
for training. Model,,, is direct DL segmentation using true labels for training. Model;,ayencer is direct DL segmentation using both pseudo labels and influencer volumes for training. Modelgperune is derived from fine-tuning Model;,ayencer
with true labels. Paired sample T tests are conducted between the baseline model (Modelpr) and other models (Modelyseudos Modelirue; Modelinfyencers MOdelgnetune). Numbers in green and red means P-value < 0.05, otherwise P-

value > 0.05, which indicates that the model predicted segmentation with DSC in red is less accurate than Modelp;r predicted segmentation, and vice versa for model predicted segmentation with DSC in green. The unit of HD95 is mm.

suiysiiand dol

T10S¥0 (£207) 89 101 ‘PO ‘sAYd

Structure Modelpg Modelseudo Modelye Model;nauencer Modelgnetune
L_BP 3.11+1.72 16.44+7.21 17.62+10.70 3.04+1.33 3.08+1.49
R_BP 4.23+4.15 14.25+3.19 15.96+10.80 4.08+4.18 3.86+3.79

Brainstem 1.78+0.79 6.29+1.51 6.18+2.32 1.56+0.44 1.56+0.50
Oral cavity 2.50+0.79 23.27+7.13 24.73+10.00 2.61+0.68 2.60+0.66
Constrictor 1.84+0.10 6.03+2.62 11.94+5.00 1.84+0.87 1.99+1.34
Esophagus 2.50+1.11 10.38+7.41 12.28+11.44 2.49+1.07 2.52+1.20
nGTV 2.68+0.94 51.79+23.57 45.21+28.85 2.67+0.87 2.52+0.87
Larynx 3.23£1.34 9.02+2.53 12.49+4.38 2.96+0.97 2.91+0.89
Mandible 2.15+1.59 4.34+3.94 4.76+3.14 2.10+1.56 2.00+1.63
L_Masseter 1.63+0.38 2.99+0.50 4.40+1.26 1.5940.33 1.48+0.34
R_Masseter 1.84+0.32 3.82+1.27 4.89%2.73 1.66+0.39 1.74+0.29
PACS 3.32+0.78 6.24+2.68 8.14+2.97 3.00+0.86 2.79%0.88
L_PG 2.29+0.48 8.96+4.03 10.15+2.15 2.13+0.24 2.07+0.42
R_PG 2.43%+1.52 9.03+5.53 12.51+10.80 2.44+1.51 1.93+0.21
L_Sup_PG 2.58+0.48 11.41+3.49 10.24+4.53 2.35+0.25 2.00+0.12
R_Sup_PG 2.77+0.72 15.25+5.42 11.73+£2.46 2.58+0.69 2.16%0.35
L_SMG 2.46+0.58 13.51+17.11 7.38+2.83 2.30+0.54 2.31+0.35
R_SMG 2.48+0.57 9.16+3.15 10.94+5.18 2.52+0.61 2.50+0.67
Spinal cord 2.82+2.89 15.25+5.42 5.63+5.02 2.79+2.74 2.50+2.12
Mean 2.56 12.50 12.48 2.46 2.34
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Table 3. Mean and standard deviation of ASD of 9 test patients for different auto-segmentation models. Modelpr is DIR only segmentation, which is baseline model in this study. Model ey, is direct DL segmentation using pseudo labels
for training. Model,;, is direct DL segmentation using true labels for training. Model;,yencer is direct DL segmentation using both pseudo labels and influencer volumes for training. Modelgperune is derived from fine-tuning Model;,ayencer
with true labels. Paired sample T tests are conducted between the baseline model (Modelpr) and other models (Modelseudos Modelirues Modelinfiuencers MOdelgnetune). Numbers in green and red means P-value < 0.05, otherwise P-

value > 0.05, which indicates that the model predicted segmentation with DSC in red is less accurate than Modelp;y predicted segmentation, and vice versa for model predicted segmentation with DSC in green. The unit of ASD is mm.

suiysiiand dol

T10S¥0 (£207) 89 101 ‘PO ‘sAYd

Structure Modelpr Modelseudo Model, e Model;,quencer Modelgpetune
L_BP 0.88+0.45 2.99+1.05 2.3911.66 0.80+0.27 0.72+0.34
R_BP 0.78+0.20 2.41+0.66 2.53+0.85 0.69+0.15 0.59+0.14

Brainstem 0.41+0.21 1.61+0.55 1.58+0.48 0.3940.19 0.37+0.18
Oral cavity 0.72+0.13 8.00+3.00 7.16+2.73 0.69+0.17 0.70+0.13
Constrictor 0.55+0.40 1.3610.50 0.88+2.10 0.51+0.38 0.46+0.31
Esophagus 0.68+0.42 2.91+2.49 3.4945.48 0.65+0.42 0.65+0.42
nGTV 0.69+0.27 12.30+7.94 13.66+13.00 0.70+0.27 0.65+0.23
Larynx 0.93+0.39 2.48+0.40 3.68+2.00 0.94+0.39 0.89+0.31
Mandible 0.36%0.17 0.79+0.58 0.9710.69 0.3240.15 0.2840.15
L_Masseter 0.39+0.06 0.85+0.22 1.05+0.45 0.3940.05 0.32+0.04
R_Masseter 0.41+0.05 0.91+0.20 1.04+0.33 0.43+0.13 0.49+0.17
PACS 0.7510.21 1.75+0.75 2.01+0.57 0.7710.19 0.74+0.15
L_PG 0.52+0.12 2.194£1.58 2.45+1.32 0.53+0.13 0.51+0.10
R_PG 0.51+0.11 2.05+1.12 2.41+0.89 0.52+0.16 0.44+0.13
L Sup_PG 0.5410.12 2.0610.85 3.03+1.18 0.55+0.08 0.56+0.07
R_Sup_PG 0.59+0.14 2.13+1.07 2.26+0.73 0.64+0.25 0.61+0.18
L_SMG 0.64+0.19 3.30+4.63 2.08+0.52 0.63+0.22 0.58+0.17
R_SMG 0.70%0.22 2.65%+1.05 2.56+0.84 0.61+0.18 0.58+0.17
Spinal cord 0.69+0.53 1.21+0.38 0.85+0.26 0.670.52 0.50+0.38
Mean 0.62 2.84 2.95 0.60 0.56
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Brainstem Esophagus R_PG L_SMG
(b)

Larynx PACS Spinal cord

Constrictor Brainstem Esophagus

L_PG Oral cavity Esophagus Esophagus

Figure 4. Categories of reasons that cause poor performance of direct segmentation without any prior knowledge on CBCT.
Green linesare manual contours drawn by a radiation oncology expert, are DIR propagated contours
(Modelpr), red lines come from direct segmentation without influencer volumes trained on pseudo labels (Model,yseudo)> and
blue linesare direct segmentation without influencer volumes trained on true labels (Model,).

esophagus by the direct segmentation model. Another test patient had the esophagus pushed away to his left side,
but no similar patient exists in the training dataset. Model sc,q, usually has poor performance on outliers, while
Modelp;g is more accurate by preserving shape information from pCT contours.
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3.2. Model trained on real labels without influencer volumes

Modeli,. also exhibited much worse performance than Modelpg, as shown in tables 1, 2, and 3, with all 19
structures in DSC, HD95, and ASD evaluation. The main reasons for the inferior outcomes are the same with the
reasons listed above in section 3.1, except there are no inaccurate labels in the true label dataset. With much
smaller size of data (30 patients) to train a 3D U-Net model, Model,,,, also suffers overfitting problem. This
indicates that, with limited data available, models depending on CBCT images alone cannot derive reliable
segmentation results.

3.3. Model trained on pseudo labels with influencer volumes

Tables 1, 2, and 3 show that Modelpg and Model;, guencer have similar DSC, HD95, and ASD scores over all 19
structures. With the use of influencer volumes from pseudo labels, the performance of the DS model can be
significantly improved to the level of DIR-based segmentation. It is not surprising that the performance of
Model;,fyencer does not surpass that of Modelpyg, since Model;,gyencer used the pseudo labels generated by DIR
for training.

3.4. Model fine-tuned on real labels with influencer volumes

When Model;, guencer 1S fine-tuned using true labels, the DIR errors contained in pseudo labels for training could
potentially be corrected, allowing for the model performance to surpass that of Modelpr. Tables 1, 2, and 3
shows that DSC, HD95, and ASD scores of Modelg,erune are better than or equal to those of Modelp and
Model;,fuencer- Paired sampled T tests were performed between Modelpr and other models for each structure.
Significant difference (P < 0.05) were colored in red or green (red: predicted segmentation is less accurate, green:
predicted segmentation is more accurate). Modelg,,cune Outperforms Modelpg for 8,9, and 8 structures in DSC,
HD?95, and ASD evaluation respectively. The average DSC over 19 structures by Modelgerune is 0.86, with a
minimum DSC of 0.72 for L_BP and maximum DSC of 0.95 for the oral cavity. The average HD95 and ASD over
19 structures by Modelgeune are 2.34 mm and 0.56 mm, with a minimum HD95 of 1.48 mm for L_Masseter,
maximum HD95 of 3.86 mm for R_BP, minimum ASD of 0.28 mm for mandible, and maximum ASD of

0.72 mm for L_BP. Examples of segmentation from axial, frontal, and sagittal views by Modelp;,
Model;,ayencer» and Modelgperune are shown in figure 5 for visual evaluation. We can see that Modelg,eune NOt
only can maintain shape characteristics of the prior segmentation in pCT, it can also eliminate the errors caused
by the prior segmentation.

4, Discussion and conclusions

Based on this work, it is evident that direct segmentation on CBCT images without prior knowledge is infeasible,
mainly due to the poor image quality, superior and inferior border uncertainty, delineation complexity, outliers,
inaccurate or incomplete labels, and also lack of true labels. With pCT and its corresponding contours available
in the ART workflow as prior knowledge, the accuracy of DL-based direct CBCT segmentation can be greatly
improved.

Different from CT auto-segmentation tasks where large amount of labels are usually available for training,
manual labels are not common on CBCT images. To solve this lack of a large well-labelled training dataset, we
proposed to use deformed pCT as pseudo labels for the initial DL model training, as the performance of the
initially trained model is far inferior to the DIR-based methods. We then proposed to use deformed pCT from
another DIR algorithm as influencer volumes in the network. By adding influencer volumes as new channels to
the model to constrain shape and localization, the model performance can be dramatically improved, reaching
the level of DIR-based methods. To outperform the DIR-based methods, the DL-based direct segmentation
model initially trained with pseudo labels and influencer volumes can be fine-tuned using a small set of training
data with true labels.

Fine-tuning with true labels could mitigate DIR errors contained in the pseudo labels since in the fine-tuning
stage, there are several ways to prevent overfitting (Ying 2019). Reducing overfitting by training the network on
more datasets is not considered in this work since we have only have a small amount of data with true labels.
Reducing overfitting by changing the complexity of the network is another way to prevent overfitting. For
example, the model could be tuned via freezing some layers and only updating parameters of the remaining
layers. Another simple alternative to avoid overfitting is to improve regularization (Goodfellow et al 2016) by
early stopping via monitoring model performance on a validation set and stopping training when performance
degrades. Meanwhile, adding regularization requires a smaller learning rate.

This application is designed to be used in CBCT-based ART for CBCT auto-segmentation. In the ART
workflow, pCT and physician contours are always available before CBCT scan. However, OARs that need to be
delineated are different according to target location. That’s why not all 19 structures exist on pCT in our training
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(a)R_BP

(b) Constrictor

(c) Mandible

(e) PACS

(f) LLSMG

(g) Spinal cord

Figure 5. Segmentation examples in axial, frontal, and sagittal views. Green |inesare manual contours drawn by a radiation
oncology expert, are DIR-based segmentation (Modelpr), blue |inesare segmentations with influencer volumes
trained with pseudo labels (Model;,auencer)> and red |ines are segmentations from fine-tuned direct segmentation with influencer
volumes (Modelg,erune)-
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dataset. The OARs that need to be delineated on CBCT are always the same with the OARs that have delineated
on pCT by a physician. Therefore those missing OARs on pCT do not need to be contoured on CBCT in the ART
workflow. The missing OARs will not affect model prediction of the other OARs.

We used H&N patients to test our models, since CBCT-based ART is often used for this disease site and since
segmentation is more challenging. The same approach can be easily expanded to and tested on datasets from
other disease sites.

In summary, to overcome the two major issues related to CBCT-based image segmentation for online ART,
such as poor image quality and lack of well-labelled large training datasets, we developed a method to use DIR-
propagated contours as pseudo labels and influencer volumes for initial training and subsequently fine-tuned
the model using a small set of a training dataset with true labels. The method has been tested with a cohort of
H&N cancer patients and demonstrated superior segmentation accuracy to the commonly used DIR-based
methods.
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